You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
294 lines
7.1 KiB
294 lines
7.1 KiB
/*
|
|
* Copyright 2001 MontaVista Software Inc.
|
|
* Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
|
|
* Copyright (c) 2003, 2004 Maciej W. Rozycki
|
|
*
|
|
* Common time service routines for MIPS machines. See
|
|
* Documentation/mips/time.README.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
#include <linux/clockchips.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/param.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kallsyms.h>
|
|
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/compiler.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpu-features.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/smtc_ipi.h>
|
|
#include <asm/time.h>
|
|
|
|
#include <irq.h>
|
|
|
|
/*
|
|
* The integer part of the number of usecs per jiffy is taken from tick,
|
|
* but the fractional part is not recorded, so we calculate it using the
|
|
* initial value of HZ. This aids systems where tick isn't really an
|
|
* integer (e.g. for HZ = 128).
|
|
*/
|
|
#define USECS_PER_JIFFY TICK_SIZE
|
|
#define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
|
|
|
|
#define TICK_SIZE (tick_nsec / 1000)
|
|
|
|
/*
|
|
* forward reference
|
|
*/
|
|
DEFINE_SPINLOCK(rtc_lock);
|
|
EXPORT_SYMBOL(rtc_lock);
|
|
|
|
int __weak rtc_mips_set_time(unsigned long sec)
|
|
{
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rtc_mips_set_time);
|
|
|
|
int __weak rtc_mips_set_mmss(unsigned long nowtime)
|
|
{
|
|
return rtc_mips_set_time(nowtime);
|
|
}
|
|
|
|
int update_persistent_clock(struct timespec now)
|
|
{
|
|
return rtc_mips_set_mmss(now.tv_sec);
|
|
}
|
|
|
|
/*
|
|
* Null high precision timer functions for systems lacking one.
|
|
*/
|
|
static cycle_t null_hpt_read(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* High precision timer functions for a R4k-compatible timer.
|
|
*/
|
|
static cycle_t c0_hpt_read(void)
|
|
{
|
|
return read_c0_count();
|
|
}
|
|
|
|
int (*mips_timer_state)(void);
|
|
|
|
/*
|
|
* local_timer_interrupt() does profiling and process accounting
|
|
* on a per-CPU basis.
|
|
*
|
|
* In UP mode, it is invoked from the (global) timer_interrupt.
|
|
*
|
|
* In SMP mode, it might invoked by per-CPU timer interrupt, or
|
|
* a broadcasted inter-processor interrupt which itself is triggered
|
|
* by the global timer interrupt.
|
|
*/
|
|
void local_timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
profile_tick(CPU_PROFILING);
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
}
|
|
|
|
int null_perf_irq(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(null_perf_irq);
|
|
|
|
int (*perf_irq)(void) = null_perf_irq;
|
|
|
|
EXPORT_SYMBOL(perf_irq);
|
|
|
|
/*
|
|
* time_init() - it does the following things.
|
|
*
|
|
* 1) plat_time_init() -
|
|
* a) (optional) set up RTC routines,
|
|
* b) (optional) calibrate and set the mips_hpt_frequency
|
|
* (only needed if you intended to use cpu counter as timer interrupt
|
|
* source)
|
|
* 2) calculate a couple of cached variables for later usage
|
|
* 3) plat_timer_setup() -
|
|
* a) (optional) over-write any choices made above by time_init().
|
|
* b) machine specific code should setup the timer irqaction.
|
|
* c) enable the timer interrupt
|
|
*/
|
|
|
|
unsigned int mips_hpt_frequency;
|
|
|
|
static unsigned int __init calibrate_hpt(void)
|
|
{
|
|
cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
|
|
|
|
const int loops = HZ / 10;
|
|
int log_2_loops = 0;
|
|
int i;
|
|
|
|
/*
|
|
* We want to calibrate for 0.1s, but to avoid a 64-bit
|
|
* division we round the number of loops up to the nearest
|
|
* power of 2.
|
|
*/
|
|
while (loops > 1 << log_2_loops)
|
|
log_2_loops++;
|
|
i = 1 << log_2_loops;
|
|
|
|
/*
|
|
* Wait for a rising edge of the timer interrupt.
|
|
*/
|
|
while (mips_timer_state());
|
|
while (!mips_timer_state());
|
|
|
|
/*
|
|
* Now see how many high precision timer ticks happen
|
|
* during the calculated number of periods between timer
|
|
* interrupts.
|
|
*/
|
|
hpt_start = clocksource_mips.read();
|
|
do {
|
|
while (mips_timer_state());
|
|
while (!mips_timer_state());
|
|
} while (--i);
|
|
hpt_end = clocksource_mips.read();
|
|
|
|
hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
|
|
hz = HZ;
|
|
frequency = hpt_count * hz;
|
|
|
|
return frequency >> log_2_loops;
|
|
}
|
|
|
|
struct clocksource clocksource_mips = {
|
|
.name = "MIPS",
|
|
.mask = CLOCKSOURCE_MASK(32),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static void __init init_mips_clocksource(void)
|
|
{
|
|
u64 temp;
|
|
u32 shift;
|
|
|
|
if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
|
|
return;
|
|
|
|
/* Calclate a somewhat reasonable rating value */
|
|
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
|
|
/* Find a shift value */
|
|
for (shift = 32; shift > 0; shift--) {
|
|
temp = (u64) NSEC_PER_SEC << shift;
|
|
do_div(temp, mips_hpt_frequency);
|
|
if ((temp >> 32) == 0)
|
|
break;
|
|
}
|
|
clocksource_mips.shift = shift;
|
|
clocksource_mips.mult = (u32)temp;
|
|
|
|
clocksource_register(&clocksource_mips);
|
|
}
|
|
|
|
void __init __weak plat_time_init(void)
|
|
{
|
|
}
|
|
|
|
void __init __weak plat_timer_setup(struct irqaction *irq)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_MIPS_MT_SMTC
|
|
DEFINE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
|
|
|
|
static void smtc_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
}
|
|
|
|
static void mips_broadcast(cpumask_t mask)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_cpu_mask(cpu, mask)
|
|
smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
|
|
}
|
|
|
|
static void setup_smtc_dummy_clockevent_device(void)
|
|
{
|
|
//uint64_t mips_freq = mips_hpt_^frequency;
|
|
unsigned int cpu = smp_processor_id();
|
|
struct clock_event_device *cd;
|
|
|
|
cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
|
|
|
|
cd->name = "SMTC";
|
|
cd->features = CLOCK_EVT_FEAT_DUMMY;
|
|
|
|
/* Calculate the min / max delta */
|
|
cd->mult = 0; //div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
|
|
cd->shift = 0; //32;
|
|
cd->max_delta_ns = 0; //clockevent_delta2ns(0x7fffffff, cd);
|
|
cd->min_delta_ns = 0; //clockevent_delta2ns(0x30, cd);
|
|
|
|
cd->rating = 200;
|
|
cd->irq = 17; //-1;
|
|
// if (cpu)
|
|
// cd->cpumask = CPU_MASK_ALL; // cpumask_of_cpu(cpu);
|
|
// else
|
|
cd->cpumask = cpumask_of_cpu(cpu);
|
|
|
|
cd->set_mode = smtc_set_mode;
|
|
|
|
cd->broadcast = mips_broadcast;
|
|
|
|
clockevents_register_device(cd);
|
|
}
|
|
#endif
|
|
|
|
void __init time_init(void)
|
|
{
|
|
plat_time_init();
|
|
|
|
/* Choose appropriate high precision timer routines. */
|
|
if (!cpu_has_counter && !clocksource_mips.read)
|
|
/* No high precision timer -- sorry. */
|
|
clocksource_mips.read = null_hpt_read;
|
|
else if (!mips_hpt_frequency && !mips_timer_state) {
|
|
/* A high precision timer of unknown frequency. */
|
|
if (!clocksource_mips.read)
|
|
/* No external high precision timer -- use R4k. */
|
|
clocksource_mips.read = c0_hpt_read;
|
|
} else {
|
|
/* We know counter frequency. Or we can get it. */
|
|
if (!clocksource_mips.read) {
|
|
/* No external high precision timer -- use R4k. */
|
|
clocksource_mips.read = c0_hpt_read;
|
|
}
|
|
if (!mips_hpt_frequency)
|
|
mips_hpt_frequency = calibrate_hpt();
|
|
|
|
/* Report the high precision timer rate for a reference. */
|
|
printk("Using %u.%03u MHz high precision timer.\n",
|
|
((mips_hpt_frequency + 500) / 1000) / 1000,
|
|
((mips_hpt_frequency + 500) / 1000) % 1000);
|
|
}
|
|
|
|
init_mips_clocksource();
|
|
mips_clockevent_init();
|
|
}
|
|
|