You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/include/trace/events/sched.h

1608 lines
42 KiB

/* SPDX-License-Identifier: GPL-2.0 */
#undef TRACE_SYSTEM
#define TRACE_SYSTEM sched
#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_SCHED_H
#include <linux/sched/numa_balancing.h>
#include <linux/tracepoint.h>
#include <linux/binfmts.h>
#include <linux/sched/idle.h>
/*
* Tracepoint for calling kthread_stop, performed to end a kthread:
*/
TRACE_EVENT(sched_kthread_stop,
TP_PROTO(struct task_struct *t),
TP_ARGS(t),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
),
TP_fast_assign(
memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
__entry->pid = t->pid;
),
TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
);
/*
* Tracepoint for the return value of the kthread stopping:
*/
TRACE_EVENT(sched_kthread_stop_ret,
TP_PROTO(int ret),
TP_ARGS(ret),
TP_STRUCT__entry(
__field( int, ret )
),
TP_fast_assign(
__entry->ret = ret;
),
TP_printk("ret=%d", __entry->ret)
);
/*
* Tracepoint for task enqueue/dequeue:
*/
TRACE_EVENT(sched_enq_deq_task,
TP_PROTO(struct task_struct *p, bool enqueue, unsigned int cpus_allowed),
TP_ARGS(p, enqueue, cpus_allowed),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, cpu )
__field( bool, enqueue )
__field(unsigned int, nr_running )
__field(unsigned long, cpu_load )
__field(unsigned int, rt_nr_running )
__field(unsigned int, cpus_allowed )
__field(unsigned int, demand )
__field(unsigned int, pred_demand )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->cpu = task_cpu(p);
__entry->enqueue = enqueue;
__entry->nr_running = task_rq(p)->nr_running;
__entry->cpu_load = task_rq(p)->cpu_load[0];
__entry->rt_nr_running = task_rq(p)->rt.rt_nr_running;
__entry->cpus_allowed = cpus_allowed;
__entry->demand = task_load(p);
__entry->pred_demand = task_pl(p);
),
TP_printk("cpu=%d %s comm=%s pid=%d prio=%d nr_running=%u cpu_load=%lu rt_nr_running=%u affine=%x demand=%u pred_demand=%u",
__entry->cpu,
__entry->enqueue ? "enqueue" : "dequeue",
__entry->comm, __entry->pid,
__entry->prio, __entry->nr_running,
__entry->cpu_load, __entry->rt_nr_running, __entry->cpus_allowed
, __entry->demand, __entry->pred_demand
)
);
/*
* Tracepoint for waking up a task:
*/
DECLARE_EVENT_CLASS(sched_wakeup_template,
TP_PROTO(struct task_struct *p),
TP_ARGS(__perf_task(p)),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, success )
__field( int, target_cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio; /* XXX SCHED_DEADLINE */
__entry->success = 1; /* rudiment, kill when possible */
__entry->target_cpu = task_cpu(p);
),
TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
__entry->comm, __entry->pid, __entry->prio,
__entry->target_cpu)
);
/*
* Tracepoint called when waking a task; this tracepoint is guaranteed to be
* called from the waking context.
*/
DEFINE_EVENT(sched_wakeup_template, sched_waking,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG.
* It it not always called from the waking context.
*/
DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for waking up a new task:
*/
DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
#ifdef CREATE_TRACE_POINTS
static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p)
{
unsigned int state;
#ifdef CONFIG_SCHED_DEBUG
BUG_ON(p != current);
#endif /* CONFIG_SCHED_DEBUG */
/*
* Preemption ignores task state, therefore preempted tasks are always
* RUNNING (we will not have dequeued if state != RUNNING).
*/
if (preempt)
return TASK_REPORT_MAX;
/*
* __get_task_state() uses fls(), which considers LSB as 0. So
* Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
* it for left shift operation to get the correct task->state
* mapping.
*/
state = __get_task_state(p);
return state ? (1 << (state - 1)) : state;
}
#endif /* CREATE_TRACE_POINTS */
/*
* Tracepoint for task switches, performed by the scheduler:
*/
TRACE_EVENT(sched_switch,
TP_PROTO(bool preempt,
struct task_struct *prev,
struct task_struct *next),
TP_ARGS(preempt, prev, next),
TP_STRUCT__entry(
__array( char, prev_comm, TASK_COMM_LEN )
__field( pid_t, prev_pid )
__field( int, prev_prio )
__field( long, prev_state )
__array( char, next_comm, TASK_COMM_LEN )
__field( pid_t, next_pid )
__field( int, next_prio )
),
TP_fast_assign(
memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
__entry->prev_pid = prev->pid;
__entry->prev_prio = prev->prio;
__entry->prev_state = __trace_sched_switch_state(preempt, prev);
memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
__entry->next_pid = next->pid;
__entry->next_prio = next->prio;
/* XXX SCHED_DEADLINE */
),
TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
__entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
(__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
__print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
{ TASK_INTERRUPTIBLE, "S" },
{ TASK_UNINTERRUPTIBLE, "D" },
{ __TASK_STOPPED, "T" },
{ __TASK_TRACED, "t" },
{ EXIT_DEAD, "X" },
{ EXIT_ZOMBIE, "Z" },
{ TASK_PARKED, "P" },
{ TASK_DEAD, "I" }) :
"R",
__entry->prev_state & TASK_REPORT_MAX ? "+" : "",
__entry->next_comm, __entry->next_pid, __entry->next_prio)
);
/*
* Tracepoint for a task being migrated:
*/
TRACE_EVENT(sched_migrate_task,
TP_PROTO(struct task_struct *p, int dest_cpu),
TP_ARGS(p, dest_cpu),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, orig_cpu )
__field( int, dest_cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio; /* XXX SCHED_DEADLINE */
__entry->orig_cpu = task_cpu(p);
__entry->dest_cpu = dest_cpu;
),
TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
__entry->comm, __entry->pid, __entry->prio,
__entry->orig_cpu, __entry->dest_cpu)
);
/*
* Tracepoint for load balancing:
*/
#ifdef CONFIG_SMP
#if NR_CPUS > 32
#error "Unsupported NR_CPUS for lb tracepoint."
#endif
TRACE_EVENT(sched_load_balance,
TP_PROTO(int cpu, enum cpu_idle_type idle, int balance,
unsigned long group_mask, int busiest_nr_running,
unsigned long imbalance, unsigned int env_flags, int ld_moved,
unsigned int balance_interval, int active_balance),
TP_ARGS(cpu, idle, balance, group_mask, busiest_nr_running,
imbalance, env_flags, ld_moved, balance_interval, active_balance),
TP_STRUCT__entry(
__field( int, cpu)
__field( enum cpu_idle_type, idle)
__field( int, balance)
__field( unsigned long, group_mask)
__field( int, busiest_nr_running)
__field( unsigned long, imbalance)
__field( unsigned int, env_flags)
__field( int, ld_moved)
__field( unsigned int, balance_interval)
__field( int, active_balance)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->idle = idle;
__entry->balance = balance;
__entry->group_mask = group_mask;
__entry->busiest_nr_running = busiest_nr_running;
__entry->imbalance = imbalance;
__entry->env_flags = env_flags;
__entry->ld_moved = ld_moved;
__entry->balance_interval = balance_interval;
__entry->active_balance = active_balance;
),
TP_printk("cpu=%d state=%s balance=%d group=%#lx busy_nr=%d imbalance=%ld flags=%#x ld_moved=%d bal_int=%d active_balance=%d",
__entry->cpu,
__entry->idle == CPU_IDLE ? "idle" :
(__entry->idle == CPU_NEWLY_IDLE ? "newly_idle" : "busy"),
__entry->balance,
__entry->group_mask, __entry->busiest_nr_running,
__entry->imbalance, __entry->env_flags, __entry->ld_moved,
__entry->balance_interval, __entry->active_balance)
);
TRACE_EVENT(sched_load_balance_nohz_kick,
TP_PROTO(int cpu, int kick_cpu),
TP_ARGS(cpu, kick_cpu),
TP_STRUCT__entry(
__field(int, cpu )
__field(unsigned int, cpu_nr )
__field(unsigned long, misfit_task_load )
__field(int, cpu_overutil )
__field(int, kick_cpu )
__field(unsigned long, nohz_flags )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->cpu_nr = cpu_rq(cpu)->nr_running;
__entry->misfit_task_load = cpu_rq(cpu)->misfit_task_load;
__entry->cpu_overutil = cpu_overutilized(cpu);
__entry->kick_cpu = kick_cpu;
__entry->nohz_flags = *nohz_flags(kick_cpu);
),
TP_printk("cpu=%d nr_run=%u misfit_task_load=%lu overutilized=%d kick_cpu=%d nohz_flags=0x%lx",
__entry->cpu, __entry->cpu_nr, __entry->misfit_task_load, __entry->cpu_overutil,
__entry->kick_cpu, __entry->nohz_flags)
);
TRACE_EVENT(sched_load_balance_sg_stats,
TP_PROTO(unsigned long sg_cpus, int group_type, unsigned int idle_cpus, unsigned int sum_nr_running, unsigned long group_load, unsigned long group_capacity, unsigned long group_util, int group_no_capacity, unsigned long load_per_task, unsigned long misfit_load, unsigned long busiest),
TP_ARGS(sg_cpus, group_type, idle_cpus, sum_nr_running, group_load, group_capacity, group_util, group_no_capacity, load_per_task, misfit_load, busiest),
TP_STRUCT__entry(
__field(unsigned long, group_mask )
__field(int, group_type )
__field(unsigned int, group_idle_cpus )
__field(unsigned int, sum_nr_running )
__field(unsigned long, group_load )
__field(unsigned long, group_capacity )
__field(unsigned long, group_util )
__field(int, group_no_capacity )
__field(unsigned long, load_per_task )
__field(unsigned long, misfit_task_load )
__field(unsigned long, busiest )
),
TP_fast_assign(
__entry->group_mask = sg_cpus;
__entry->group_type = group_type;
__entry->group_idle_cpus = idle_cpus;
__entry->sum_nr_running = sum_nr_running;
__entry->group_load = group_load;
__entry->group_capacity = group_capacity;
__entry->group_util = group_util;
__entry->group_no_capacity = group_no_capacity;
__entry->load_per_task = load_per_task;
__entry->misfit_task_load = misfit_load;
__entry->busiest = busiest;
),
TP_printk("sched_group=%#lx type=%d idle_cpus=%u sum_nr_run=%u group_load=%lu capacity=%lu util=%lu no_capacity=%d lpt=%lu misfit_tload=%lu busiest_group=%#lx",
__entry->group_mask, __entry->group_type, __entry->group_idle_cpus, __entry->sum_nr_running, __entry->group_load, __entry->group_capacity, __entry->group_util, __entry->group_no_capacity, __entry->load_per_task, __entry->misfit_task_load, __entry->busiest)
);
TRACE_EVENT(sched_load_balance_stats,
TP_PROTO(unsigned long busiest, int bgroup_type, unsigned long bavg_load, unsigned long bload_per_task, unsigned long local, int lgroup_type, unsigned long lavg_load, unsigned long lload_per_task, unsigned long sds_avg_load, unsigned long imbalance),
TP_ARGS(busiest, bgroup_type, bavg_load, bload_per_task, local, lgroup_type, lavg_load, lload_per_task, sds_avg_load, imbalance),
TP_STRUCT__entry(
__field(unsigned long, busiest )
__field(int, bgp_type )
__field(unsigned long, bavg_load )
__field(unsigned long, blpt )
__field(unsigned long, local )
__field(int, lgp_type )
__field(unsigned long, lavg_load )
__field(unsigned long, llpt )
__field(unsigned long, sds_avg )
__field(unsigned long, imbalance )
),
TP_fast_assign(
__entry->busiest = busiest;
__entry->bgp_type = bgroup_type;
__entry->bavg_load = bavg_load;
__entry->blpt = bload_per_task;
__entry->bgp_type = bgroup_type;
__entry->local = local;
__entry->lgp_type = lgroup_type;
__entry->lavg_load = lavg_load;
__entry->llpt = lload_per_task;
__entry->sds_avg = sds_avg_load;
__entry->imbalance = imbalance;
),
TP_printk("busiest_group=%#lx busiest_type=%d busiest_avg_load=%ld busiest_lpt=%ld local_group=%#lx local_type=%d local_avg_load=%ld local_lpt=%ld domain_avg_load=%ld imbalance=%ld",
__entry->busiest, __entry->bgp_type, __entry->bavg_load, __entry->blpt, __entry->local, __entry->lgp_type, __entry->lavg_load, __entry->llpt, __entry->sds_avg, __entry->imbalance)
);
#endif
DECLARE_EVENT_CLASS(sched_process_template,
TP_PROTO(struct task_struct *p),
TP_ARGS(p),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio; /* XXX SCHED_DEADLINE */
),
TP_printk("comm=%s pid=%d prio=%d",
__entry->comm, __entry->pid, __entry->prio)
);
/*
* Tracepoint for freeing a task:
*/
DEFINE_EVENT(sched_process_template, sched_process_free,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for a task exiting:
*/
DEFINE_EVENT(sched_process_template, sched_process_exit,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for waiting on task to unschedule:
*/
DEFINE_EVENT(sched_process_template, sched_wait_task,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for a waiting task:
*/
TRACE_EVENT(sched_process_wait,
TP_PROTO(struct pid *pid),
TP_ARGS(pid),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
),
TP_fast_assign(
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
__entry->pid = pid_nr(pid);
__entry->prio = current->prio; /* XXX SCHED_DEADLINE */
),
TP_printk("comm=%s pid=%d prio=%d",
__entry->comm, __entry->pid, __entry->prio)
);
/*
* Tracepoint for do_fork:
*/
TRACE_EVENT(sched_process_fork,
TP_PROTO(struct task_struct *parent, struct task_struct *child),
TP_ARGS(parent, child),
TP_STRUCT__entry(
__array( char, parent_comm, TASK_COMM_LEN )
__field( pid_t, parent_pid )
__array( char, child_comm, TASK_COMM_LEN )
__field( pid_t, child_pid )
),
TP_fast_assign(
memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
__entry->parent_pid = parent->pid;
memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
__entry->child_pid = child->pid;
),
TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
__entry->parent_comm, __entry->parent_pid,
__entry->child_comm, __entry->child_pid)
);
/*
* Tracepoint for exec:
*/
TRACE_EVENT(sched_process_exec,
TP_PROTO(struct task_struct *p, pid_t old_pid,
struct linux_binprm *bprm),
TP_ARGS(p, old_pid, bprm),
TP_STRUCT__entry(
__string( filename, bprm->filename )
__field( pid_t, pid )
__field( pid_t, old_pid )
),
TP_fast_assign(
__assign_str(filename, bprm->filename);
__entry->pid = p->pid;
__entry->old_pid = old_pid;
),
TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
__entry->pid, __entry->old_pid)
);
/*
* XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
* adding sched_stat support to SCHED_FIFO/RR would be welcome.
*/
DECLARE_EVENT_CLASS(sched_stat_template,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(__perf_task(tsk), __perf_count(delay)),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( u64, delay )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->delay = delay;
),
TP_printk("comm=%s pid=%d delay=%Lu [ns]",
__entry->comm, __entry->pid,
(unsigned long long)__entry->delay)
);
/*
* Tracepoint for accounting wait time (time the task is runnable
* but not actually running due to scheduler contention).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_wait,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting sleep time (time the task is not runnable,
* including iowait, see below).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_sleep,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting iowait time (time the task is not runnable
* due to waiting on IO to complete).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_iowait,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting blocked time (time the task is in uninterruptible).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_blocked,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for recording the cause of uninterruptible sleep.
*/
TRACE_EVENT(sched_blocked_reason,
TP_PROTO(struct task_struct *tsk),
TP_ARGS(tsk),
TP_STRUCT__entry(
__field( pid_t, pid )
__field( void*, caller )
__field( bool, io_wait )
),
TP_fast_assign(
__entry->pid = tsk->pid;
__entry->caller = (void*)get_wchan(tsk);
__entry->io_wait = tsk->in_iowait;
),
TP_printk("pid=%d iowait=%d caller=%pS", __entry->pid, __entry->io_wait, __entry->caller)
);
/*
* Tracepoint for accounting runtime (time the task is executing
* on a CPU).
*/
DECLARE_EVENT_CLASS(sched_stat_runtime,
TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
TP_ARGS(tsk, __perf_count(runtime), vruntime),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( u64, runtime )
__field( u64, vruntime )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->runtime = runtime;
__entry->vruntime = vruntime;
),
TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
__entry->comm, __entry->pid,
(unsigned long long)__entry->runtime,
(unsigned long long)__entry->vruntime)
);
DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
TP_ARGS(tsk, runtime, vruntime));
/*
* Tracepoint for showing priority inheritance modifying a tasks
* priority.
*/
TRACE_EVENT(sched_pi_setprio,
TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
TP_ARGS(tsk, pi_task),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, oldprio )
__field( int, newprio )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->oldprio = tsk->prio;
__entry->newprio = pi_task ?
min(tsk->normal_prio, pi_task->prio) :
tsk->normal_prio;
/* XXX SCHED_DEADLINE bits missing */
),
TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
__entry->comm, __entry->pid,
__entry->oldprio, __entry->newprio)
);
#ifdef CONFIG_DETECT_HUNG_TASK
TRACE_EVENT(sched_process_hang,
TP_PROTO(struct task_struct *tsk),
TP_ARGS(tsk),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
),
TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
);
#endif /* CONFIG_DETECT_HUNG_TASK */
DECLARE_EVENT_CLASS(sched_move_task_template,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu),
TP_STRUCT__entry(
__field( pid_t, pid )
__field( pid_t, tgid )
__field( pid_t, ngid )
__field( int, src_cpu )
__field( int, src_nid )
__field( int, dst_cpu )
__field( int, dst_nid )
),
TP_fast_assign(
__entry->pid = task_pid_nr(tsk);
__entry->tgid = task_tgid_nr(tsk);
__entry->ngid = task_numa_group_id(tsk);
__entry->src_cpu = src_cpu;
__entry->src_nid = cpu_to_node(src_cpu);
__entry->dst_cpu = dst_cpu;
__entry->dst_nid = cpu_to_node(dst_cpu);
),
TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
__entry->pid, __entry->tgid, __entry->ngid,
__entry->src_cpu, __entry->src_nid,
__entry->dst_cpu, __entry->dst_nid)
);
/*
* Tracks migration of tasks from one runqueue to another. Can be used to
* detect if automatic NUMA balancing is bouncing between nodes
*/
DEFINE_EVENT(sched_move_task_template, sched_move_numa,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu)
);
DEFINE_EVENT(sched_move_task_template, sched_stick_numa,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu)
);
TRACE_EVENT(sched_swap_numa,
TP_PROTO(struct task_struct *src_tsk, int src_cpu,
struct task_struct *dst_tsk, int dst_cpu),
TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
TP_STRUCT__entry(
__field( pid_t, src_pid )
__field( pid_t, src_tgid )
__field( pid_t, src_ngid )
__field( int, src_cpu )
__field( int, src_nid )
__field( pid_t, dst_pid )
__field( pid_t, dst_tgid )
__field( pid_t, dst_ngid )
__field( int, dst_cpu )
__field( int, dst_nid )
),
TP_fast_assign(
__entry->src_pid = task_pid_nr(src_tsk);
__entry->src_tgid = task_tgid_nr(src_tsk);
__entry->src_ngid = task_numa_group_id(src_tsk);
__entry->src_cpu = src_cpu;
__entry->src_nid = cpu_to_node(src_cpu);
__entry->dst_pid = task_pid_nr(dst_tsk);
__entry->dst_tgid = task_tgid_nr(dst_tsk);
__entry->dst_ngid = task_numa_group_id(dst_tsk);
__entry->dst_cpu = dst_cpu;
__entry->dst_nid = cpu_to_node(dst_cpu);
),
TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
__entry->src_pid, __entry->src_tgid, __entry->src_ngid,
__entry->src_cpu, __entry->src_nid,
__entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
__entry->dst_cpu, __entry->dst_nid)
);
/*
* Tracepoint for waking a polling cpu without an IPI.
*/
TRACE_EVENT(sched_wake_idle_without_ipi,
TP_PROTO(int cpu),
TP_ARGS(cpu),
TP_STRUCT__entry(
__field( int, cpu )
),
TP_fast_assign(
__entry->cpu = cpu;
),
TP_printk("cpu=%d", __entry->cpu)
);
#ifdef CONFIG_SMP
#ifdef CREATE_TRACE_POINTS
static inline
int __trace_sched_cpu(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq = cfs_rq ? cfs_rq->rq : NULL;
#else
struct rq *rq = cfs_rq ? container_of(cfs_rq, struct rq, cfs) : NULL;
#endif
return rq ? cpu_of(rq)
: task_cpu((container_of(se, struct task_struct, se)));
}
static inline
int __trace_sched_path(struct cfs_rq *cfs_rq, char *path, int len)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
int l = path ? len : 0;
if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
return autogroup_path(cfs_rq->tg, path, l) + 1;
else if (cfs_rq && cfs_rq->tg->css.cgroup)
return cgroup_path(cfs_rq->tg->css.cgroup, path, l) + 1;
#endif
if (path)
strcpy(path, "(null)");
return strlen("(null)");
}
static inline
struct cfs_rq *__trace_sched_group_cfs_rq(struct sched_entity *se)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
return se->my_q;
#else
return NULL;
#endif
}
#endif /* CREATE_TRACE_POINTS */
#ifdef CONFIG_SCHED_WALT
extern unsigned int sysctl_sched_use_walt_cpu_util;
extern unsigned int sysctl_sched_use_walt_task_util;
extern unsigned int sched_ravg_window;
extern unsigned int walt_disabled;
#define walt_util(util_var, demand_sum) {\
u64 sum = demand_sum << SCHED_CAPACITY_SHIFT;\
do_div(sum, sched_ravg_window);\
util_var = (typeof(util_var))sum;\
}
#endif
/*
* Tracepoint for cfs_rq load tracking:
*/
TRACE_EVENT(sched_load_cfs_rq,
TP_PROTO(struct cfs_rq *cfs_rq),
TP_ARGS(cfs_rq),
TP_STRUCT__entry(
__field( int, cpu )
__dynamic_array(char, path,
__trace_sched_path(cfs_rq, NULL, 0) )
__field( unsigned long, load )
__field( unsigned long, util )
__field( unsigned long, util_pelt )
__field( unsigned long, util_walt )
),
TP_fast_assign(
__entry->cpu = __trace_sched_cpu(cfs_rq, NULL);
__trace_sched_path(cfs_rq, __get_dynamic_array(path),
__get_dynamic_array_len(path));
__entry->load = cfs_rq->runnable_load_avg;
__entry->util = cfs_rq->avg.util_avg;
__entry->util_pelt = cfs_rq->avg.util_avg;
__entry->util_walt = 0;
#ifdef CONFIG_SCHED_WALT
if (&cfs_rq->rq->cfs == cfs_rq) {
walt_util(__entry->util_walt,
cfs_rq->rq->prev_runnable_sum);
if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
__entry->util = __entry->util_walt;
}
#endif
),
TP_printk("cpu=%d path=%s load=%lu util=%lu util_pelt=%lu util_walt=%lu",
__entry->cpu, __get_str(path), __entry->load, __entry->util,
__entry->util_pelt, __entry->util_walt)
);
/*
* Tracepoint for rt_rq load tracking:
*/
struct rt_rq;
TRACE_EVENT(sched_load_rt_rq,
TP_PROTO(int cpu, struct rt_rq *rt_rq),
TP_ARGS(cpu, rt_rq),
TP_STRUCT__entry(
__field( int, cpu )
__field( unsigned long, util )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->util = rt_rq->avg.util_avg;
),
TP_printk("cpu=%d util=%lu", __entry->cpu,
__entry->util)
);
/*
* Tracepoint for sched_entity load tracking:
*/
TRACE_EVENT(sched_load_se,
TP_PROTO(struct sched_entity *se),
TP_ARGS(se),
TP_STRUCT__entry(
__field( int, cpu )
__dynamic_array(char, path,
__trace_sched_path(__trace_sched_group_cfs_rq(se), NULL, 0) )
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( unsigned long, load )
__field( unsigned long, util )
__field( unsigned long, util_pelt )
__field( u32, util_walt )
),
TP_fast_assign(
struct cfs_rq *gcfs_rq = __trace_sched_group_cfs_rq(se);
struct task_struct *p = gcfs_rq ? NULL
: container_of(se, struct task_struct, se);
__entry->cpu = __trace_sched_cpu(gcfs_rq, se);
__trace_sched_path(gcfs_rq, __get_dynamic_array(path),
__get_dynamic_array_len(path));
memcpy(__entry->comm, p ? p->comm : "(null)",
p ? TASK_COMM_LEN : sizeof("(null)"));
__entry->pid = p ? p->pid : -1;
__entry->load = se->avg.load_avg;
__entry->util = se->avg.util_avg;
__entry->util_pelt = __entry->util;
__entry->util_walt = 0;
#ifdef CONFIG_SCHED_WALT
if (!se->my_q) {
struct task_struct *p = container_of(se, struct task_struct, se);
__entry->util_walt = p->ravg.demand / (sched_ravg_window >> SCHED_CAPACITY_SHIFT);
if (!walt_disabled && sysctl_sched_use_walt_task_util)
__entry->util = __entry->util_walt;
}
#endif
),
TP_printk("cpu=%d path=%s comm=%s pid=%d load=%lu util=%lu util_pelt=%lu util_walt=%u",
__entry->cpu, __get_str(path), __entry->comm,
__entry->pid, __entry->load, __entry->util,
__entry->util_pelt, __entry->util_walt)
);
/*
* Tracepoint for task_group load tracking:
*/
#ifdef CONFIG_FAIR_GROUP_SCHED
TRACE_EVENT(sched_load_tg,
TP_PROTO(struct cfs_rq *cfs_rq),
TP_ARGS(cfs_rq),
TP_STRUCT__entry(
__field( int, cpu )
__dynamic_array(char, path,
__trace_sched_path(cfs_rq, NULL, 0) )
__field( long, load )
),
TP_fast_assign(
__entry->cpu = cfs_rq->rq->cpu;
__trace_sched_path(cfs_rq, __get_dynamic_array(path),
__get_dynamic_array_len(path));
__entry->load = atomic_long_read(&cfs_rq->tg->load_avg);
),
TP_printk("cpu=%d path=%s load=%ld", __entry->cpu, __get_str(path),
__entry->load)
);
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
* Tracepoint for accounting CPU boosted utilization
*/
TRACE_EVENT(sched_boost_cpu,
TP_PROTO(int cpu, unsigned long util, long margin),
TP_ARGS(cpu, util, margin),
TP_STRUCT__entry(
__field( int, cpu )
__field( unsigned long, util )
__field(long, margin )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->util = util;
__entry->margin = margin;
),
TP_printk("cpu=%d util=%lu margin=%ld",
__entry->cpu,
__entry->util,
__entry->margin)
);
TRACE_EVENT(core_ctl_eval_need,
TP_PROTO(unsigned int cpu, unsigned int old_need,
unsigned int new_need, unsigned int updated),
TP_ARGS(cpu, old_need, new_need, updated),
TP_STRUCT__entry(
__field(u32, cpu)
__field(u32, old_need)
__field(u32, new_need)
__field(u32, updated)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->old_need = old_need;
__entry->new_need = new_need;
__entry->updated = updated;
),
TP_printk("cpu=%u, old_need=%u, new_need=%u, updated=%u", __entry->cpu,
__entry->old_need, __entry->new_need, __entry->updated)
);
TRACE_EVENT(core_ctl_set_busy,
TP_PROTO(unsigned int cpu, unsigned int busy,
unsigned int old_is_busy, unsigned int is_busy),
TP_ARGS(cpu, busy, old_is_busy, is_busy),
TP_STRUCT__entry(
__field(u32, cpu)
__field(u32, busy)
__field(u32, old_is_busy)
__field(u32, is_busy)
__field(bool, high_irqload)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->busy = busy;
__entry->old_is_busy = old_is_busy;
__entry->is_busy = is_busy;
__entry->high_irqload = sched_cpu_high_irqload(cpu);
),
TP_printk("cpu=%u, busy=%u, old_is_busy=%u, new_is_busy=%u high_irqload=%d",
__entry->cpu, __entry->busy, __entry->old_is_busy,
__entry->is_busy, __entry->high_irqload)
);
TRACE_EVENT(core_ctl_set_boost,
TP_PROTO(u32 refcount, s32 ret),
TP_ARGS(refcount, ret),
TP_STRUCT__entry(
__field(u32, refcount)
__field(s32, ret)
),
TP_fast_assign(
__entry->refcount = refcount;
__entry->ret = ret;
),
TP_printk("refcount=%u, ret=%d", __entry->refcount, __entry->ret)
);
TRACE_EVENT(core_ctl_update_nr_need,
TP_PROTO(int cpu, int nr_need, int prev_misfit_need,
int nrrun, int max_nr, int nr_prev_assist),
TP_ARGS(cpu, nr_need, prev_misfit_need, nrrun, max_nr, nr_prev_assist),
TP_STRUCT__entry(
__field( int, cpu)
__field( int, nr_need)
__field( int, prev_misfit_need)
__field( int, nrrun)
__field( int, max_nr)
__field( int, nr_prev_assist)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->nr_need = nr_need;
__entry->prev_misfit_need = prev_misfit_need;
__entry->nrrun = nrrun;
__entry->max_nr = max_nr;
__entry->nr_prev_assist = nr_prev_assist;
),
TP_printk("cpu=%d nr_need=%d prev_misfit_need=%d nrrun=%d max_nr=%d nr_prev_assist=%d",
__entry->cpu, __entry->nr_need, __entry->prev_misfit_need,
__entry->nrrun, __entry->max_nr, __entry->nr_prev_assist)
);
/*
* Tracepoint for schedtune_tasks_update
*/
TRACE_EVENT(sched_tune_tasks_update,
TP_PROTO(struct task_struct *tsk, int cpu, int tasks, int idx,
int boost, int max_boost, u64 group_ts),
TP_ARGS(tsk, cpu, tasks, idx, boost, max_boost, group_ts),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, cpu )
__field( int, tasks )
__field( int, idx )
__field( int, boost )
__field( int, max_boost )
__field( u64, group_ts )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->cpu = cpu;
__entry->tasks = tasks;
__entry->idx = idx;
__entry->boost = boost;
__entry->max_boost = max_boost;
__entry->group_ts = group_ts;
),
TP_printk("pid=%d comm=%s "
"cpu=%d tasks=%d idx=%d boost=%d max_boost=%d timeout=%llu",
__entry->pid, __entry->comm,
__entry->cpu, __entry->tasks, __entry->idx,
__entry->boost, __entry->max_boost,
__entry->group_ts)
);
/*
* Tracepoint for schedtune_boostgroup_update
*/
TRACE_EVENT(sched_tune_boostgroup_update,
TP_PROTO(int cpu, int variation, int max_boost),
TP_ARGS(cpu, variation, max_boost),
TP_STRUCT__entry(
__field( int, cpu )
__field( int, variation )
__field( int, max_boost )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->variation = variation;
__entry->max_boost = max_boost;
),
TP_printk("cpu=%d variation=%d max_boost=%d",
__entry->cpu, __entry->variation, __entry->max_boost)
);
/*
* Tracepoint for accounting task boosted utilization
*/
TRACE_EVENT(sched_boost_task,
TP_PROTO(struct task_struct *tsk, unsigned long util, long margin),
TP_ARGS(tsk, util, margin),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( unsigned long, util )
__field( long, margin )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->util = util;
__entry->margin = margin;
),
TP_printk("comm=%s pid=%d util=%lu margin=%ld",
__entry->comm, __entry->pid,
__entry->util,
__entry->margin)
);
/*
* Tracepoint for system overutilized flag
*/
struct sched_domain;
TRACE_EVENT_CONDITION(sched_overutilized,
TP_PROTO(struct sched_domain *sd, bool was_overutilized, bool overutilized),
TP_ARGS(sd, was_overutilized, overutilized),
TP_CONDITION(overutilized != was_overutilized),
TP_STRUCT__entry(
__field( bool, overutilized )
__array( char, cpulist , 32 )
),
TP_fast_assign(
__entry->overutilized = overutilized;
scnprintf(__entry->cpulist, sizeof(__entry->cpulist), "%*pbl", cpumask_pr_args(sched_domain_span(sd)));
),
TP_printk("overutilized=%d sd_span=%s",
__entry->overutilized ? 1 : 0, __entry->cpulist)
);
/*
* Tracepoint for find_best_target
*/
TRACE_EVENT(sched_find_best_target,
TP_PROTO(struct task_struct *tsk, bool prefer_idle,
unsigned long min_util, int start_cpu,
int best_idle, int best_active, int most_spare_cap, int target,
int backup_cpu),
TP_ARGS(tsk, prefer_idle, min_util, start_cpu,
best_idle, best_active, most_spare_cap, target,
backup_cpu),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( unsigned long, min_util )
__field( bool, prefer_idle )
__field( int, start_cpu )
__field( int, best_idle )
__field( int, best_active )
__field( int, most_spare_cap )
__field( int, target )
__field( int, backup_cpu)
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->min_util = min_util;
__entry->prefer_idle = prefer_idle;
__entry->start_cpu = start_cpu;
__entry->best_idle = best_idle;
__entry->best_active = best_active;
__entry->most_spare_cap = most_spare_cap;
__entry->target = target;
__entry->backup_cpu = backup_cpu;
),
TP_printk("pid=%d comm=%s prefer_idle=%d start_cpu=%d "
"best_idle=%d best_active=%d most_spare_cap=%d target=%d backup=%d",
__entry->pid, __entry->comm,
__entry->prefer_idle, __entry->start_cpu,
__entry->best_idle, __entry->best_active,
__entry->most_spare_cap,
__entry->target,
__entry->backup_cpu)
);
/*
* Tracepoint for tasks' estimated utilization.
*/
TRACE_EVENT(sched_util_est_task,
TP_PROTO(struct task_struct *tsk, struct sched_avg *avg),
TP_ARGS(tsk, avg),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, cpu )
__field( unsigned int, util_avg )
__field( unsigned int, est_enqueued )
__field( unsigned int, est_ewma )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->cpu = task_cpu(tsk);
__entry->util_avg = avg->util_avg;
__entry->est_enqueued = avg->util_est.enqueued;
__entry->est_ewma = avg->util_est.ewma;
),
TP_printk("comm=%s pid=%d cpu=%d util_avg=%u util_est_ewma=%u util_est_enqueued=%u",
__entry->comm,
__entry->pid,
__entry->cpu,
__entry->util_avg,
__entry->est_ewma,
__entry->est_enqueued)
);
/*
* Tracepoint for root cfs_rq's estimated utilization.
*/
TRACE_EVENT(sched_util_est_cpu,
TP_PROTO(int cpu, struct cfs_rq *cfs_rq),
TP_ARGS(cpu, cfs_rq),
TP_STRUCT__entry(
__field( int, cpu )
__field( unsigned int, util_avg )
__field( unsigned int, util_est_enqueued )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->util_avg = cfs_rq->avg.util_avg;
__entry->util_est_enqueued = cfs_rq->avg.util_est.enqueued;
),
TP_printk("cpu=%d util_avg=%u util_est_enqueued=%u",
__entry->cpu,
__entry->util_avg,
__entry->util_est_enqueued)
);
TRACE_EVENT(sched_cpu_util,
TP_PROTO(int cpu),
TP_ARGS(cpu),
TP_STRUCT__entry(
__field(unsigned int, cpu )
__field(unsigned int, nr_running )
__field(long, cpu_util )
__field(long, cpu_util_cum )
__field(unsigned int, capacity_curr )
__field(unsigned int, capacity )
__field(unsigned int, capacity_orig )
__field(int, idle_state )
__field(u64, irqload )
__field(int, online )
__field(int, isolated )
__field(int, reserved )
__field(int, high_irq_load )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->nr_running = cpu_rq(cpu)->nr_running;
__entry->cpu_util = cpu_util(cpu);
__entry->cpu_util_cum = cpu_util_cum(cpu, 0);
__entry->capacity_curr = capacity_curr_of(cpu);
__entry->capacity = capacity_of(cpu);
__entry->capacity_orig = capacity_orig_of(cpu);
__entry->idle_state = idle_get_state_idx(cpu_rq(cpu));
__entry->irqload = sched_irqload(cpu);
__entry->online = cpu_online(cpu);
__entry->isolated = cpu_isolated(cpu);
__entry->reserved = is_reserved(cpu);
__entry->high_irq_load = sched_cpu_high_irqload(cpu);
),
TP_printk("cpu=%d nr_running=%d cpu_util=%ld cpu_util_cum=%ld capacity_curr=%u capacity=%u capacity_orig=%u idle_state=%d irqload=%llu online=%u, isolated=%u, reserved=%u, high_irq_load=%u",
__entry->cpu, __entry->nr_running, __entry->cpu_util, __entry->cpu_util_cum, __entry->capacity_curr, __entry->capacity, __entry->capacity_orig, __entry->idle_state, __entry->irqload,
__entry->online, __entry->isolated, __entry->reserved, __entry->high_irq_load)
);
TRACE_EVENT(sched_energy_diff,
TP_PROTO(struct task_struct *p, int prev_cpu, unsigned int prev_energy,
int next_cpu, unsigned int next_energy,
int backup_cpu, unsigned int backup_energy),
TP_ARGS(p, prev_cpu, prev_energy, next_cpu, next_energy,
backup_cpu, backup_energy),
TP_STRUCT__entry(
__field(int, pid )
__field(int, prev_cpu )
__field(int, prev_energy )
__field(int, next_cpu )
__field(int, next_energy )
__field(int, backup_cpu )
__field(int, backup_energy )
),
TP_fast_assign(
__entry->pid = p->pid;
__entry->prev_cpu = prev_cpu;
__entry->prev_energy = prev_energy;
__entry->next_cpu = next_cpu;
__entry->next_energy = next_energy;
__entry->backup_cpu = backup_cpu;
__entry->backup_energy = backup_energy;
),
TP_printk("pid=%d prev_cpu=%d prev_energy=%u next_cpu=%d next_energy=%u backup_cpu=%d backup_energy=%u",
__entry->pid, __entry->prev_cpu, __entry->prev_energy,
__entry->next_cpu, __entry->next_energy,
__entry->backup_cpu, __entry->backup_energy)
);
TRACE_EVENT(sched_task_util,
TP_PROTO(struct task_struct *p, int next_cpu, int backup_cpu,
int target_cpu, bool sync, bool need_idle, int fastpath,
bool placement_boost, int rtg_cpu, u64 start_t,
bool stune_boosted),
TP_ARGS(p, next_cpu, backup_cpu, target_cpu, sync, need_idle, fastpath,
placement_boost, rtg_cpu, start_t, stune_boosted),
TP_STRUCT__entry(
__field(int, pid )
__array(char, comm, TASK_COMM_LEN )
__field(unsigned long, util )
__field(int, prev_cpu )
__field(int, next_cpu )
__field(int, backup_cpu )
__field(int, target_cpu )
__field(bool, sync )
__field(bool, need_idle )
__field(int, fastpath )
__field(int, placement_boost )
__field(int, rtg_cpu )
__field(u64, latency )
__field(bool, stune_boosted )
),
TP_fast_assign(
__entry->pid = p->pid;
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->util = task_util(p);
__entry->prev_cpu = task_cpu(p);
__entry->next_cpu = next_cpu;
__entry->backup_cpu = backup_cpu;
__entry->target_cpu = target_cpu;
__entry->sync = sync;
__entry->need_idle = need_idle;
__entry->fastpath = fastpath;
__entry->placement_boost = placement_boost;
__entry->rtg_cpu = rtg_cpu;
__entry->latency = (sched_clock() - start_t);
__entry->stune_boosted = stune_boosted;
),
TP_printk("pid=%d comm=%s util=%lu prev_cpu=%d next_cpu=%d backup_cpu=%d target_cpu=%d sync=%d need_idle=%d fastpath=%d placement_boost=%d rtg_cpu=%d latency=%llu stune_boosted=%d",
__entry->pid, __entry->comm, __entry->util, __entry->prev_cpu,
__entry->next_cpu, __entry->backup_cpu, __entry->target_cpu,
__entry->sync, __entry->need_idle, __entry->fastpath,
__entry->placement_boost, __entry->rtg_cpu, __entry->latency,
__entry->stune_boosted)
)
/*
* Tracepoint for sched_get_nr_running_avg
*/
TRACE_EVENT(sched_get_nr_running_avg,
TP_PROTO(int cpu, int nr, int nr_misfit, int nr_max),
TP_ARGS(cpu, nr, nr_misfit, nr_max),
TP_STRUCT__entry(
__field( int, cpu)
__field( int, nr)
__field( int, nr_misfit)
__field( int, nr_max)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->nr = nr;
__entry->nr_misfit = nr_misfit;
__entry->nr_max = nr_max;
),
TP_printk("cpu=%d nr=%d nr_misfit=%d nr_max=%d",
__entry->cpu, __entry->nr, __entry->nr_misfit, __entry->nr_max)
);
/*
* sched_isolate - called when cores are isolated/unisolated
*
* @acutal_mask: mask of cores actually isolated/unisolated
* @req_mask: mask of cores requested isolated/unisolated
* @online_mask: cpu online mask
* @time: amount of time in us it took to isolate/unisolate
* @isolate: 1 if isolating, 0 if unisolating
*
*/
TRACE_EVENT(sched_isolate,
TP_PROTO(unsigned int requested_cpu, unsigned int isolated_cpus,
u64 start_time, unsigned char isolate),
TP_ARGS(requested_cpu, isolated_cpus, start_time, isolate),
TP_STRUCT__entry(
__field(u32, requested_cpu)
__field(u32, isolated_cpus)
__field(u32, time)
__field(unsigned char, isolate)
),
TP_fast_assign(
__entry->requested_cpu = requested_cpu;
__entry->isolated_cpus = isolated_cpus;
__entry->time = div64_u64(sched_clock() - start_time, 1000);
__entry->isolate = isolate;
),
TP_printk("iso cpu=%u cpus=0x%x time=%u us isolated=%d",
__entry->requested_cpu, __entry->isolated_cpus,
__entry->time, __entry->isolate)
);
#include "walt.h"
#endif /* CONFIG_SMP */
TRACE_EVENT(sched_preempt_disable,
TP_PROTO(u64 delta, bool irqs_disabled,
unsigned long caddr0, unsigned long caddr1,
unsigned long caddr2, unsigned long caddr3),
TP_ARGS(delta, irqs_disabled, caddr0, caddr1, caddr2, caddr3),
TP_STRUCT__entry(
__field(u64, delta)
__field(bool, irqs_disabled)
__field(void*, caddr0)
__field(void*, caddr1)
__field(void*, caddr2)
__field(void*, caddr3)
),
TP_fast_assign(
__entry->delta = delta;
__entry->irqs_disabled = irqs_disabled;
__entry->caddr0 = (void *)caddr0;
__entry->caddr1 = (void *)caddr1;
__entry->caddr2 = (void *)caddr2;
__entry->caddr3 = (void *)caddr3;
),
TP_printk("delta=%llu(ns) irqs_d=%d Callers:(%pf<-%pf<-%pf<-%pf)",
__entry->delta, __entry->irqs_disabled,
__entry->caddr0, __entry->caddr1,
__entry->caddr2, __entry->caddr3)
);
#endif /* _TRACE_SCHED_H */
/* This part must be outside protection */
#include <trace/define_trace.h>