You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/scsi/ufs/ufshcd.c

13210 lines
363 KiB

/*
* Universal Flash Storage Host controller driver Core
*
* This code is based on drivers/scsi/ufs/ufshcd.c
* Copyright (C) 2011-2013 Samsung India Software Operations
* Copyright (c) 2013-2020, The Linux Foundation. All rights reserved.
*
* Authors:
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* See the COPYING file in the top-level directory or visit
* <http://www.gnu.org/licenses/gpl-2.0.html>
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This program is provided "AS IS" and "WITH ALL FAULTS" and
* without warranty of any kind. You are solely responsible for
* determining the appropriateness of using and distributing
* the program and assume all risks associated with your exercise
* of rights with respect to the program, including but not limited
* to infringement of third party rights, the risks and costs of
* program errors, damage to or loss of data, programs or equipment,
* and unavailability or interruption of operations. Under no
* circumstances will the contributor of this Program be liable for
* any damages of any kind arising from your use or distribution of
* this program.
*
* The Linux Foundation chooses to take subject only to the GPLv2
* license terms, and distributes only under these terms.
*/
#include <linux/async.h>
#include <scsi/ufs/ioctl.h>
#include <linux/devfreq.h>
#include <linux/nls.h>
#include <linux/of.h>
#include <linux/blkdev.h>
#include <asm/unaligned.h>
#include "ufshcd.h"
#include "ufs_quirks.h"
#include "unipro.h"
#include "ufs-debugfs.h"
#include "ufs-qcom.h"
#if defined(CONFIG_SEC_DEBUG)
#include "linux/sec_debug.h"
#endif
#if defined(CONFIG_SEC_ABC)
#include <linux/sti/abc_common.h>
#endif
#ifdef CONFIG_DEBUG_FS
static int ufshcd_tag_req_type(struct request *rq)
{
int rq_type = TS_WRITE;
if (!rq)
rq_type = TS_NOT_SUPPORTED;
else if (rq->cmd_flags & REQ_PREFLUSH)
rq_type = TS_FLUSH;
else if (rq_data_dir(rq) == READ)
rq_type = (rq->cmd_flags & REQ_URGENT) ?
TS_URGENT_READ : TS_READ;
else if (rq->cmd_flags & REQ_URGENT)
rq_type = TS_URGENT_WRITE;
return rq_type;
}
static void ufshcd_update_error_stats(struct ufs_hba *hba, int type)
{
ufsdbg_set_err_state(hba);
if (type < UFS_ERR_MAX)
hba->ufs_stats.err_stats[type]++;
}
static void ufshcd_update_tag_stats(struct ufs_hba *hba, int tag)
{
struct request *rq =
hba->lrb[tag].cmd ? hba->lrb[tag].cmd->request : NULL;
u64 **tag_stats = hba->ufs_stats.tag_stats;
int rq_type;
if (!hba->ufs_stats.enabled)
return;
tag_stats[tag][TS_TAG]++;
if (!rq)
return;
WARN_ON(hba->ufs_stats.q_depth > hba->nutrs);
rq_type = ufshcd_tag_req_type(rq);
if (!(rq_type < 0 || rq_type > TS_NUM_STATS))
tag_stats[hba->ufs_stats.q_depth++][rq_type]++;
}
static void ufshcd_update_tag_stats_completion(struct ufs_hba *hba,
struct scsi_cmnd *cmd)
{
struct request *rq = cmd ? cmd->request : NULL;
if (rq)
hba->ufs_stats.q_depth--;
}
static void update_req_stats(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int rq_type;
struct request *rq = lrbp->cmd ? lrbp->cmd->request : NULL;
s64 delta = ktime_us_delta(lrbp->complete_time_stamp,
lrbp->issue_time_stamp);
/* update general request statistics */
if (hba->ufs_stats.req_stats[TS_TAG].count == 0)
hba->ufs_stats.req_stats[TS_TAG].min = delta;
hba->ufs_stats.req_stats[TS_TAG].count++;
hba->ufs_stats.req_stats[TS_TAG].sum += delta;
if (delta > hba->ufs_stats.req_stats[TS_TAG].max)
hba->ufs_stats.req_stats[TS_TAG].max = delta;
if (delta < hba->ufs_stats.req_stats[TS_TAG].min)
hba->ufs_stats.req_stats[TS_TAG].min = delta;
rq_type = ufshcd_tag_req_type(rq);
if (rq_type == TS_NOT_SUPPORTED)
return;
/* update request type specific statistics */
if (hba->ufs_stats.req_stats[rq_type].count == 0)
hba->ufs_stats.req_stats[rq_type].min = delta;
hba->ufs_stats.req_stats[rq_type].count++;
hba->ufs_stats.req_stats[rq_type].sum += delta;
if (delta > hba->ufs_stats.req_stats[rq_type].max)
hba->ufs_stats.req_stats[rq_type].max = delta;
if (delta < hba->ufs_stats.req_stats[rq_type].min)
hba->ufs_stats.req_stats[rq_type].min = delta;
}
static void
ufshcd_update_query_stats(struct ufs_hba *hba, enum query_opcode opcode, u8 idn)
{
if (opcode < UPIU_QUERY_OPCODE_MAX && idn < MAX_QUERY_IDN)
hba->ufs_stats.query_stats_arr[opcode][idn]++;
}
#else
static inline void ufshcd_update_tag_stats(struct ufs_hba *hba, int tag)
{
}
static inline void ufshcd_update_tag_stats_completion(struct ufs_hba *hba,
struct scsi_cmnd *cmd)
{
}
static inline void ufshcd_update_error_stats(struct ufs_hba *hba, int type)
{
}
static inline
void update_req_stats(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
}
static inline
void ufshcd_update_query_stats(struct ufs_hba *hba,
enum query_opcode opcode, u8 idn)
{
}
#endif
static void ufshcd_update_uic_error_cnt(struct ufs_hba *hba, u32 reg, int type)
{
unsigned long err_bits;
int ec;
switch (type) {
case UFS_UIC_ERROR_PA:
err_bits = reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK;
for_each_set_bit(ec, &err_bits, UFS_EC_PA_MAX) {
hba->ufs_stats.pa_err_cnt[ec]++;
hba->ufs_stats.pa_err_cnt_total++;
}
break;
case UFS_UIC_ERROR_DL:
err_bits = reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK;
for_each_set_bit(ec, &err_bits, UFS_EC_DL_MAX) {
hba->ufs_stats.dl_err_cnt[ec]++;
hba->ufs_stats.dl_err_cnt_total++;
}
break;
case UFS_UIC_ERROR_DME:
hba->ufs_stats.dme_err_cnt++;
default:
break;
}
}
#include "ufshcd-crypto.h"
#define CREATE_TRACE_POINTS
#include <trace/events/ufs.h>
#define PWR_INFO_MASK 0xF
#define PWR_RX_OFFSET 4
#define UFSHCD_REQ_SENSE_SIZE 18
#define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
UTP_TASK_REQ_COMPL |\
UFSHCD_ERROR_MASK)
/* UIC command timeout, unit: ms */
#define UIC_CMD_TIMEOUT 500
/* NOP OUT retries waiting for NOP IN response */
#define NOP_OUT_RETRIES 10
/* Timeout after 30 msecs if NOP OUT hangs without response */
#define NOP_OUT_TIMEOUT 30 /* msecs */
/* Device initialization completion timeout, unit: ms */
#define DEV_INIT_COMPL_TIMEOUT 1500
/* Query request retries */
#define QUERY_REQ_RETRIES 2
/* Query request timeout */
#define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
/* Task management command timeout */
#define TM_CMD_TIMEOUT 300 /* msecs */
/* maximum number of retries for a general UIC command */
#define UFS_UIC_COMMAND_RETRIES 3
/* maximum number of link-startup retries */
#define DME_LINKSTARTUP_RETRIES 3
/* Maximum retries for Hibern8 enter */
#define UIC_HIBERN8_ENTER_RETRIES 3
/* maximum number of reset retries before giving up */
#define MAX_HOST_RESET_RETRIES 5
/* maximum retries for UFS link setup */
#define UFS_LINK_SETUP_RETRIES 5
/* Expose the flag value from utp_upiu_query.value */
#define MASK_QUERY_UPIU_FLAG_LOC 0xFF
/* Interrupt aggregation default timeout, unit: 40us */
#define INT_AGGR_DEF_TO 0x02
/* default value of auto suspend is 3 seconds */
#define UFSHCD_AUTO_SUSPEND_DELAY_MS 3000 /* millisecs */
/* default value of ref clock gating wait time is 100 micro seconds */
#define UFSHCD_REF_CLK_GATING_WAIT_US 100 /* microsecs */
#define UFSHCD_CLK_GATING_DELAY_MS_PWR_SAVE 30
#define UFSHCD_CLK_GATING_DELAY_MS_PERF 50
/* IOCTL opcode for command - ufs set device read only */
#define UFS_IOCTL_BLKROSET BLKROSET
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
#if IS_ENABLED(CONFIG_SCSI_UFS_SUPPORT_TW_MAN_GC)
#define UFS_TW_MANUAL_FLUSH_THRESHOLD 5
#endif
#define UFS_TW_DISABLE_THRESHOLD 9
#define SEC_UFS_TW_INFO_DIFF(t, n, o, member) ({ \
(t)->member = (n)->member - (o)->member; \
(o)->member = (n)->member; })
static void SEC_UFS_TW_info_get_diff(struct SEC_UFS_TW_info *target,
struct SEC_UFS_TW_info *new, struct SEC_UFS_TW_info *old)
{
SEC_UFS_TW_INFO_DIFF(target, new, old, tw_enable_count);
SEC_UFS_TW_INFO_DIFF(target, new, old, tw_disable_count);
SEC_UFS_TW_INFO_DIFF(target, new, old, tw_amount_W_kb);
SEC_UFS_TW_INFO_DIFF(target, new, old, hibern8_enter_count);
SEC_UFS_TW_INFO_DIFF(target, new, old, hibern8_enter_count_100ms);
SEC_UFS_TW_INFO_DIFF(target, new, old, hibern8_amount_ms);
SEC_UFS_TW_INFO_DIFF(target, new, old, hibern8_amount_ms_100ms);
target->hibern8_max_ms = new->hibern8_max_ms;
// initialize min, max h8 time values.
new->hibern8_max_ms = 0;
get_monotonic_boottime(&(old->timestamp)); /* update timestamp */
}
#endif /* CONFIG_BLK_TURBO_WRITE */
#define ufshcd_toggle_vreg(_dev, _vreg, _on) \
({ \
int _ret; \
if (_on) \
_ret = ufshcd_enable_vreg(_dev, _vreg); \
else \
_ret = ufshcd_disable_vreg(_dev, _vreg); \
_ret; \
})
/* Called by FS */
extern void (*ufs_debug_func)(void *);
static void ufshcd_hex_dump(struct ufs_hba *hba, const char * const str,
const void *buf, size_t len)
{
/*
* device name is expected to take up ~20 characters and "str" passed
* to this function is expected to be of ~10 character so we would need
* ~30 characters string to hold the concatenation of these 2 strings.
*/
#define MAX_PREFIX_STR_SIZE 50
char prefix_str[MAX_PREFIX_STR_SIZE] = {0};
/* concatenate the device name and "str" */
snprintf(prefix_str, MAX_PREFIX_STR_SIZE, "%s %s: ",
dev_name(hba->dev), str);
print_hex_dump(KERN_ERR, prefix_str, DUMP_PREFIX_OFFSET,
16, 4, buf, len, false);
}
enum {
UFSHCD_MAX_CHANNEL = 0,
UFSHCD_MAX_ID = 1,
UFSHCD_CMD_PER_LUN = 32,
UFSHCD_CAN_QUEUE = 32,
};
/* UFSHCD states */
enum {
UFSHCD_STATE_RESET,
UFSHCD_STATE_ERROR,
UFSHCD_STATE_OPERATIONAL,
UFSHCD_STATE_EH_SCHEDULED,
};
/* UFSHCD error handling flags */
enum {
UFSHCD_EH_IN_PROGRESS = (1 << 0),
};
/* UFSHCD UIC layer error flags */
enum {
UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
};
#define DEFAULT_UFSHCD_DBG_PRINT_EN UFSHCD_DBG_PRINT_ALL
#define ufshcd_set_eh_in_progress(h) \
((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
#define ufshcd_eh_in_progress(h) \
((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
#define ufshcd_clear_eh_in_progress(h) \
((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
#define ufshcd_set_ufs_dev_active(h) \
((h)->curr_dev_pwr_mode = UFS_ACTIVE_PWR_MODE)
#define ufshcd_set_ufs_dev_sleep(h) \
((h)->curr_dev_pwr_mode = UFS_SLEEP_PWR_MODE)
#define ufshcd_set_ufs_dev_poweroff(h) \
((h)->curr_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE)
#define ufshcd_is_ufs_dev_active(h) \
((h)->curr_dev_pwr_mode == UFS_ACTIVE_PWR_MODE)
#define ufshcd_is_ufs_dev_sleep(h) \
((h)->curr_dev_pwr_mode == UFS_SLEEP_PWR_MODE)
#define ufshcd_is_ufs_dev_poweroff(h) \
((h)->curr_dev_pwr_mode == UFS_POWERDOWN_PWR_MODE)
static struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
};
#if defined(CONFIG_UFS_DATA_LOG)
#if defined(CONFIG_UFS_DATA_LOG_MAGIC_CODE)
#define UFS_DATA_BUF_SIZE 8
#endif
#define UFS_CMDQ_DEPTH_MAX 32
#define UFS_DATA_LOG_MAX 1024
static int queuing_req[UFS_CMDQ_DEPTH_MAX];
struct ufs_data_log_summary {
u64 start_time;
u64 end_time;
sector_t sector;
int segments_cnt;
int done;
#if defined(CONFIG_UFS_DATA_LOG_MAGIC_CODE)
u64 *virt_addr;
char datbuf[UFS_DATA_BUF_SIZE];
#endif
};
static struct ufs_data_log_summary ufs_data_log[UFS_DATA_LOG_MAX] __cacheline_aligned;
#endif
static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
{
return ufs_pm_lvl_states[lvl].dev_state;
}
static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
{
return ufs_pm_lvl_states[lvl].link_state;
}
static inline void ufshcd_set_card_online(struct ufs_hba *hba)
{
atomic_set(&hba->card_state, UFS_CARD_STATE_ONLINE);
}
static inline void ufshcd_set_card_offline(struct ufs_hba *hba)
{
atomic_set(&hba->card_state, UFS_CARD_STATE_OFFLINE);
}
static inline bool ufshcd_is_card_online(struct ufs_hba *hba)
{
return (atomic_read(&hba->card_state) == UFS_CARD_STATE_ONLINE);
}
static inline bool ufshcd_is_card_offline(struct ufs_hba *hba)
{
return (atomic_read(&hba->card_state) == UFS_CARD_STATE_OFFLINE);
}
static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
enum uic_link_state link_state)
{
enum ufs_pm_level lvl;
for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
(ufs_pm_lvl_states[lvl].link_state == link_state))
return lvl;
}
/* if no match found, return the level 0 */
return UFS_PM_LVL_0;
}
static inline bool ufshcd_is_valid_pm_lvl(int lvl)
{
if (lvl >= 0 && lvl < ARRAY_SIZE(ufs_pm_lvl_states))
return true;
else
return false;
}
static struct ufs_dev_fix ufs_fixups[] = {
/* UFS cards deviations table */
UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
UFS_DEVICE_NO_FASTAUTO),
UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
UFS_DEVICE_NO_FASTAUTO),
UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE),
UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL, UFS_DEVICE_NO_VCCQ),
UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_NO_LINK_OFF),
UFS_FIX(UFS_VENDOR_WDC, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_NO_LINK_OFF),
UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_NO_LINK_OFF),
UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
UFS_DEVICE_QUIRK_PA_TACTIVATE),
UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
UFS_DEVICE_QUIRK_PA_TACTIVATE),
UFS_FIX(UFS_VENDOR_TOSHIBA, "THGAF8G9T43BAIR",
UFS_DEVICE_QUIRK_SUPPORT_QUERY_FATAL_MODE),
UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL, UFS_DEVICE_NO_VCCQ),
UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_WAIT_AFTER_REF_CLK_UNGATE),
UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1",
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH),
UFS_FIX(UFS_VENDOR_SKHYNIX, "hC8aL1",
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH),
UFS_FIX(UFS_VENDOR_SKHYNIX, "hD8aL1",
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH),
UFS_FIX(UFS_VENDOR_SKHYNIX, "hC8aM1",
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH),
UFS_FIX(UFS_VENDOR_SKHYNIX, "h08aM1",
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH),
UFS_FIX(UFS_VENDOR_SKHYNIX, "hC8GL1",
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH),
UFS_FIX(UFS_VENDOR_SKHYNIX, "hC8HL1",
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH),
UFS_FIX(UFS_ANY_VENDOR, UFS_ANY_MODEL,
UFS_DEVICE_NO_FASTAUTO),
END_FIX
};
static irqreturn_t ufshcd_intr(int irq, void *__hba);
static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
static void ufshcd_async_scan(void *data, async_cookie_t cookie);
static int ufshcd_reset_and_restore(struct ufs_hba *hba);
static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
static void ufshcd_hba_exit(struct ufs_hba *hba);
static int ufshcd_probe_hba(struct ufs_hba *hba);
static int ufshcd_enable_clocks(struct ufs_hba *hba);
static int ufshcd_disable_clocks(struct ufs_hba *hba,
bool is_gating_context);
static int ufshcd_disable_clocks_keep_link_active(struct ufs_hba *hba,
bool is_gating_context);
static void ufshcd_hold_all(struct ufs_hba *hba);
static void ufshcd_release_all(struct ufs_hba *hba);
static int ufshcd_set_vccq_rail_unused(struct ufs_hba *hba, bool unused);
static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
static inline void ufshcd_save_tstamp_of_last_dme_cmd(struct ufs_hba *hba);
static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
static void ufshcd_hold_all(struct ufs_hba *hba);
static void ufshcd_release_all(struct ufs_hba *hba);
static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
static int ufshcd_devfreq_target(struct device *dev,
unsigned long *freq, u32 flags);
static int ufshcd_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat);
static void __ufshcd_shutdown_clkscaling(struct ufs_hba *hba);
static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
enum ufs_dev_pwr_mode pwr_mode);
static int ufshcd_config_vreg(struct device *dev,
struct ufs_vreg *vreg, bool on);
static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg);
static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg);
#if defined(SEC_UFS_ERROR_COUNT)
#include <scsi/scsi_proto.h>
#define MAX_U8_VALUE 0xff
static void SEC_ufs_operation_check(struct ufs_hba *hba, u32 command)
{
struct SEC_UFS_counting *err_info = &(hba->SEC_err_info);
struct SEC_UFS_op_count *op_cnt = &(err_info->op_count);
switch (command) {
case SEC_UFS_HW_RESET:
op_cnt->HW_RESET_count++;
#if defined(CONFIG_SEC_ABC)
if ((op_cnt->HW_RESET_count % 10) == 0)
sec_abc_send_event("MODULE=storage@ERROR=ufs_hwreset_err");
#endif
break;
case UIC_CMD_DME_LINK_STARTUP:
op_cnt->link_startup_count++;
break;
case UIC_CMD_DME_HIBER_ENTER:
op_cnt->Hibern8_enter_count++;
break;
case UIC_CMD_DME_HIBER_EXIT:
op_cnt->Hibern8_exit_count++;
break;
default:
break;
}
op_cnt->op_err++;
}
static void SEC_ufs_uic_error_check(struct ufs_hba *hba, bool cmd_count, bool fatal_error)
{
struct SEC_UFS_counting *err_info = &(hba->SEC_err_info);
if (cmd_count) {
struct uic_command *uic_cmd = hba->active_uic_cmd; // uic CMD error count logging
struct SEC_UFS_UIC_cmd_count *uic_cmd_cnt = &(err_info->UIC_cmd_count);
struct SEC_UFS_UIC_err_count *uic_err_cnt = &(err_info->UIC_err_count);
u32 uic_error = hba->uic_error;
if (!uic_cmd) /* No UIC CMD error */
goto passed_uic_cmd_err;
switch (uic_cmd->command & COMMAND_OPCODE_MASK) {
case UIC_CMD_DME_GET:
if (uic_cmd_cnt->DME_GET_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_GET_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_SET:
if (uic_cmd_cnt->DME_SET_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_SET_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_PEER_GET:
if (uic_cmd_cnt->DME_PEER_GET_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_PEER_GET_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_PEER_SET:
if (uic_cmd_cnt->DME_PEER_SET_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_PEER_SET_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_POWERON:
if (uic_cmd_cnt->DME_POWERON_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_POWERON_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_POWEROFF:
if (uic_cmd_cnt->DME_POWEROFF_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_POWEROFF_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_ENABLE:
if (uic_cmd_cnt->DME_ENABLE_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_ENABLE_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_RESET:
if (uic_cmd_cnt->DME_RESET_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_RESET_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_END_PT_RST:
if (uic_cmd_cnt->DME_END_PT_RST_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_END_PT_RST_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_LINK_STARTUP:
if (uic_cmd_cnt->DME_LINK_STARTUP_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_LINK_STARTUP_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_HIBER_ENTER:
if (uic_cmd_cnt->DME_HIBER_ENTER_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_HIBER_ENTER_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_HIBER_EXIT:
if (uic_cmd_cnt->DME_HIBER_EXIT_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_HIBER_EXIT_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
case UIC_CMD_DME_TEST_MODE:
if (uic_cmd_cnt->DME_TEST_MODE_err < MAX_U8_VALUE)
uic_cmd_cnt->DME_TEST_MODE_err++;
uic_cmd_cnt->UIC_cmd_err++;
break;
default:
break;
}
passed_uic_cmd_err:
// hba->uic_error; // uic error info
if (hba->full_init_linereset) {
if (uic_err_cnt->PA_ERR_cnt < MAX_U8_VALUE)
uic_err_cnt->PA_ERR_cnt++;
uic_err_cnt->UIC_err++;
}
if (uic_error & UFSHCD_UIC_DL_PA_INIT_ERROR) {
if (uic_err_cnt->DL_PA_INIT_ERROR_cnt < MAX_U8_VALUE)
uic_err_cnt->DL_PA_INIT_ERROR_cnt++;
uic_err_cnt->UIC_err++;
}
if (uic_error & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) {
if (uic_err_cnt->DL_NAC_RECEIVED_ERROR_cnt < MAX_U8_VALUE)
uic_err_cnt->DL_NAC_RECEIVED_ERROR_cnt++;
uic_err_cnt->UIC_err++;
}
if (uic_error & UFSHCD_UIC_DL_TCx_REPLAY_ERROR) {
if (uic_err_cnt->DL_TC_REPLAY_ERROR_cnt < MAX_U8_VALUE)
uic_err_cnt->DL_TC_REPLAY_ERROR_cnt++;
uic_err_cnt->UIC_err++;
}
if (uic_error & UFSHCD_UIC_NL_ERROR) {
if (uic_err_cnt->NL_ERROR_cnt < MAX_U8_VALUE)
uic_err_cnt->NL_ERROR_cnt++;
uic_err_cnt->UIC_err++;
}
if (uic_error & UFSHCD_UIC_TL_ERROR) {
if (uic_err_cnt->TL_ERROR_cnt < MAX_U8_VALUE)
uic_err_cnt->TL_ERROR_cnt++;
uic_err_cnt->UIC_err++;
}
if (uic_error & UFSHCD_UIC_DME_ERROR) {
if (uic_err_cnt->DME_ERROR_cnt < MAX_U8_VALUE)
uic_err_cnt->DME_ERROR_cnt++;
uic_err_cnt->UIC_err++;
}
} else if (fatal_error) {
struct SEC_UFS_Fatal_err_count *fatal_err_cnt = &(err_info->Fatal_err_count);
// hba->error; // each bit check and count
if (hba->errors & DEVICE_FATAL_ERROR) {
if (fatal_err_cnt->DFE < MAX_U8_VALUE)
fatal_err_cnt->DFE++;
}
if (hba->errors & CONTROLLER_FATAL_ERROR) {
if (fatal_err_cnt->CFE < MAX_U8_VALUE)
fatal_err_cnt->CFE++;
}
if (hba->errors & SYSTEM_BUS_FATAL_ERROR) {
if (fatal_err_cnt->SBFE < MAX_U8_VALUE)
fatal_err_cnt->SBFE++;
}
if (hba->errors & CRYPTO_ENGINE_FATAL_ERROR) {
if (fatal_err_cnt->CEFE < MAX_U8_VALUE)
fatal_err_cnt->CEFE++;
}
if (hba->errors & UIC_LINK_LOST) {
if (fatal_err_cnt->LLE < MAX_U8_VALUE)
fatal_err_cnt->LLE++;
}
if (hba->errors & INT_FATAL_ERRORS)
fatal_err_cnt->Fatal_err++;
}
}
static void SEC_ufs_utp_error_check(struct ufs_hba *hba, struct scsi_cmnd *cmd, bool utmr_request, u8 tm_cmd)
{
struct SEC_UFS_counting *err_info = &(hba->SEC_err_info);
struct SEC_UFS_UTP_count *utp_err = &(err_info->UTP_count);
if (utmr_request) {
if (tm_cmd == UFS_QUERY_TASK) {
if (utp_err->UTMR_query_task_count < MAX_U8_VALUE)
utp_err->UTMR_query_task_count++;
utp_err->UTP_err++;
} else if (tm_cmd == UFS_ABORT_TASK) {
if (utp_err->UTMR_abort_task_count < MAX_U8_VALUE)
utp_err->UTMR_abort_task_count++;
utp_err->UTP_err++;
}
} else {
// cmd logging
int opcode = cmd->cmnd[0];
if (opcode == WRITE_10) {
if (utp_err->UTR_write_err < MAX_U8_VALUE)
utp_err->UTR_write_err++;
utp_err->UTP_err++;
} else if (opcode == READ_10) {
if (utp_err->UTR_read_err < MAX_U8_VALUE)
utp_err->UTR_read_err++;
utp_err->UTP_err++;
} else if (opcode == SYNCHRONIZE_CACHE) {
if (utp_err->UTR_sync_cache_err < MAX_U8_VALUE)
utp_err->UTR_sync_cache_err++;
utp_err->UTP_err++;
} else if (opcode == UNMAP) {
if (utp_err->UTR_unmap_err < MAX_U8_VALUE)
utp_err->UTR_unmap_err++;
utp_err->UTP_err++;
} else {
if (utp_err->UTR_etc_err < MAX_U8_VALUE)
utp_err->UTR_etc_err++;
utp_err->UTP_err++;
}
}
}
static void SEC_ufs_query_error_check(struct ufs_hba *hba, enum dev_cmd_type cmd_type)
{
struct SEC_UFS_counting *err_info = &(hba->SEC_err_info);
struct SEC_UFS_QUERY_count *query_cnt = &(err_info->query_count);
struct ufs_query_req *request = &hba->dev_cmd.query.request;
enum query_opcode opcode = request->upiu_req.opcode;
if (cmd_type == DEV_CMD_TYPE_NOP) {
if (query_cnt->NOP_err < MAX_U8_VALUE)
query_cnt->NOP_err++;
query_cnt->Query_err++;
} else if (opcode > 0) {
switch (opcode) {
case UPIU_QUERY_OPCODE_READ_DESC:
if (query_cnt->R_Desc_err < MAX_U8_VALUE)
query_cnt->R_Desc_err++;
break;
case UPIU_QUERY_OPCODE_WRITE_DESC:
if (query_cnt->W_Desc_err < MAX_U8_VALUE)
query_cnt->W_Desc_err++;
break;
case UPIU_QUERY_OPCODE_READ_ATTR:
if (query_cnt->R_Attr_err < MAX_U8_VALUE)
query_cnt->R_Attr_err++;
break;
case UPIU_QUERY_OPCODE_WRITE_ATTR:
if (query_cnt->W_Attr_err < MAX_U8_VALUE)
query_cnt->W_Attr_err++;
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
if (query_cnt->R_Flag_err < MAX_U8_VALUE)
query_cnt->R_Flag_err++;
break;
case UPIU_QUERY_OPCODE_SET_FLAG:
if (query_cnt->Set_Flag_err < MAX_U8_VALUE)
query_cnt->Set_Flag_err++;
break;
case UPIU_QUERY_OPCODE_CLEAR_FLAG:
if (query_cnt->Clear_Flag_err < MAX_U8_VALUE)
query_cnt->Clear_Flag_err++;
break;
case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
if (query_cnt->Toggle_Flag_err < MAX_U8_VALUE)
query_cnt->Toggle_Flag_err++;
break;
default:
break;
}
if (opcode && opcode < UPIU_QUERY_OPCODE_MAX)
query_cnt->Query_err++;
}
}
#endif // SEC_UFS_ERROR_COUNT
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
static void SEC_ufs_update_tw_info(struct ufs_hba *hba, int write_transfer_len)
{
struct SEC_UFS_TW_info *tw_info = &(hba->SEC_tw_info);
enum ufs_tw_state tw_state = hba->ufs_tw_state;
if (tw_info->tw_info_disable)
return;
if (write_transfer_len) {
/*
* write_transfer_len : Byte
* tw_info->tw_amount_W_kb : KB
*/
tw_info->tw_amount_W_kb += (unsigned long)(write_transfer_len >> 10);
if (unlikely((s64)tw_info->tw_amount_W_kb < 0))
goto disable_tw_info;
return;
}
switch (tw_state) {
case UFS_TW_OFF_STATE:
tw_info->tw_enable_ms += jiffies_to_msecs(jiffies - tw_info->tw_state_ts);
tw_info->tw_state_ts = jiffies;
tw_info->tw_disable_count++;
if (unlikely(((s64)tw_info->tw_enable_ms < 0) || ((s64)tw_info->tw_disable_count < 0)))
goto disable_tw_info;
break;
case UFS_TW_ON_STATE:
tw_info->tw_disable_ms += jiffies_to_msecs(jiffies - tw_info->tw_state_ts);
tw_info->tw_state_ts = jiffies;
tw_info->tw_enable_count++;
if (unlikely(((s64)tw_info->tw_disable_ms < 0) || ((s64)tw_info->tw_enable_count < 0)))
goto disable_tw_info;
break;
case UFS_TW_ERR_STATE:
tw_info->tw_setflag_error_count++;
if (unlikely((s64)tw_info->tw_setflag_error_count < 0))
goto disable_tw_info;
break;
default:
break;
}
return;
disable_tw_info:
/* disable tw_info updating when MSB is set */
tw_info->tw_info_disable = true;
}
static void SEC_ufs_update_h8_info(struct ufs_hba *hba, bool hibern8_enter)
{
struct SEC_UFS_TW_info *tw_info = &(hba->SEC_tw_info);
u64 calc_h8_time_ms = 0;
/*
* I/O end in UFS_ACTIVE_PWR_MODE :
* -> 10ms : Auto-H8
* -> 30~50ms : call hibern8_enter in clk gating
* -> 3s : runtime PM suspend
* -> ufshcd_suspend : run H8 exit -> SSU : UFS_SLEEP_PWR_MODE -> H8 enter
* runtime PM resume : H8 exit -> SSU : UFS_ACTIVE_PWR_MODE -> I/O
*
* system PM suspend :
* if runtime suspended -> runtime PM resume
* ufshcd_suspend : run H8 exit(if h8 state)
* -> SSU : UFS_SLEEP_PWR_MODE -> H8 enter
*/
if (!ufshcd_is_ufs_dev_active(hba))
return;
if (unlikely(((s64)tw_info->hibern8_enter_count < 0) || ((s64)tw_info->hibern8_amount_ms < 0)))
return;
if (hibern8_enter) {
tw_info->hibern8_enter_ts = ktime_get();
} else {
calc_h8_time_ms = (u64)ktime_ms_delta(ktime_get(), tw_info->hibern8_enter_ts);
#if defined(CONFIG_SCSI_UFS_QCOM)
if (ufshcd_is_auto_hibern8_supported(hba))
calc_h8_time_ms += (u64)(hba->clk_gating.delay_ms - hba->hibern8_on_idle.delay_ms);
#endif
if (calc_h8_time_ms > 99) {
tw_info->hibern8_enter_count_100ms++;
tw_info->hibern8_amount_ms_100ms += calc_h8_time_ms;
}
if (tw_info->hibern8_max_ms < calc_h8_time_ms)
tw_info->hibern8_max_ms = calc_h8_time_ms;
tw_info->hibern8_amount_ms += calc_h8_time_ms;
tw_info->hibern8_enter_count++;
}
}
#endif
#if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
static struct devfreq_simple_ondemand_data ufshcd_ondemand_data = {
.upthreshold = 70,
.downdifferential = 65,
.simple_scaling = 1,
};
static void *gov_data = &ufshcd_ondemand_data;
#else
static void *gov_data;
#endif
static struct devfreq_dev_profile ufs_devfreq_profile = {
.polling_ms = 60,
.target = ufshcd_devfreq_target,
.get_dev_status = ufshcd_devfreq_get_dev_status,
};
static int ufshcd_devfreq_init(struct ufs_hba *hba)
{
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
struct devfreq *devfreq;
int ret;
/* Skip devfreq if we don't have any clocks in the list */
if (list_empty(clk_list))
return 0;
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
dev_pm_opp_add(hba->dev, clki->min_freq, 0);
dev_pm_opp_add(hba->dev, clki->max_freq, 0);
devfreq = devfreq_add_device(hba->dev,
&ufs_devfreq_profile,
"simple_ondemand",
gov_data);
if (IS_ERR(devfreq)) {
ret = PTR_ERR(devfreq);
dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
dev_pm_opp_remove(hba->dev, clki->min_freq);
dev_pm_opp_remove(hba->dev, clki->max_freq);
return ret;
}
hba->devfreq = devfreq;
return 0;
}
static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
{
return tag >= 0 && tag < hba->nutrs;
}
static inline void ufshcd_enable_irq(struct ufs_hba *hba)
{
if (!hba->is_irq_enabled) {
enable_irq(hba->irq);
hba->is_irq_enabled = true;
}
}
static inline void ufshcd_disable_irq(struct ufs_hba *hba)
{
if (hba->is_irq_enabled) {
disable_irq(hba->irq);
hba->is_irq_enabled = false;
}
}
void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
{
unsigned long flags;
bool unblock = false;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->scsi_block_reqs_cnt--;
unblock = !hba->scsi_block_reqs_cnt;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unblock)
scsi_unblock_requests(hba->host);
}
EXPORT_SYMBOL(ufshcd_scsi_unblock_requests);
static inline void __ufshcd_scsi_block_requests(struct ufs_hba *hba)
{
if (!hba->scsi_block_reqs_cnt++)
scsi_block_requests(hba->host);
}
void ufshcd_scsi_block_requests(struct ufs_hba *hba)
{
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
__ufshcd_scsi_block_requests(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
EXPORT_SYMBOL(ufshcd_scsi_block_requests);
static int ufshcd_device_reset_ctrl(struct ufs_hba *hba, bool ctrl)
{
int ret = 0;
if (!hba->pctrl)
return 0;
/* Assert reset if ctrl == true */
if (ctrl)
ret = pinctrl_select_state(hba->pctrl,
pinctrl_lookup_state(hba->pctrl, "dev-reset-assert"));
else
ret = pinctrl_select_state(hba->pctrl,
pinctrl_lookup_state(hba->pctrl, "dev-reset-deassert"));
if (ret < 0)
dev_err(hba->dev, "%s: %s failed with err %d\n",
__func__, ctrl ? "Assert" : "Deassert", ret);
else
dev_err(hba->dev, "UFS %s is done\n", ctrl ? "Assert" : "Deassert");
return ret;
}
static inline int ufshcd_assert_device_reset(struct ufs_hba *hba)
{
return ufshcd_device_reset_ctrl(hba, true);
}
static inline int ufshcd_deassert_device_reset(struct ufs_hba *hba)
{
return ufshcd_device_reset_ctrl(hba, false);
}
static int ufshcd_reset_device(struct ufs_hba *hba)
{
int ret;
#if defined(SEC_UFS_ERROR_COUNT)
SEC_ufs_operation_check(hba, SEC_UFS_HW_RESET);
#endif
/* reset the connected UFS device */
ret = ufshcd_assert_device_reset(hba);
if (ret)
goto out;
/*
* The reset signal is active low.
* The UFS device shall detect more than or equal to 1us of positive
* or negative RST_n pulse width.
* To be on safe side, keep the reset low for atleast 10us.
*/
usleep_range(10, 15);
ret = ufshcd_deassert_device_reset(hba);
if (ret)
goto out;
/* same as assert, wait for atleast 10us after deassert */
usleep_range(10, 15);
out:
return ret;
}
/* replace non-printable or non-ASCII characters with spaces */
static inline void ufshcd_remove_non_printable(char *val)
{
if (!val || !*val)
return;
if (*val < 0x20 || *val > 0x7e)
*val = ' ';
}
#define UFSHCD_MAX_CMD_LOGGING 200
#ifdef CONFIG_TRACEPOINTS
static inline void ufshcd_add_command_trace(struct ufs_hba *hba,
struct ufshcd_cmd_log_entry *entry)
{
if (trace_ufshcd_command_enabled()) {
u32 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
trace_ufshcd_command(dev_name(hba->dev), entry->str, entry->tag,
entry->doorbell, entry->transfer_len, intr,
entry->lba, entry->cmd_id);
}
}
#else
static inline void ufshcd_add_command_trace(struct ufs_hba *hba,
struct ufshcd_cmd_log_entry *entry)
{
}
#endif
#ifdef CONFIG_SCSI_UFSHCD_CMD_LOGGING
static void ufshcd_cmd_log_init(struct ufs_hba *hba)
{
/* Allocate log entries */
if (!hba->cmd_log.entries) {
hba->cmd_log.entries = kzalloc(UFSHCD_MAX_CMD_LOGGING *
sizeof(struct ufshcd_cmd_log_entry), GFP_KERNEL);
if (!hba->cmd_log.entries)
return;
dev_dbg(hba->dev, "%s: cmd_log.entries initialized\n",
__func__);
}
}
static void __ufshcd_cmd_log(struct ufs_hba *hba, char *str, char *cmd_type,
unsigned int tag, u8 cmd_id, u8 idn, u8 lun,
sector_t lba, int transfer_len)
{
struct ufshcd_cmd_log_entry *entry;
if (!hba->cmd_log.entries)
return;
entry = &hba->cmd_log.entries[hba->cmd_log.pos];
entry->lun = lun;
entry->str = str;
entry->cmd_type = cmd_type;
entry->cmd_id = cmd_id;
entry->lba = lba;
entry->transfer_len = transfer_len;
entry->idn = idn;
entry->doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
entry->tag = tag;
entry->tstamp = ktime_get();
entry->outstanding_reqs = hba->outstanding_reqs;
entry->seq_num = hba->cmd_log.seq_num;
hba->cmd_log.seq_num++;
hba->cmd_log.pos =
(hba->cmd_log.pos + 1) % UFSHCD_MAX_CMD_LOGGING;
ufshcd_add_command_trace(hba, entry);
}
static void ufshcd_cmd_log(struct ufs_hba *hba, char *str, char *cmd_type,
unsigned int tag, u8 cmd_id, u8 idn)
{
__ufshcd_cmd_log(hba, str, cmd_type, tag, cmd_id, idn, 0, 0, 0);
}
static void ufshcd_dme_cmd_log(struct ufs_hba *hba, char *str, u8 cmd_id)
{
ufshcd_cmd_log(hba, str, "dme", 0, cmd_id, 0);
}
static void ufshcd_custom_cmd_log(struct ufs_hba *hba, char *str)
{
ufshcd_cmd_log(hba, str, "custom", 0, 0, 0);
}
static void ufshcd_print_cmd_log(struct ufs_hba *hba)
{
int i;
int pos;
struct ufshcd_cmd_log_entry *p;
if (!hba->cmd_log.entries)
return;
pos = hba->cmd_log.pos;
for (i = 0; i < UFSHCD_MAX_CMD_LOGGING; i++) {
p = &hba->cmd_log.entries[pos];
pos = (pos + 1) % UFSHCD_MAX_CMD_LOGGING;
if (ktime_to_us(p->tstamp)) {
pr_err("%s: %s: seq_no=%u lun=0x%x cmd_id=0x%02x lba=0x%llx txfer_len=%d tag=%u, doorbell=0x%x outstanding=0x%x idn=%d time=%lld us\n",
p->cmd_type, p->str, p->seq_num,
p->lun, p->cmd_id, (unsigned long long)p->lba,
p->transfer_len, p->tag, p->doorbell,
p->outstanding_reqs, p->idn,
ktime_to_us(p->tstamp));
usleep_range(1000, 1100);
}
}
}
#else
static void ufshcd_cmd_log_init(struct ufs_hba *hba)
{
}
static void __ufshcd_cmd_log(struct ufs_hba *hba, char *str, char *cmd_type,
unsigned int tag, u8 cmd_id, u8 idn, u8 lun,
sector_t lba, int transfer_len)
{
struct ufshcd_cmd_log_entry entry;
entry.str = str;
entry.lba = lba;
entry.cmd_id = cmd_id;
entry.transfer_len = transfer_len;
entry.doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
entry.tag = tag;
ufshcd_add_command_trace(hba, &entry);
}
static void ufshcd_dme_cmd_log(struct ufs_hba *hba, char *str, u8 cmd_id)
{
}
static void ufshcd_custom_cmd_log(struct ufs_hba *hba, char *str)
{
}
static void ufshcd_print_cmd_log(struct ufs_hba *hba)
{
}
#endif
#ifdef CONFIG_TRACEPOINTS
static inline void ufshcd_cond_add_cmd_trace(struct ufs_hba *hba,
unsigned int tag, const char *str)
{
struct ufshcd_lrb *lrbp;
char *cmd_type = NULL;
u8 opcode = 0;
u8 cmd_id = 0, idn = 0;
sector_t lba = 0;
int transfer_len = 0;
lrbp = &hba->lrb[tag];
if (lrbp->cmd) { /* data phase exists */
opcode = (u8)(*lrbp->cmd->cmnd);
if ((opcode == READ_10) || (opcode == WRITE_10)) {
/*
* Currently we only fully trace read(10) and write(10)
* commands
*/
if (lrbp->cmd->request && lrbp->cmd->request->bio)
lba =
lrbp->cmd->request->bio->bi_iter.bi_sector;
transfer_len = be32_to_cpu(
lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
}
}
if (lrbp->cmd && ((lrbp->command_type == UTP_CMD_TYPE_SCSI) ||
(lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE))) {
cmd_type = "scsi";
cmd_id = (u8)(*lrbp->cmd->cmnd);
} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE) {
if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) {
cmd_type = "nop";
cmd_id = 0;
} else if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) {
cmd_type = "query";
cmd_id = hba->dev_cmd.query.request.upiu_req.opcode;
idn = hba->dev_cmd.query.request.upiu_req.idn;
}
}
__ufshcd_cmd_log(hba, (char *) str, cmd_type, tag, cmd_id, idn,
lrbp->lun, lba, transfer_len);
}
#else
static inline void ufshcd_cond_add_cmd_trace(struct ufs_hba *hba,
unsigned int tag, const char *str)
{
}
#endif
static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
{
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_CLK_FREQ_EN))
return;
if (list_empty(head))
return;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
clki->max_freq)
dev_err(hba->dev, "clk: %s, rate: %u\n",
clki->name, clki->curr_freq);
}
}
static void ufshcd_print_uic_err_hist(struct ufs_hba *hba,
struct ufs_uic_err_reg_hist *err_hist, char *err_name)
{
int i;
if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_UIC_ERR_HIST_EN))
return;
for (i = 0; i < UIC_ERR_REG_HIST_LENGTH; i++) {
int p = (i + err_hist->pos) % UIC_ERR_REG_HIST_LENGTH;
if (err_hist->reg[p] == 0)
continue;
dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, i,
err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
}
}
static inline void __ufshcd_print_host_regs(struct ufs_hba *hba, bool no_sleep)
{
if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_HOST_REGS_EN))
return;
/*
* hex_dump reads its data without the readl macro. This might
* cause inconsistency issues on some platform, as the printed
* values may be from cache and not the most recent value.
* To know whether you are looking at an un-cached version verify
* that IORESOURCE_MEM flag is on when xxx_get_resource() is invoked
* during platform/pci probe function.
*/
ufshcd_hex_dump(hba, "host regs", hba->mmio_base,
UFSHCI_REG_SPACE_SIZE);
dev_err(hba->dev, "hba->ufs_version = 0x%x, hba->capabilities = 0x%x\n",
hba->ufs_version, hba->capabilities);
dev_err(hba->dev,
"hba->outstanding_reqs = 0x%x, hba->outstanding_tasks = 0x%x\n",
(u32)hba->outstanding_reqs, (u32)hba->outstanding_tasks);
dev_err(hba->dev,
"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt = %d\n",
ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
hba->ufs_stats.hibern8_exit_cnt);
ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
ufshcd_print_clk_freqs(hba);
ufshcd_vops_dbg_register_dump(hba, no_sleep);
}
static void ufshcd_print_host_regs(struct ufs_hba *hba)
{
__ufshcd_print_host_regs(hba, false);
ufshcd_crypto_debug(hba);
}
static
void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
{
struct ufshcd_lrb *lrbp;
int prdt_length;
int tag;
if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_TRS_EN))
return;
for_each_set_bit(tag, &bitmap, hba->nutrs) {
lrbp = &hba->lrb[tag];
dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
tag, ktime_to_us(lrbp->issue_time_stamp));
dev_err(hba->dev,
"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
tag, (u64)lrbp->utrd_dma_addr);
ufshcd_hex_dump(hba, "UPIU TRD", lrbp->utr_descriptor_ptr,
sizeof(struct utp_transfer_req_desc));
dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
(u64)lrbp->ucd_req_dma_addr);
ufshcd_hex_dump(hba, "UPIU REQ", lrbp->ucd_req_ptr,
sizeof(struct utp_upiu_req));
dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
(u64)lrbp->ucd_rsp_dma_addr);
ufshcd_hex_dump(hba, "UPIU RSP", lrbp->ucd_rsp_ptr,
sizeof(struct utp_upiu_rsp));
prdt_length =
le16_to_cpu(lrbp->utr_descriptor_ptr->prd_table_length);
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
prdt_length /= hba->sg_entry_size;
dev_err(hba->dev,
"UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
tag, prdt_length,
(u64)lrbp->ucd_prdt_dma_addr);
if (pr_prdt)
ufshcd_hex_dump(hba, "UPIU PRDT", lrbp->ucd_prdt_ptr,
hba->sg_entry_size * prdt_length);
}
}
static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
{
struct utp_task_req_desc *tmrdp;
int tag;
if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_TMRS_EN))
return;
for_each_set_bit(tag, &bitmap, hba->nutmrs) {
tmrdp = &hba->utmrdl_base_addr[tag];
dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
ufshcd_hex_dump(hba, "TM TRD", &tmrdp->header,
sizeof(struct request_desc_header));
dev_err(hba->dev, "TM[%d] - Task Management Request UPIU\n",
tag);
ufshcd_hex_dump(hba, "TM REQ", tmrdp->task_req_upiu,
sizeof(struct utp_upiu_req));
dev_err(hba->dev, "TM[%d] - Task Management Response UPIU\n",
tag);
ufshcd_hex_dump(hba, "TM RSP", tmrdp->task_rsp_upiu,
sizeof(struct utp_task_req_desc));
}
}
static void ufshcd_print_fsm_state(struct ufs_hba *hba)
{
int err = 0, tx_fsm_val = 0, rx_fsm_val = 0;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
dev_err(hba->dev, "%s: TX_FSM_STATE = %u, err = %d\n", __func__,
tx_fsm_val, err);
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_RX_FSM_STATE,
UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
&rx_fsm_val);
dev_err(hba->dev, "%s: RX_FSM_STATE = %u, err = %d\n", __func__,
rx_fsm_val, err);
}
static void ufshcd_print_host_state(struct ufs_hba *hba)
{
if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_HOST_STATE_EN))
return;
dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
dev_err(hba->dev, "lrb in use=0x%lx, outstanding reqs=0x%lx tasks=0x%lx\n",
hba->lrb_in_use, hba->outstanding_reqs, hba->outstanding_tasks);
dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x, saved_ce_err=0x%x\n",
hba->saved_err, hba->saved_uic_err, hba->saved_ce_err);
dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
hba->curr_dev_pwr_mode, hba->uic_link_state);
dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
hba->pm_op_in_progress, hba->is_sys_suspended);
dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
hba->auto_bkops_enabled, hba->host->host_self_blocked);
dev_err(hba->dev, "Clk gate=%d, hibern8 on idle=%d\n",
hba->clk_gating.state, hba->hibern8_on_idle.state);
dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
hba->eh_flags, hba->req_abort_count);
dev_err(hba->dev, "Host capabilities=0x%x, caps=0x%x\n",
hba->capabilities, hba->caps);
dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
hba->dev_info.quirks);
dev_err(hba->dev, "pa_err_cnt_total=%d, pa_lane_0_err_cnt=%d, pa_lane_1_err_cnt=%d, pa_line_reset_err_cnt=%d\n",
hba->ufs_stats.pa_err_cnt_total,
hba->ufs_stats.pa_err_cnt[UFS_EC_PA_LANE_0],
hba->ufs_stats.pa_err_cnt[UFS_EC_PA_LANE_1],
hba->ufs_stats.pa_err_cnt[UFS_EC_PA_LINE_RESET]);
dev_err(hba->dev, "dl_err_cnt_total=%d, dl_nac_received_err_cnt=%d, dl_tcx_replay_timer_expired_err_cnt=%d\n",
hba->ufs_stats.dl_err_cnt_total,
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_NAC_RECEIVED],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_TCx_REPLAY_TIMER_EXPIRED]);
dev_err(hba->dev, "dl_afcx_request_timer_expired_err_cnt=%d, dl_fcx_protection_timer_expired_err_cnt=%d, dl_crc_err_cnt=%d\n",
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_AFCx_REQUEST_TIMER_EXPIRED],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_FCx_PROTECT_TIMER_EXPIRED],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_CRC_ERROR]);
dev_err(hba->dev, "dll_rx_buffer_overflow_err_cnt=%d, dl_max_frame_length_exceeded_err_cnt=%d, dl_wrong_sequence_number_err_cnt=%d\n",
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_RX_BUFFER_OVERFLOW],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_MAX_FRAME_LENGTH_EXCEEDED],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_WRONG_SEQUENCE_NUMBER]);
dev_err(hba->dev, "dl_afc_frame_syntax_err_cnt=%d, dl_nac_frame_syntax_err_cnt=%d, dl_eof_syntax_err_cnt=%d\n",
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_AFC_FRAME_SYNTAX_ERROR],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_NAC_FRAME_SYNTAX_ERROR],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_EOF_SYNTAX_ERROR]);
dev_err(hba->dev, "dl_frame_syntax_err_cnt=%d, dl_bad_ctrl_symbol_type_err_cnt=%d, dl_pa_init_err_cnt=%d, dl_pa_error_ind_received=%d\n",
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_FRAME_SYNTAX_ERROR],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_BAD_CTRL_SYMBOL_TYPE],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_PA_INIT_ERROR],
hba->ufs_stats.dl_err_cnt[UFS_EC_DL_PA_ERROR_IND_RECEIVED]);
dev_err(hba->dev, "dme_err_cnt=%d\n", hba->ufs_stats.dme_err_cnt);
}
/**
* ufshcd_print_pwr_info - print power params as saved in hba
* power info
* @hba: per-adapter instance
*/
static void ufshcd_print_pwr_info(struct ufs_hba *hba)
{
static const char * const names[] = {
"INVALID MODE",
"FAST MODE",
"SLOW_MODE",
"INVALID MODE",
"FASTAUTO_MODE",
"SLOWAUTO_MODE",
"INVALID MODE",
};
if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_PWR_EN))
return;
dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
__func__,
hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
names[hba->pwr_info.pwr_rx],
names[hba->pwr_info.pwr_tx],
hba->pwr_info.hs_rate);
}
/*
* ufshcd_wait_for_register - wait for register value to change
* @hba - per-adapter interface
* @reg - mmio register offset
* @mask - mask to apply to read register value
* @val - wait condition
* @interval_us - polling interval in microsecs
* @timeout_ms - timeout in millisecs
* @can_sleep - perform sleep or just spin
*
* Returns -ETIMEDOUT on error, zero on success
*/
int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
u32 val, unsigned long interval_us,
unsigned long timeout_ms, bool can_sleep)
{
int err = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
/* ignore bits that we don't intend to wait on */
val = val & mask;
while ((ufshcd_readl(hba, reg) & mask) != val) {
if (can_sleep)
usleep_range(interval_us, interval_us + 50);
else
udelay(interval_us);
if (time_after(jiffies, timeout)) {
if ((ufshcd_readl(hba, reg) & mask) != val)
err = -ETIMEDOUT;
break;
}
}
return err;
}
/**
* ufshcd_get_intr_mask - Get the interrupt bit mask
* @hba - Pointer to adapter instance
*
* Returns interrupt bit mask per version
*/
static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
{
u32 intr_mask = 0;
switch (hba->ufs_version) {
case UFSHCI_VERSION_10:
intr_mask = INTERRUPT_MASK_ALL_VER_10;
break;
case UFSHCI_VERSION_11:
case UFSHCI_VERSION_20:
intr_mask = INTERRUPT_MASK_ALL_VER_11;
break;
case UFSHCI_VERSION_21:
default:
intr_mask = INTERRUPT_MASK_ALL_VER_21;
break;
}
if (!ufshcd_is_crypto_supported(hba))
intr_mask &= ~CRYPTO_ENGINE_FATAL_ERROR;
return intr_mask;
}
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
* @hba - Pointer to adapter instance
*
* Returns UFSHCI version supported by the controller
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
return ufshcd_vops_get_ufs_hci_version(hba);
return ufshcd_readl(hba, REG_UFS_VERSION);
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
* @hba: pointer to adapter instance
*
* Returns true if device present, false if no device detected
*/
static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
DEVICE_PRESENT) ? true : false;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
* @lrb: pointer to local command reference block
*
* This function is used to get the OCS field from UTRD
* Returns the OCS field in the UTRD
*/
static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
{
return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
}
/**
* ufshcd_get_tmr_ocs - Get the UTMRD Overall Command Status
* @task_req_descp: pointer to utp_task_req_desc structure
*
* This function is used to get the OCS field from UTMRD
* Returns the OCS field in the UTMRD
*/
static inline int
ufshcd_get_tmr_ocs(struct utp_task_req_desc *task_req_descp)
{
return le32_to_cpu(task_req_descp->header.dword_2) & MASK_OCS;
}
/**
* ufshcd_get_tm_free_slot - get a free slot for task management request
* @hba: per adapter instance
* @free_slot: pointer to variable with available slot value
*
* Get a free tag and lock it until ufshcd_put_tm_slot() is called.
* Returns 0 if free slot is not available, else return 1 with tag value
* in @free_slot.
*/
static bool ufshcd_get_tm_free_slot(struct ufs_hba *hba, int *free_slot)
{
int tag;
bool ret = false;
if (!free_slot)
goto out;
do {
tag = find_first_zero_bit(&hba->tm_slots_in_use, hba->nutmrs);
if (tag >= hba->nutmrs)
goto out;
} while (test_and_set_bit_lock(tag, &hba->tm_slots_in_use));
*free_slot = tag;
ret = true;
out:
return ret;
}
static inline void ufshcd_put_tm_slot(struct ufs_hba *hba, int slot)
{
clear_bit_unlock(slot, &hba->tm_slots_in_use);
}
/**
* ufshcd_utrl_clear - Clear a bit in UTRLCLR register
* @hba: per adapter instance
* @pos: position of the bit to be cleared
*/
static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
{
ufshcd_writel(hba, ~(1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
}
/**
* ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
* @hba: per adapter instance
* @tag: position of the bit to be cleared
*/
static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
{
__clear_bit(tag, &hba->outstanding_reqs);
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
* @reg: Register value of host controller status
*
* Returns integer, 0 on Success and positive value if failed
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
* @hba: Pointer to adapter instance
*
* This function gets the result of UIC command completion
* Returns 0 on success, non zero value on error
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
* @hba: Pointer to adapter instance
*
* This function gets UIC command argument3
* Returns 0 on success, non zero value on error
*/
static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
}
/**
* ufshcd_get_req_rsp - returns the TR response transaction type
* @ucd_rsp_ptr: pointer to response UPIU
*/
static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
}
/**
* ufshcd_get_rsp_upiu_result - Get the result from response UPIU
* @ucd_rsp_ptr: pointer to response UPIU
*
* This function gets the response status and scsi_status from response UPIU
* Returns the response result code.
*/
static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
}
/*
* ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
* from response UPIU
* @ucd_rsp_ptr: pointer to response UPIU
*
* Return the data segment length.
*/
static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
MASK_RSP_UPIU_DATA_SEG_LEN;
}
/**
* ufshcd_is_exception_event - Check if the device raised an exception event
* @ucd_rsp_ptr: pointer to response UPIU
*
* The function checks if the device raised an exception event indicated in
* the Device Information field of response UPIU.
*
* Returns true if exception is raised, false otherwise.
*/
static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
MASK_RSP_EXCEPTION_EVENT ? true : false;
}
/**
* ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
* @hba: per adapter instance
*/
static inline void
ufshcd_reset_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, INT_AGGR_ENABLE |
INT_AGGR_COUNTER_AND_TIMER_RESET,
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_config_intr_aggr - Configure interrupt aggregation values.
* @hba: per adapter instance
* @cnt: Interrupt aggregation counter threshold
* @tmout: Interrupt aggregation timeout value
*/
static inline void
ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
{
ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
INT_AGGR_COUNTER_THLD_VAL(cnt) |
INT_AGGR_TIMEOUT_VAL(tmout),
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_disable_intr_aggr - Disables interrupt aggregation.
* @hba: per adapter instance
*/
static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
* @hba: per adapter instance
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TASK_REQ_LIST_RUN_STOP);
ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
}
/**
* ufshcd_hba_start - Start controller initialization sequence
* @hba: per adapter instance
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
u32 val = CONTROLLER_ENABLE;
if (ufshcd_hba_is_crypto_supported(hba)) {
ufshcd_crypto_enable(hba);
val |= CRYPTO_GENERAL_ENABLE;
}
ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
}
/**
* ufshcd_is_hba_active - Get controller state
* @hba: per adapter instance
*
* Returns false if controller is active, true otherwise
*/
static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
? false : true;
}
static const char *ufschd_uic_link_state_to_string(
enum uic_link_state state)
{
switch (state) {
case UIC_LINK_OFF_STATE: return "OFF";
case UIC_LINK_ACTIVE_STATE: return "ACTIVE";
case UIC_LINK_HIBERN8_STATE: return "HIBERN8";
default: return "UNKNOWN";
}
}
static const char *ufschd_ufs_dev_pwr_mode_to_string(
enum ufs_dev_pwr_mode state)
{
switch (state) {
case UFS_ACTIVE_PWR_MODE: return "ACTIVE";
case UFS_SLEEP_PWR_MODE: return "SLEEP";
case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN";
default: return "UNKNOWN";
}
}
u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
{
/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
if ((hba->ufs_version == UFSHCI_VERSION_10) ||
(hba->ufs_version == UFSHCI_VERSION_11))
return UFS_UNIPRO_VER_1_41;
else
return UFS_UNIPRO_VER_1_6;
}
EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
{
/*
* If both host and device support UniPro ver1.6 or later, PA layer
* parameters tuning happens during link startup itself.
*
* We can manually tune PA layer parameters if either host or device
* doesn't support UniPro ver 1.6 or later. But to keep manual tuning
* logic simple, we will only do manual tuning if local unipro version
* doesn't support ver1.6 or later.
*/
if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
return true;
else
return false;
}
/**
* ufshcd_set_clk_freq - set UFS controller clock frequencies
* @hba: per adapter instance
* @scale_up: If True, set max possible frequency othewise set low frequency
*
* Returns 0 if successful
* Returns < 0 for any other errors
*/
static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
goto out;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
if (scale_up && clki->max_freq) {
if (clki->curr_freq == clki->max_freq)
continue;
ret = clk_set_rate(clki->clk, clki->max_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->max_freq, ret);
break;
}
trace_ufshcd_clk_scaling(dev_name(hba->dev),
"scaled up", clki->name,
clki->curr_freq,
clki->max_freq);
clki->curr_freq = clki->max_freq;
} else if (!scale_up && clki->min_freq) {
if (clki->curr_freq == clki->min_freq)
continue;
ret = clk_set_rate(clki->clk, clki->min_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->min_freq, ret);
break;
}
trace_ufshcd_clk_scaling(dev_name(hba->dev),
"scaled down", clki->name,
clki->curr_freq,
clki->min_freq);
clki->curr_freq = clki->min_freq;
}
}
dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
clki->name, clk_get_rate(clki->clk));
}
out:
return ret;
}
/**
* ufshcd_scale_clks - scale up or scale down UFS controller clocks
* @hba: per adapter instance
* @scale_up: True if scaling up and false if scaling down
*
* Returns 0 if successful
* Returns < 0 for any other errors
*/
int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
if (ret)
return ret;
ret = ufshcd_set_clk_freq(hba, scale_up);
if (ret)
return ret;
ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
if (ret) {
ufshcd_set_clk_freq(hba, !scale_up);
return ret;
}
return ret;
}
static inline void ufshcd_cancel_gate_work(struct ufs_hba *hba)
{
hrtimer_cancel(&hba->clk_gating.gate_hrtimer);
cancel_work_sync(&hba->clk_gating.gate_work);
}
/**
* ufshcd_is_devfreq_scaling_required - check if scaling is required or not
* @hba: per adapter instance
* @scale_up: True if scaling up and false if scaling down
*
* Returns true if scaling is required, false otherwise.
*/
static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
bool scale_up)
{
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
return false;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
if (scale_up && clki->max_freq) {
if (clki->curr_freq == clki->max_freq)
continue;
return true;
} else if (!scale_up && clki->min_freq) {
if (clki->curr_freq == clki->min_freq)
continue;
return true;
}
}
}
return false;
}
int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
u64 wait_timeout_us)
{
unsigned long flags;
int ret = 0;
u32 tm_doorbell;
u32 tr_doorbell;
bool timeout = false, do_last_check = false;
ktime_t start;
ufshcd_hold_all(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* Wait for all the outstanding tasks/transfer requests.
* Verify by checking the doorbell registers are clear.
*/
start = ktime_get();
do {
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
ret = -EBUSY;
goto out;
}
tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
if (!tm_doorbell && !tr_doorbell) {
timeout = false;
break;
} else if (do_last_check) {
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
schedule();
if (ktime_to_us(ktime_sub(ktime_get(), start)) >
wait_timeout_us) {
timeout = true;
/*
* We might have scheduled out for long time so make
* sure to check if doorbells are cleared by this time
* or not.
*/
do_last_check = true;
}
spin_lock_irqsave(hba->host->host_lock, flags);
} while (tm_doorbell || tr_doorbell);
if (timeout) {
dev_err(hba->dev,
"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
__func__, tm_doorbell, tr_doorbell);
ret = -EBUSY;
}
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_release_all(hba);
return ret;
}
/**
* ufshcd_scale_gear - scale up/down UFS gear
* @hba: per adapter instance
* @scale_up: True for scaling up gear and false for scaling down
*
* Returns 0 for success,
* Returns -EBUSY if scaling can't happen at this time
* Returns non-zero for any other errors
*/
static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
struct ufs_pa_layer_attr new_pwr_info;
u32 scale_down_gear = ufshcd_vops_get_scale_down_gear(hba);
WARN_ON(!hba->clk_scaling.saved_pwr_info.is_valid);
if (scale_up) {
memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
sizeof(struct ufs_pa_layer_attr));
/*
* Some UFS devices may stop responding after switching from
* HS-G1 to HS-G3. Also, it is found that these devices work
* fine if we do 2 steps switch: HS-G1 to HS-G2 followed by
* HS-G2 to HS-G3. If UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH
* quirk is enabled for such devices, this 2 steps gear switch
* workaround will be applied.
*/
if ((hba->dev_info.quirks &
UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH)
&& (hba->pwr_info.gear_tx == UFS_HS_G1)
&& (new_pwr_info.gear_tx == UFS_HS_G3)) {
/* scale up to G2 first */
new_pwr_info.gear_tx = UFS_HS_G2;
new_pwr_info.gear_rx = UFS_HS_G2;
ret = ufshcd_change_power_mode(hba, &new_pwr_info);
if (ret)
goto out;
/* scale up to G3 now */
new_pwr_info.gear_tx = UFS_HS_G3;
new_pwr_info.gear_rx = UFS_HS_G3;
/* now, fall through to set the HS-G3 */
}
ret = ufshcd_change_power_mode(hba, &new_pwr_info);
if (ret)
goto out;
} else {
memcpy(&new_pwr_info, &hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
if (hba->pwr_info.gear_tx > scale_down_gear
|| hba->pwr_info.gear_rx > scale_down_gear) {
/* save the current power mode */
memcpy(&hba->clk_scaling.saved_pwr_info.info,
&hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
/* scale down gear */
new_pwr_info.gear_tx = scale_down_gear;
new_pwr_info.gear_rx = scale_down_gear;
if (!(hba->dev_info.quirks & UFS_DEVICE_NO_FASTAUTO)) {
new_pwr_info.pwr_tx = FASTAUTO_MODE;
new_pwr_info.pwr_rx = FASTAUTO_MODE;
}
}
ret = ufshcd_change_power_mode(hba, &new_pwr_info);
}
out:
if (ret)
dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d), scale_up = %d",
__func__, ret,
hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
new_pwr_info.gear_tx, new_pwr_info.gear_rx,
scale_up);
return ret;
}
static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
{
#define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */
int ret = 0;
/*
* make sure that there are no outstanding requests when
* clock scaling is in progress
*/
down_write(&hba->lock);
ufshcd_scsi_block_requests(hba);
if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
ret = -EBUSY;
up_write(&hba->lock);
ufshcd_scsi_unblock_requests(hba);
}
return ret;
}
static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
{
up_write(&hba->lock);
ufshcd_scsi_unblock_requests(hba);
}
/**
* ufshcd_devfreq_scale - scale up/down UFS clocks and gear
* @hba: per adapter instance
* @scale_up: True for scaling up and false for scalin down
*
* Returns 0 for success,
* Returns -EBUSY if scaling can't happen at this time
* Returns non-zero for any other errors
*/
static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
if (hba->extcon && ufshcd_is_card_offline(hba))
return 0;
/* let's not get into low power until clock scaling is completed */
hba->ufs_stats.clk_hold.ctx = CLK_SCALE_WORK;
ufshcd_hold_all(hba);
ret = ufshcd_clock_scaling_prepare(hba);
if (ret)
goto out;
ufshcd_custom_cmd_log(hba, "waited-for-DB-clear");
/* scale down the gear before scaling down clocks */
if (!scale_up) {
ret = ufshcd_scale_gear(hba, false);
if (ret)
goto clk_scaling_unprepare;
ufshcd_custom_cmd_log(hba, "Gear-scaled-down");
}
/*
* If auto hibern8 is supported then put the link in
* hibern8 manually, this is to avoid auto hibern8
* racing during clock frequency scaling sequence.
*/
if (ufshcd_is_auto_hibern8_supported(hba) &&
hba->hibern8_on_idle.is_enabled) {
ret = ufshcd_uic_hibern8_enter(hba);
/* link will be bad state so no need to scale_up_gear */
if (ret)
goto clk_scaling_unprepare;
ufshcd_custom_cmd_log(hba, "Hibern8-entered");
}
ret = ufshcd_scale_clks(hba, scale_up);
if (ret)
goto scale_up_gear;
ufshcd_custom_cmd_log(hba, "Clk-freq-switched");
if (ufshcd_is_auto_hibern8_supported(hba) &&
hba->hibern8_on_idle.is_enabled) {
ret = ufshcd_uic_hibern8_exit(hba);
/* link will be bad state so no need to scale_up_gear */
if (ret)
goto clk_scaling_unprepare;
ufshcd_custom_cmd_log(hba, "Hibern8-Exited");
}
/* scale up the gear after scaling up clocks */
if (scale_up) {
ret = ufshcd_scale_gear(hba, true);
if (ret) {
ufshcd_scale_clks(hba, false);
goto clk_scaling_unprepare;
}
ufshcd_custom_cmd_log(hba, "Gear-scaled-up");
}
if (!ret) {
hba->clk_scaling.is_scaled_up = scale_up;
if (scale_up)
hba->clk_gating.delay_ms =
hba->clk_gating.delay_ms_perf;
else
hba->clk_gating.delay_ms =
hba->clk_gating.delay_ms_pwr_save;
}
goto clk_scaling_unprepare;
scale_up_gear:
if (!scale_up)
ufshcd_scale_gear(hba, true);
clk_scaling_unprepare:
ufshcd_clock_scaling_unprepare(hba);
out:
hba->ufs_stats.clk_rel.ctx = CLK_SCALE_WORK;
ufshcd_release_all(hba);
return ret;
}
static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_scaling.suspend_work);
unsigned long irq_flags;
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return;
}
hba->clk_scaling.is_suspended = true;
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
__ufshcd_suspend_clkscaling(hba);
}
static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_scaling.resume_work);
unsigned long irq_flags;
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (!hba->clk_scaling.is_suspended) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return;
}
hba->clk_scaling.is_suspended = false;
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
devfreq_resume_device(hba->devfreq);
}
static int ufshcd_devfreq_target(struct device *dev,
unsigned long *freq, u32 flags)
{
int ret = 0;
struct ufs_hba *hba = dev_get_drvdata(dev);
ktime_t start;
bool scale_up, sched_clk_scaling_suspend_work = false;
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
unsigned long irq_flags;
if (!ufshcd_is_clkscaling_supported(hba))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (ufshcd_eh_in_progress(hba)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return 0;
}
if (!hba->clk_scaling.active_reqs)
sched_clk_scaling_suspend_work = true;
if (list_empty(clk_list)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
goto out;
}
clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
scale_up = (*freq == clki->max_freq) ? true : false;
if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
ret = 0;
goto out; /* no state change required */
}
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
start = ktime_get();
ret = ufshcd_devfreq_scale(hba, scale_up);
trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
(scale_up ? "up" : "down"),
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
out:
if (sched_clk_scaling_suspend_work)
queue_work(hba->clk_scaling.workq,
&hba->clk_scaling.suspend_work);
return ret;
}
static int ufshcd_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_clk_scaling *scaling = &hba->clk_scaling;
unsigned long flags;
if (!ufshcd_is_clkscaling_supported(hba))
return -EINVAL;
memset(stat, 0, sizeof(*stat));
spin_lock_irqsave(hba->host->host_lock, flags);
if (!scaling->window_start_t)
goto start_window;
if (scaling->is_busy_started)
scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
scaling->busy_start_t));
stat->total_time = jiffies_to_usecs((long)jiffies -
(long)scaling->window_start_t);
stat->busy_time = scaling->tot_busy_t;
start_window:
scaling->window_start_t = jiffies;
scaling->tot_busy_t = 0;
if (hba->outstanding_reqs) {
scaling->busy_start_t = ktime_get();
scaling->is_busy_started = true;
} else {
scaling->busy_start_t = 0;
scaling->is_busy_started = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
static void ufshcd_devfreq_remove(struct ufs_hba *hba)
{
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
if (!hba->devfreq)
return;
devfreq_remove_device(hba->devfreq);
hba->devfreq = NULL;
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
dev_pm_opp_remove(hba->dev, clki->min_freq);
dev_pm_opp_remove(hba->dev, clki->max_freq);
}
static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
devfreq_suspend_device(hba->devfreq);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_scaling.window_start_t = 0;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
bool suspend = false;
if (!ufshcd_is_clkscaling_supported(hba))
return;
spin_lock_irqsave(hba->host->host_lock, flags);
if (!hba->clk_scaling.is_suspended) {
suspend = true;
hba->clk_scaling.is_suspended = true;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (suspend)
__ufshcd_suspend_clkscaling(hba);
}
static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
bool resume = false;
if (!ufshcd_is_clkscaling_supported(hba))
return;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_scaling.is_suspended) {
resume = true;
hba->clk_scaling.is_suspended = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (resume)
devfreq_resume_device(hba->devfreq);
}
static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
}
static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
u32 value;
int err;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
value = !!value;
if (value == hba->clk_scaling.is_allowed)
goto out;
pm_runtime_get_sync(hba->dev);
ufshcd_hold(hba, false);
cancel_work_sync(&hba->clk_scaling.suspend_work);
cancel_work_sync(&hba->clk_scaling.resume_work);
hba->clk_scaling.is_allowed = value;
if (value) {
ufshcd_resume_clkscaling(hba);
} else {
ufshcd_suspend_clkscaling(hba);
err = ufshcd_devfreq_scale(hba, true);
if (err)
dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
__func__, err);
}
ufshcd_release(hba, false);
pm_runtime_put_sync(hba->dev);
out:
return count;
}
static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
{
hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
hba->clk_scaling.enable_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
}
static void ufshcd_ungate_work(struct work_struct *work)
{
int ret;
unsigned long flags;
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_gating.ungate_work);
ufshcd_cancel_gate_work(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_gating.state == CLKS_ON) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
goto unblock_reqs;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_hba_vreg_set_hpm(hba);
ufshcd_enable_clocks(hba);
ufshcd_enable_irq(hba);
/* Exit from hibern8 */
if (ufshcd_can_hibern8_during_gating(hba)) {
/* Prevent gating in this path */
hba->clk_gating.is_suspended = true;
if (ufshcd_is_link_hibern8(hba)) {
ret = ufshcd_uic_hibern8_exit(hba);
if (ret)
dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
__func__, ret);
else
ufshcd_set_link_active(hba);
}
hba->clk_gating.is_suspended = false;
}
unblock_reqs:
ufshcd_scsi_unblock_requests(hba);
}
/**
* ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
* Also, exit from hibern8 mode and set the link as active.
* @hba: per adapter instance
* @async: This indicates whether caller should ungate clocks asynchronously.
*/
int ufshcd_hold(struct ufs_hba *hba, bool async)
{
int rc = 0;
unsigned long flags;
if (!ufshcd_is_clkgating_allowed(hba))
goto out;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.active_reqs++;
if (ufshcd_eh_in_progress(hba)) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
start:
switch (hba->clk_gating.state) {
case CLKS_ON:
/*
* Wait for the ungate work to complete if in progress.
* Though the clocks may be in ON state, the link could
* still be in hibner8 state if hibern8 is allowed
* during clock gating.
* Make sure we exit hibern8 state also in addition to
* clocks being ON.
*/
if (ufshcd_can_hibern8_during_gating(hba) &&
ufshcd_is_link_hibern8(hba)) {
if (async) {
rc = -EAGAIN;
hba->clk_gating.active_reqs--;
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_work(&hba->clk_gating.ungate_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
goto start;
}
break;
case REQ_CLKS_OFF:
/*
* If the timer was active but the callback was not running
* we have nothing to do, just change state and return.
*/
if ((hrtimer_try_to_cancel(&hba->clk_gating.gate_hrtimer) == 1)
&& !(work_pending(&hba->clk_gating.gate_work))
&& !hba->clk_gating.gate_wk_in_process) {
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
break;
}
/*
* If we are here, it means gating work is either done or
* currently running. Hence, fall through to cancel gating
* work and to enable clocks.
*/
case CLKS_OFF:
hba->clk_gating.state = REQ_CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
if (queue_work(hba->clk_gating.clk_gating_workq,
&hba->clk_gating.ungate_work))
__ufshcd_scsi_block_requests(hba);
/*
* fall through to check if we should wait for this
* work to be done or not.
*/
case REQ_CLKS_ON:
if (async) {
rc = -EAGAIN;
hba->clk_gating.active_reqs--;
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_work(&hba->clk_gating.ungate_work);
/* Make sure state is CLKS_ON before returning */
spin_lock_irqsave(hba->host->host_lock, flags);
goto start;
default:
dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
__func__, hba->clk_gating.state);
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
hba->ufs_stats.clk_hold.ts = ktime_get();
return rc;
}
EXPORT_SYMBOL_GPL(ufshcd_hold);
static void ufshcd_gate_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_gating.gate_work);
unsigned long flags;
hba->clk_gating.gate_wk_in_process = true;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_gating.state == CLKS_OFF)
goto rel_lock;
/*
* In case you are here to cancel this work the gating state
* would be marked as REQ_CLKS_ON. In this case save time by
* skipping the gating work and exit after changing the clock
* state to CLKS_ON.
*/
if (hba->clk_gating.is_suspended ||
(hba->clk_gating.state != REQ_CLKS_OFF)) {
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
goto rel_lock;
}
if (hba->clk_gating.active_reqs
|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
|| hba->lrb_in_use || hba->outstanding_tasks
|| hba->active_uic_cmd || hba->uic_async_done)
goto rel_lock;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ufshcd_is_hibern8_on_idle_allowed(hba) &&
hba->hibern8_on_idle.is_enabled)
/*
* Hibern8 enter work (on Idle) needs clocks to be ON hence
* make sure that it is flushed before turning off the clocks.
*/
flush_delayed_work(&hba->hibern8_on_idle.enter_work);
/* put the link into hibern8 mode before turning off clocks */
if (ufshcd_can_hibern8_during_gating(hba)) {
if (ufshcd_uic_hibern8_enter(hba)) {
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
goto out;
}
ufshcd_set_link_hibern8(hba);
}
ufshcd_disable_irq(hba);
/*
* If auto hibern8 is supported and enabled then the link will already
* be in hibern8 state and the ref clock can be gated.
*/
if ((((ufshcd_is_auto_hibern8_supported(hba) &&
hba->hibern8_on_idle.is_enabled)) ||
!ufshcd_is_link_active(hba)) && !hba->no_ref_clk_gating)
ufshcd_disable_clocks(hba, true);
else
/* If link is active, device ref_clk can't be switched off */
ufshcd_disable_clocks_keep_link_active(hba, true);
/* Put the host controller in low power mode if possible */
ufshcd_hba_vreg_set_lpm(hba);
/*
* In case you are here to cancel this work the gating state
* would be marked as REQ_CLKS_ON. In this case keep the state
* as REQ_CLKS_ON which would anyway imply that clocks are off
* and a request to turn them on is pending. By doing this way,
* we keep the state machine in tact and this would ultimately
* prevent from doing cancel work multiple times when there are
* new requests arriving before the current cancel work is done.
*/
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_gating.state == REQ_CLKS_OFF) {
hba->clk_gating.state = CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
}
rel_lock:
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
hba->clk_gating.gate_wk_in_process = false;
return;
}
/* host lock must be held before calling this variant */
static void __ufshcd_release(struct ufs_hba *hba, bool no_sched)
{
if (!ufshcd_is_clkgating_allowed(hba))
return;
hba->clk_gating.active_reqs--;
if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended
|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
|| hba->lrb_in_use || hba->outstanding_tasks
|| hba->active_uic_cmd || hba->uic_async_done
|| ufshcd_eh_in_progress(hba) || no_sched)
return;
hba->clk_gating.state = REQ_CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
hba->ufs_stats.clk_rel.ts = ktime_get();
hrtimer_start(&hba->clk_gating.gate_hrtimer,
ms_to_ktime(hba->clk_gating.delay_ms),
HRTIMER_MODE_REL);
}
void ufshcd_release(struct ufs_hba *hba, bool no_sched)
{
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
__ufshcd_release(hba, no_sched);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
EXPORT_SYMBOL_GPL(ufshcd_release);
static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
}
static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags, value;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.delay_ms = value;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t ufshcd_clkgate_delay_pwr_save_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%lu\n",
hba->clk_gating.delay_ms_pwr_save);
}
static ssize_t ufshcd_clkgate_delay_pwr_save_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags, value;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.delay_ms_pwr_save = value;
if (ufshcd_is_clkscaling_supported(hba) &&
!hba->clk_scaling.is_scaled_up)
hba->clk_gating.delay_ms = hba->clk_gating.delay_ms_pwr_save;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t ufshcd_clkgate_delay_perf_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms_perf);
}
static ssize_t ufshcd_clkgate_delay_perf_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags, value;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.delay_ms_perf = value;
if (ufshcd_is_clkscaling_supported(hba) &&
hba->clk_scaling.is_scaled_up)
hba->clk_gating.delay_ms = hba->clk_gating.delay_ms_perf;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
}
static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags;
u32 value;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
value = !!value;
spin_lock_irqsave(hba->host->host_lock, flags);
if (value == hba->clk_gating.is_enabled)
goto out;
if (value)
hba->clk_gating.active_reqs--;
else
hba->clk_gating.active_reqs++;
hba->clk_gating.is_enabled = value;
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static enum hrtimer_restart ufshcd_clkgate_hrtimer_handler(
struct hrtimer *timer)
{
struct ufs_hba *hba = container_of(timer, struct ufs_hba,
clk_gating.gate_hrtimer);
queue_work(hba->clk_gating.clk_gating_workq,
&hba->clk_gating.gate_work);
return HRTIMER_NORESTART;
}
static void ufshcd_init_clk_gating(struct ufs_hba *hba)
{
struct ufs_clk_gating *gating = &hba->clk_gating;
char wq_name[sizeof("ufs_clk_gating_00")];
hba->clk_gating.state = CLKS_ON;
if (!ufshcd_is_clkgating_allowed(hba))
return;
/*
* Disable hibern8 during clk gating if
* auto hibern8 is supported
*/
if (ufshcd_is_auto_hibern8_supported(hba))
hba->caps &= ~UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
INIT_WORK(&gating->gate_work, ufshcd_gate_work);
INIT_WORK(&gating->ungate_work, ufshcd_ungate_work);
/*
* Clock gating work must be executed only after auto hibern8
* timeout has expired in the hardware or after aggressive
* hibern8 on idle software timeout. Using jiffy based low
* resolution delayed work is not reliable to guarantee this,
* hence use a high resolution timer to make sure we schedule
* the gate work precisely more than hibern8 timeout.
*
* Always make sure gating->delay_ms > hibern8_on_idle->delay_ms
*/
hrtimer_init(&gating->gate_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
gating->gate_hrtimer.function = ufshcd_clkgate_hrtimer_handler;
snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
hba->host->host_no);
hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
WQ_MEM_RECLAIM | WQ_HIGHPRI);
gating->is_enabled = true;
gating->delay_ms_pwr_save = UFSHCD_CLK_GATING_DELAY_MS_PWR_SAVE;
gating->delay_ms_perf = UFSHCD_CLK_GATING_DELAY_MS_PERF;
/* start with performance mode */
gating->delay_ms = gating->delay_ms_perf;
if (!ufshcd_is_clkscaling_supported(hba))
goto scaling_not_supported;
gating->delay_pwr_save_attr.show = ufshcd_clkgate_delay_pwr_save_show;
gating->delay_pwr_save_attr.store = ufshcd_clkgate_delay_pwr_save_store;
sysfs_attr_init(&gating->delay_pwr_save_attr.attr);
gating->delay_pwr_save_attr.attr.name = "clkgate_delay_ms_pwr_save";
gating->delay_pwr_save_attr.attr.mode = S_IRUGO | S_IWUSR;
if (device_create_file(hba->dev, &gating->delay_pwr_save_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_delay_ms_pwr_save\n");
gating->delay_perf_attr.show = ufshcd_clkgate_delay_perf_show;
gating->delay_perf_attr.store = ufshcd_clkgate_delay_perf_store;
sysfs_attr_init(&gating->delay_perf_attr.attr);
gating->delay_perf_attr.attr.name = "clkgate_delay_ms_perf";
gating->delay_perf_attr.attr.mode = S_IRUGO | S_IWUSR;
if (device_create_file(hba->dev, &gating->delay_perf_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_delay_ms_perf\n");
goto add_clkgate_enable;
scaling_not_supported:
hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
hba->clk_gating.delay_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
add_clkgate_enable:
gating->enable_attr.show = ufshcd_clkgate_enable_show;
gating->enable_attr.store = ufshcd_clkgate_enable_store;
sysfs_attr_init(&gating->enable_attr.attr);
gating->enable_attr.attr.name = "clkgate_enable";
gating->enable_attr.attr.mode = S_IRUGO | S_IWUSR;
if (device_create_file(hba->dev, &gating->enable_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
}
static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
{
if (!ufshcd_is_clkgating_allowed(hba))
return;
if (ufshcd_is_clkscaling_supported(hba)) {
device_remove_file(hba->dev,
&hba->clk_gating.delay_pwr_save_attr);
device_remove_file(hba->dev, &hba->clk_gating.delay_perf_attr);
} else {
device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
}
device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
ufshcd_cancel_gate_work(hba);
cancel_work_sync(&hba->clk_gating.ungate_work);
destroy_workqueue(hba->clk_gating.clk_gating_workq);
}
static void ufshcd_set_auto_hibern8_timer(struct ufs_hba *hba, u32 delay)
{
if (!ufshcd_is_auto_hibern8_supported(hba))
return;
ufshcd_rmwl(hba, AUTO_HIBERN8_TIMER_SCALE_MASK |
AUTO_HIBERN8_IDLE_TIMER_MASK,
AUTO_HIBERN8_TIMER_SCALE_1_MS | delay,
REG_AUTO_HIBERNATE_IDLE_TIMER);
/* Make sure the timer gets applied before further operations */
mb();
}
/**
* ufshcd_hibern8_hold - Make sure that link is not in hibern8.
*
* @hba: per adapter instance
* @async: This indicates whether caller wants to exit hibern8 asynchronously.
*
* Exit from hibern8 mode and set the link as active.
*
* Return 0 on success, non-zero on failure.
*/
static int ufshcd_hibern8_hold(struct ufs_hba *hba, bool async)
{
int rc = 0;
unsigned long flags;
if (!ufshcd_is_hibern8_on_idle_allowed(hba))
goto out;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->hibern8_on_idle.active_reqs++;
if (ufshcd_eh_in_progress(hba)) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
start:
switch (hba->hibern8_on_idle.state) {
case HIBERN8_EXITED:
break;
case REQ_HIBERN8_ENTER:
if (cancel_delayed_work(&hba->hibern8_on_idle.enter_work)) {
hba->hibern8_on_idle.state = HIBERN8_EXITED;
trace_ufshcd_hibern8_on_idle(dev_name(hba->dev),
hba->hibern8_on_idle.state);
break;
}
/*
* If we here, it means Hibern8 enter work is either done or
* currently running. Hence, fall through to cancel hibern8
* work and exit hibern8.
*/
case HIBERN8_ENTERED:
__ufshcd_scsi_block_requests(hba);
hba->hibern8_on_idle.state = REQ_HIBERN8_EXIT;
trace_ufshcd_hibern8_on_idle(dev_name(hba->dev),
hba->hibern8_on_idle.state);
schedule_work(&hba->hibern8_on_idle.exit_work);
/*
* fall through to check if we should wait for this
* work to be done or not.
*/
case REQ_HIBERN8_EXIT:
if (async) {
rc = -EAGAIN;
hba->hibern8_on_idle.active_reqs--;
break;
} else {
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_work(&hba->hibern8_on_idle.exit_work);
/* Make sure state is HIBERN8_EXITED before returning */
spin_lock_irqsave(hba->host->host_lock, flags);
goto start;
}
default:
dev_err(hba->dev, "%s: H8 is in invalid state %d\n",
__func__, hba->hibern8_on_idle.state);
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return rc;
}
/* host lock must be held before calling this variant */
static void __ufshcd_hibern8_release(struct ufs_hba *hba, bool no_sched)
{
unsigned long delay_in_jiffies;
if (!ufshcd_is_hibern8_on_idle_allowed(hba))
return;
hba->hibern8_on_idle.active_reqs--;
BUG_ON(hba->hibern8_on_idle.active_reqs < 0);
if (hba->hibern8_on_idle.active_reqs
|| hba->hibern8_on_idle.is_suspended
|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
|| hba->lrb_in_use || hba->outstanding_tasks
|| hba->active_uic_cmd || hba->uic_async_done
|| ufshcd_eh_in_progress(hba) || no_sched)
return;
hba->hibern8_on_idle.state = REQ_HIBERN8_ENTER;
trace_ufshcd_hibern8_on_idle(dev_name(hba->dev),
hba->hibern8_on_idle.state);
/*
* Scheduling the delayed work after 1 jiffies will make the work to
* get schedule any time from 0ms to 1000/HZ ms which is not desirable
* for hibern8 enter work as it may impact the performance if it gets
* scheduled almost immediately. Hence make sure that hibern8 enter
* work gets scheduled atleast after 2 jiffies (any time between
* 1000/HZ ms to 2000/HZ ms).
*/
delay_in_jiffies = msecs_to_jiffies(hba->hibern8_on_idle.delay_ms);
if (delay_in_jiffies == 1)
delay_in_jiffies++;
schedule_delayed_work(&hba->hibern8_on_idle.enter_work,
delay_in_jiffies);
}
static void ufshcd_hibern8_release(struct ufs_hba *hba, bool no_sched)
{
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
__ufshcd_hibern8_release(hba, no_sched);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_hibern8_enter_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
hibern8_on_idle.enter_work.work);
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->hibern8_on_idle.is_suspended) {
hba->hibern8_on_idle.state = HIBERN8_EXITED;
trace_ufshcd_hibern8_on_idle(dev_name(hba->dev),
hba->hibern8_on_idle.state);
goto rel_lock;
}
if (hba->hibern8_on_idle.active_reqs
|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
|| hba->lrb_in_use || hba->outstanding_tasks
|| hba->active_uic_cmd || hba->uic_async_done)
goto rel_lock;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ufshcd_is_link_active(hba) && ufshcd_uic_hibern8_enter(hba)) {
/* Enter failed */
hba->hibern8_on_idle.state = HIBERN8_EXITED;
trace_ufshcd_hibern8_on_idle(dev_name(hba->dev),
hba->hibern8_on_idle.state);
goto out;
}
ufshcd_set_link_hibern8(hba);
/*
* In case you are here to cancel this work the hibern8_on_idle.state
* would be marked as REQ_HIBERN8_EXIT. In this case keep the state
* as REQ_HIBERN8_EXIT which would anyway imply that we are in hibern8
* and a request to exit from it is pending. By doing this way,
* we keep the state machine in tact and this would ultimately
* prevent from doing cancel work multiple times when there are
* new requests arriving before the current cancel work is done.
*/
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->hibern8_on_idle.state == REQ_HIBERN8_ENTER) {
hba->hibern8_on_idle.state = HIBERN8_ENTERED;
trace_ufshcd_hibern8_on_idle(dev_name(hba->dev),
hba->hibern8_on_idle.state);
}
rel_lock:
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return;
}
static void __ufshcd_set_auto_hibern8_timer(struct ufs_hba *hba,
unsigned long delay_ms)
{
pm_runtime_get_sync(hba->dev);
ufshcd_hold_all(hba);
down_write(&hba->lock);
ufshcd_scsi_block_requests(hba);
/* wait for all the outstanding requests to finish */
ufshcd_wait_for_doorbell_clr(hba, U64_MAX);
ufshcd_set_auto_hibern8_timer(hba, delay_ms);
hba->hibern8_on_idle.is_enabled = !!delay_ms;
up_write(&hba->lock);
ufshcd_scsi_unblock_requests(hba);
ufshcd_release_all(hba);
pm_runtime_put_sync(hba->dev);
}
static void ufshcd_hibern8_exit_work(struct work_struct *work)
{
int ret;
unsigned long flags;
struct ufs_hba *hba = container_of(work, struct ufs_hba,
hibern8_on_idle.exit_work);
cancel_delayed_work_sync(&hba->hibern8_on_idle.enter_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if ((hba->hibern8_on_idle.state == HIBERN8_EXITED)
|| ufshcd_is_link_active(hba)) {
hba->hibern8_on_idle.state = HIBERN8_EXITED;
spin_unlock_irqrestore(hba->host->host_lock, flags);
goto unblock_reqs;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* Exit from hibern8 */
if (ufshcd_is_link_hibern8(hba)) {
hba->ufs_stats.clk_hold.ctx = H8_EXIT_WORK;
ufshcd_hold(hba, false);
ret = ufshcd_uic_hibern8_exit(hba);
hba->ufs_stats.clk_rel.ctx = H8_EXIT_WORK;
ufshcd_release(hba, false);
if (!ret) {
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_set_link_active(hba);
hba->hibern8_on_idle.state = HIBERN8_EXITED;
trace_ufshcd_hibern8_on_idle(dev_name(hba->dev),
hba->hibern8_on_idle.state);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
}
unblock_reqs:
ufshcd_scsi_unblock_requests(hba);
}
static ssize_t ufshcd_hibern8_on_idle_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%lu\n", hba->hibern8_on_idle.delay_ms);
}
static ssize_t ufshcd_hibern8_on_idle_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags, value;
bool change = true;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->hibern8_on_idle.delay_ms == value)
change = false;
if (value >= hba->clk_gating.delay_ms_pwr_save ||
value >= hba->clk_gating.delay_ms_perf) {
dev_err(hba->dev, "hibern8_on_idle_delay (%lu) can not be >= to clkgate_delay_ms_pwr_save (%lu) and clkgate_delay_ms_perf (%lu)\n",
value, hba->clk_gating.delay_ms_pwr_save,
hba->clk_gating.delay_ms_perf);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return -EINVAL;
}
hba->hibern8_on_idle.delay_ms = value;
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* Update auto hibern8 timer value if supported */
if (change && ufshcd_is_auto_hibern8_supported(hba) &&
hba->hibern8_on_idle.is_enabled)
__ufshcd_set_auto_hibern8_timer(hba,
hba->hibern8_on_idle.delay_ms);
return count;
}
static ssize_t ufshcd_hibern8_on_idle_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n",
hba->hibern8_on_idle.is_enabled);
}
static void ufshcd_hibern8_on_idle_switch_work(struct work_struct *work)
{
struct ufs_hba *hba;
unsigned long flags;
u32 value;
hba = container_of(work, struct ufs_hba, hibern8_on_idle_enable_work);
value = !hba->hibern8_on_idle.is_enabled;
/* Update auto hibern8 timer value if supported */
if (ufshcd_is_auto_hibern8_supported(hba)) {
__ufshcd_set_auto_hibern8_timer(hba,
value ? hba->hibern8_on_idle.delay_ms : value);
goto out;
}
if (value) {
/*
* As clock gating work would wait for the hibern8 enter work
* to finish, clocks would remain on during hibern8 enter work.
*/
ufshcd_hold(hba, false);
ufshcd_release_all(hba);
} else {
spin_lock_irqsave(hba->host->host_lock, flags);
hba->hibern8_on_idle.active_reqs++;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
hba->hibern8_on_idle.is_enabled = value;
out:
return;
}
static ssize_t ufshcd_hibern8_on_idle_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
u32 value;
if (!ufshcd_is_hibern8_on_idle_allowed(hba))
return count;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
mutex_lock(&hba->hibern8_on_idle.enable_mutex);
/*
* make sure that former operation has been done before we exectue
* next action. This could gareatee the order and synconization.
*/
flush_work(&hba->hibern8_on_idle_enable_work);
if (hba->hibern8_on_idle.is_enabled != !!value)
schedule_work(&hba->hibern8_on_idle_enable_work);
mutex_unlock(&hba->hibern8_on_idle.enable_mutex);
return count;
}
static void ufshcd_init_hibern8_on_idle(struct ufs_hba *hba)
{
/* initialize the state variable here */
hba->hibern8_on_idle.state = HIBERN8_EXITED;
if (!ufshcd_is_hibern8_on_idle_allowed(hba) &&
!ufshcd_is_auto_hibern8_supported(hba))
return;
if (ufshcd_is_auto_hibern8_supported(hba)) {
hba->hibern8_on_idle.delay_ms = 10;
hba->hibern8_on_idle.state = AUTO_HIBERN8;
/*
* Disable SW hibern8 enter on idle in case
* auto hibern8 is supported
*/
hba->caps &= ~UFSHCD_CAP_HIBERN8_ENTER_ON_IDLE;
hba->hibern8_on_idle.is_enabled = true;
return;
} else {
hba->hibern8_on_idle.delay_ms = 10;
INIT_DELAYED_WORK(&hba->hibern8_on_idle.enter_work,
ufshcd_hibern8_enter_work);
INIT_WORK(&hba->hibern8_on_idle.exit_work,
ufshcd_hibern8_exit_work);
}
hba->hibern8_on_idle.is_enabled = true;
hba->hibern8_on_idle.delay_attr.show =
ufshcd_hibern8_on_idle_delay_show;
hba->hibern8_on_idle.delay_attr.store =
ufshcd_hibern8_on_idle_delay_store;
sysfs_attr_init(&hba->hibern8_on_idle.delay_attr.attr);
hba->hibern8_on_idle.delay_attr.attr.name = "hibern8_on_idle_delay_ms";
hba->hibern8_on_idle.delay_attr.attr.mode = S_IRUGO | S_IWUSR;
if (device_create_file(hba->dev, &hba->hibern8_on_idle.delay_attr))
dev_err(hba->dev, "Failed to create sysfs for hibern8_on_idle_delay\n");
hba->hibern8_on_idle.enable_attr.show =
ufshcd_hibern8_on_idle_enable_show;
hba->hibern8_on_idle.enable_attr.store =
ufshcd_hibern8_on_idle_enable_store;
sysfs_attr_init(&hba->hibern8_on_idle.enable_attr.attr);
hba->hibern8_on_idle.enable_attr.attr.name = "hibern8_on_idle_enable";
hba->hibern8_on_idle.enable_attr.attr.mode = S_IRUGO | S_IWUSR;
if (device_create_file(hba->dev, &hba->hibern8_on_idle.enable_attr))
dev_err(hba->dev, "Failed to create sysfs for hibern8_on_idle_enable\n");
}
static void ufshcd_exit_hibern8_on_idle(struct ufs_hba *hba)
{
if (!ufshcd_is_hibern8_on_idle_allowed(hba))
return;
device_remove_file(hba->dev, &hba->hibern8_on_idle.delay_attr);
device_remove_file(hba->dev, &hba->hibern8_on_idle.enable_attr);
}
static void ufshcd_hold_all(struct ufs_hba *hba)
{
ufshcd_hold(hba, false);
ufshcd_hibern8_hold(hba, false);
}
static void ufshcd_release_all(struct ufs_hba *hba)
{
ufshcd_hibern8_release(hba, false);
ufshcd_release(hba, false);
}
/* Must be called with host lock acquired */
static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
{
bool queue_resume_work = false;
if (!ufshcd_is_clkscaling_supported(hba))
return;
if (!hba->clk_scaling.active_reqs++)
queue_resume_work = true;
if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
return;
if (queue_resume_work)
queue_work(hba->clk_scaling.workq,
&hba->clk_scaling.resume_work);
if (!hba->clk_scaling.window_start_t) {
hba->clk_scaling.window_start_t = jiffies;
hba->clk_scaling.tot_busy_t = 0;
hba->clk_scaling.is_busy_started = false;
}
if (!hba->clk_scaling.is_busy_started) {
hba->clk_scaling.busy_start_t = ktime_get();
hba->clk_scaling.is_busy_started = true;
}
}
static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
{
struct ufs_clk_scaling *scaling = &hba->clk_scaling;
if (!ufshcd_is_clkscaling_supported(hba))
return;
if (!hba->outstanding_reqs && scaling->is_busy_started) {
scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
scaling->busy_start_t));
scaling->busy_start_t = 0;
scaling->is_busy_started = false;
}
}
/**
* ufshcd_send_command - Send SCSI or device management commands
* @hba: per adapter instance
* @task_tag: Task tag of the command
*/
static inline
int ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
{
if (hba->lrb[task_tag].cmd) {
u8 opcode = (u8)(*hba->lrb[task_tag].cmd->cmnd);
if (opcode == SECURITY_PROTOCOL_OUT && hba->security_in) {
hba->security_in--;
} else if (opcode == SECURITY_PROTOCOL_IN) {
if (hba->security_in) {
WARN_ON(1);
return -EINVAL;
}
hba->security_in++;
}
}
hba->lrb[task_tag].issue_time_stamp = ktime_get();
hba->lrb[task_tag].complete_time_stamp = ktime_set(0, 0);
ufshcd_clk_scaling_start_busy(hba);
__set_bit(task_tag, &hba->outstanding_reqs);
ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
/* Make sure that doorbell is committed immediately */
wmb();
ufshcd_cond_add_cmd_trace(hba, task_tag,
hba->lrb[task_tag].cmd ? "scsi_send" : "dev_cmd_send");
ufshcd_update_tag_stats(hba, task_tag);
return 0;
}
/**
* ufshcd_copy_sense_data - Copy sense data in case of check condition
* @lrb - pointer to local reference block
*/
static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
{
int len;
if (lrbp->sense_buffer &&
ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
int len_to_copy;
len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
len_to_copy = min_t(int, RESPONSE_UPIU_SENSE_DATA_LENGTH, len);
memcpy(lrbp->sense_buffer,
lrbp->ucd_rsp_ptr->sr.sense_data,
min_t(int, len_to_copy, UFSHCD_REQ_SENSE_SIZE));
}
}
/**
* ufshcd_copy_query_response() - Copy the Query Response and the data
* descriptor
* @hba: per adapter instance
* @lrb - pointer to local reference block
*/
static
int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
/* Get the descriptor */
if (hba->dev_cmd.query.descriptor &&
lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
GENERAL_UPIU_REQUEST_SIZE;
u16 resp_len;
u16 buf_len;
/* data segment length */
resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
MASK_QUERY_DATA_SEG_LEN;
buf_len = be16_to_cpu(
hba->dev_cmd.query.request.upiu_req.length);
if (likely(buf_len >= resp_len)) {
memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
} else {
dev_warn(hba->dev,
"%s: Response size is bigger than buffer",
__func__);
return -EINVAL;
}
}
return 0;
}
/**
* ufshcd_hba_capabilities - Read controller capabilities
* @hba: per adapter instance
*/
static inline void ufshcd_hba_capabilities(struct ufs_hba *hba)
{
hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
/* nutrs and nutmrs are 0 based values */
hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
hba->nutmrs =
((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
}
/**
* ufshcd_ready_for_uic_cmd - Check if controller is ready
* to accept UIC commands
* @hba: per adapter instance
* Return true on success, else false
*/
static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
{
if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
return true;
else
return false;
}
/**
* ufshcd_get_upmcrs - Get the power mode change request status
* @hba: Pointer to adapter instance
*
* This function gets the UPMCRS field of HCS register
* Returns value of UPMCRS field
*/
static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
}
/**
* ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
* @hba: per adapter instance
* @uic_cmd: UIC command
*
* Mutex must be held.
*/
static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
WARN_ON(hba->active_uic_cmd);
hba->active_uic_cmd = uic_cmd;
ufshcd_dme_cmd_log(hba, "dme_send", hba->active_uic_cmd->command);
/* Write Args */
ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
/* Write UIC Cmd */
ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
REG_UIC_COMMAND);
/* Make sure that UIC command is committed immediately */
wmb();
}
/**
* ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
* @hba: per adapter instance
* @uic_command: UIC command
*
* Must be called with mutex held.
* Returns 0 only if success.
*/
static int
ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
int ret;
unsigned long flags;
if (wait_for_completion_timeout(&uic_cmd->done,
msecs_to_jiffies(UIC_CMD_TIMEOUT)))
ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
else
ret = -ETIMEDOUT;
if (ret)
ufsdbg_set_err_state(hba);
ufshcd_dme_cmd_log(hba, "dme_cmpl_1", hba->active_uic_cmd->command);
#if defined(SEC_UFS_ERROR_COUNT)
if (ret)
SEC_ufs_uic_error_check(hba, true, false);
#endif
spin_lock_irqsave(hba->host->host_lock, flags);
hba->active_uic_cmd = NULL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
/**
* __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
* @hba: per adapter instance
* @uic_cmd: UIC command
* @completion: initialize the completion only if this is set to true
*
* Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
* with mutex held and host_lock locked.
* Returns 0 only if success.
*/
static int
__ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
bool completion)
{
if (!ufshcd_ready_for_uic_cmd(hba)) {
dev_err(hba->dev,
"Controller not ready to accept UIC commands\n");
return -EIO;
}
if (completion)
init_completion(&uic_cmd->done);
ufshcd_dispatch_uic_cmd(hba, uic_cmd);
return 0;
}
/**
* ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
* @hba: per adapter instance
* @uic_cmd: UIC command
*
* Returns 0 only if success.
*/
static int
ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
int ret;
unsigned long flags;
hba->ufs_stats.clk_hold.ctx = UIC_CMD_SEND;
ufshcd_hold_all(hba);
mutex_lock(&hba->uic_cmd_mutex);
ufshcd_add_delay_before_dme_cmd(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (!ret)
ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
ufshcd_save_tstamp_of_last_dme_cmd(hba);
mutex_unlock(&hba->uic_cmd_mutex);
ufshcd_release_all(hba);
hba->ufs_stats.clk_rel.ctx = UIC_CMD_SEND;
ufsdbg_error_inject_dispatcher(hba,
ERR_INJECT_UIC, 0, &ret);
return ret;
}
/**
* ufshcd_map_sg - Map scatter-gather list to prdt
* @lrbp - pointer to local reference block
*
* Returns 0 in case of success, non-zero value in case of failure
*/
static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufshcd_sg_entry *prd;
struct scatterlist *sg;
struct scsi_cmnd *cmd;
int sg_segments;
int i;
#if defined(CONFIG_UFS_DATA_LOG)
unsigned int dump_index;
int cpu = raw_smp_processor_id();
int id = 0;
#if defined(CONFIG_UFS_DATA_LOG_MAGIC_CODE)
unsigned long magicword[1];
void *virt_sg_addr;
/*
* 0x1F5E3A7069245CBE
* 0x4977C72608FCE51F
* 0x524E74A9005F0D1B
* 0x05D3D11A26CF3142
*/
magicword[0] = 0x1F5E3A7069245CBE;
#endif
#endif
cmd = lrbp->cmd;
#if defined(CONFIG_UFS_DATA_LOG)
if (cmd->request && hba->host->ufs_sys_log_en){
/*condition of data log*/
/*read request of system area for debugging dm verity issue*/
if ( rq_data_dir(cmd->request) == READ &&
cmd->request->__sector >= hba->host->ufs_system_start &&
cmd->request->__sector < hba->host->ufs_system_end) {
for (id = 0; id < UFS_DATA_LOG_MAX; id++){
dump_index = atomic_inc_return(&hba->log_count) & (UFS_DATA_LOG_MAX - 1);
if (ufs_data_log[dump_index].done != 0xA)
break;
}
if (id == UFS_DATA_LOG_MAX)
queuing_req[cmd->request->tag] = UFS_DATA_LOG_MAX - 1;
else
queuing_req[cmd->request->tag] = dump_index;
ufs_data_log[dump_index].done = 0xA;
ufs_data_log[dump_index].start_time = cpu_clock(cpu);
ufs_data_log[dump_index].end_time = 0;
ufs_data_log[dump_index].sector = cmd->request->__sector;
#if defined(CONFIG_UFS_DATA_LOG_MAGIC_CODE)
sg_segments = scsi_sg_count(cmd);
scsi_for_each_sg(cmd, sg, sg_segments, i) {
/*
* Write magicword each memory location pointed by SG element
*/
virt_sg_addr = sg_virt(sg);
ufs_data_log[dump_index].virt_addr = virt_sg_addr;
memcpy(virt_sg_addr, magicword, UFS_DATA_BUF_SIZE);
}
#endif
}
}
#endif
sg_segments = scsi_dma_map(cmd);
if (sg_segments < 0)
return sg_segments;
if (sg_segments) {
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16((u16)(sg_segments *
hba->sg_entry_size));
else
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16((u16) (sg_segments));
prd = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
scsi_for_each_sg(cmd, sg, sg_segments, i) {
prd->size =
cpu_to_le32(((u32) sg_dma_len(sg))-1);
hba->transferred_sector += prd->size;
prd->base_addr =
cpu_to_le32(lower_32_bits(sg->dma_address));
prd->upper_addr =
cpu_to_le32(upper_32_bits(sg->dma_address));
prd->reserved = 0;
prd = (void *)prd + hba->sg_entry_size;
}
} else {
lrbp->utr_descriptor_ptr->prd_table_length = 0;
}
return ufshcd_map_sg_crypto(hba, lrbp);
}
/**
* ufshcd_enable_intr - enable interrupts
* @hba: per adapter instance
* @intrs: interrupt bits
*/
static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
if (hba->ufs_version == UFSHCI_VERSION_10) {
u32 rw;
rw = set & INTERRUPT_MASK_RW_VER_10;
set = rw | ((set ^ intrs) & intrs);
} else {
set |= intrs;
}
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
}
/**
* ufshcd_disable_intr - disable interrupts
* @hba: per adapter instance
* @intrs: interrupt bits
*/
static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
if (hba->ufs_version == UFSHCI_VERSION_10) {
u32 rw;
rw = (set & INTERRUPT_MASK_RW_VER_10) &
~(intrs & INTERRUPT_MASK_RW_VER_10);
set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
} else {
set &= ~intrs;
}
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
}
/* IOPP-upiu_flags-v1.2.k5.4 */
static void set_customized_upiu_flags(struct ufshcd_lrb *lrbp, u32 *upiu_flags)
{
if (!lrbp->cmd || !lrbp->cmd->request)
return;
switch (req_op(lrbp->cmd->request)) {
case REQ_OP_READ:
*upiu_flags |= UPIU_CMD_PRIO_HIGH;
break;
case REQ_OP_WRITE:
if (lrbp->cmd->request->cmd_flags & REQ_SYNC)
*upiu_flags |= UPIU_CMD_PRIO_HIGH;
break;
case REQ_OP_FLUSH:
*upiu_flags |= UPIU_TASK_ATTR_HEADQ;
break;
case REQ_OP_DISCARD:
*upiu_flags |= UPIU_TASK_ATTR_ORDERED;
break;
}
}
/**
* ufshcd_prepare_req_desc_hdr() - Fills the requests header
* descriptor according to request
* @hba: per adapter instance
* @lrbp: pointer to local reference block
* @upiu_flags: flags required in the header
* @cmd_dir: requests data direction
*/
static int ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, u32 *upiu_flags,
enum dma_data_direction cmd_dir)
{
struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
u32 data_direction;
u32 dword_0;
if (cmd_dir == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
*upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (cmd_dir == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
*upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
*upiu_flags = UPIU_CMD_FLAGS_NONE;
}
set_customized_upiu_flags(lrbp, upiu_flags);
dword_0 = data_direction | (lrbp->command_type
<< UPIU_COMMAND_TYPE_OFFSET);
if (lrbp->intr_cmd)
dword_0 |= UTP_REQ_DESC_INT_CMD;
/* Transfer request descriptor header fields */
if (ufshcd_lrbp_crypto_enabled(lrbp)) {
#if IS_ENABLED(CONFIG_SCSI_UFS_CRYPTO)
dword_0 |= UTP_REQ_DESC_CRYPTO_ENABLE_CMD;
dword_0 |= lrbp->crypto_key_slot;
req_desc->header.dword_1 =
cpu_to_le32(lower_32_bits(lrbp->data_unit_num));
req_desc->header.dword_3 =
cpu_to_le32(upper_32_bits(lrbp->data_unit_num));
#endif /* CONFIG_SCSI_UFS_CRYPTO */
} else {
/* dword_1 and dword_3 are reserved, hence they are set to 0 */
req_desc->header.dword_1 = 0;
req_desc->header.dword_3 = 0;
}
req_desc->header.dword_0 = cpu_to_le32(dword_0);
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
req_desc->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
req_desc->prd_table_length = 0;
return 0;
}
/**
* ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
* for scsi commands
* @lrbp - local reference block pointer
* @upiu_flags - flags
*/
static
void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
unsigned short cdb_len;
/* command descriptor fields */
ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
UPIU_TRANSACTION_COMMAND, upiu_flags,
lrbp->lun, lrbp->task_tag);
ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
/* Total EHS length and Data segment length will be zero */
ucd_req_ptr->header.dword_2 = 0;
ucd_req_ptr->sc.exp_data_transfer_len =
cpu_to_be32(lrbp->cmd->sdb.length);
cdb_len = min_t(unsigned short, lrbp->cmd->cmd_len, MAX_CDB_SIZE);
memcpy(ucd_req_ptr->sc.cdb, lrbp->cmd->cmnd, cdb_len);
if (cdb_len < MAX_CDB_SIZE)
memset(ucd_req_ptr->sc.cdb + cdb_len, 0,
(MAX_CDB_SIZE - cdb_len));
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
/**
* ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
* for query requsts
* @hba: UFS hba
* @lrbp: local reference block pointer
* @upiu_flags: flags
*/
static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
struct ufs_query *query = &hba->dev_cmd.query;
u16 len = be16_to_cpu(query->request.upiu_req.length);
u8 *descp = (u8 *)lrbp->ucd_req_ptr + GENERAL_UPIU_REQUEST_SIZE;
/* Query request header */
ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
lrbp->lun, lrbp->task_tag);
ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
0, query->request.query_func, 0, 0);
/* Data segment length only need for WRITE_DESC */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
ucd_req_ptr->header.dword_2 =
UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
else
ucd_req_ptr->header.dword_2 = 0;
/* Copy the Query Request buffer as is */
memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
QUERY_OSF_SIZE);
/* Copy the Descriptor */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
memcpy(descp, query->descriptor, len);
if (query->request.query_func == UPIU_QUERY_FUNC_VENDOR_TOSHIBA_FATALMODE) {
ucd_req_ptr->header.dword_2 =
UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
memcpy(descp, query->descriptor, len);
}
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
/* command descriptor fields */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(
UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
/* clear rest of the fields of basic header */
ucd_req_ptr->header.dword_1 = 0;
ucd_req_ptr->header.dword_2 = 0;
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
/**
* ufshcd_comp_devman_upiu - UFS Protocol Information Unit(UPIU)
* for Device Management Purposes
* @hba - per adapter instance
* @lrb - pointer to local reference block
*/
static int ufshcd_comp_devman_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
u32 upiu_flags;
int ret = 0;
if ((hba->ufs_version == UFSHCI_VERSION_10) ||
(hba->ufs_version == UFSHCI_VERSION_11))
lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
else
lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
ret = ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags,
DMA_NONE);
if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
ufshcd_prepare_utp_nop_upiu(lrbp);
else
ret = -EINVAL;
return ret;
}
/**
* ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
* for SCSI Purposes
* @hba - per adapter instance
* @lrb - pointer to local reference block
*/
static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
u32 upiu_flags;
int ret = 0;
if ((hba->ufs_version == UFSHCI_VERSION_10) ||
(hba->ufs_version == UFSHCI_VERSION_11))
lrbp->command_type = UTP_CMD_TYPE_SCSI;
else
lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
if (likely(lrbp->cmd)) {
ret = ufshcd_prepare_req_desc_hdr(hba, lrbp,
&upiu_flags, lrbp->cmd->sc_data_direction);
ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
} else {
ret = -EINVAL;
}
return ret;
}
/*
* ufshcd_scsi_to_upiu_lun - maps scsi LUN to UPIU LUN
* @scsi_lun: scsi LUN id
*
* Returns UPIU LUN id
*/
static inline u8 ufshcd_scsi_to_upiu_lun(unsigned int scsi_lun)
{
if (scsi_is_wlun(scsi_lun))
return (scsi_lun & UFS_UPIU_MAX_UNIT_NUM_ID)
| UFS_UPIU_WLUN_ID;
else
return scsi_lun & UFS_UPIU_MAX_UNIT_NUM_ID;
}
/**
* ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
* @scsi_lun: UPIU W-LUN id
*
* Returns SCSI W-LUN id
*/
static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
{
return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
}
/**
* ufshcd_get_write_lock - synchronize between shutdown, scaling &
* arrival of requests
* @hba: ufs host
*
* Lock is predominantly held by shutdown context thus, ensuring
* that no requests from any other context may sneak through.
*/
static inline void ufshcd_get_write_lock(struct ufs_hba *hba)
{
down_write(&hba->lock);
}
/**
* ufshcd_get_read_lock - synchronize between shutdown, scaling &
* arrival of requests
* @hba: ufs host
*
* Returns 1 if acquired, < 0 on contention
*
* After shutdown's initiated, allow requests only directed to the
* well known device lun. The sync between scaling & issue is maintained
* as is and this restructuring syncs shutdown with these too.
*/
static int ufshcd_get_read_lock(struct ufs_hba *hba, u64 lun)
{
int err = 0;
err = down_read_trylock(&hba->lock);
if (err > 0)
goto out;
/* let requests for well known device lun to go through */
if (ufshcd_scsi_to_upiu_lun(lun) == UFS_UPIU_UFS_DEVICE_WLUN)
return 0;
else if (!ufshcd_is_shutdown_ongoing(hba))
return -EAGAIN;
else
return -EPERM;
out:
return err;
}
/**
* ufshcd_put_read_lock - synchronize between shutdown, scaling &
* arrival of requests
* @hba: ufs host
*
* Returns none
*/
static inline void ufshcd_put_read_lock(struct ufs_hba *hba)
{
up_read(&hba->lock);
}
static void ufshcd_pm_qos_get_worker(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, typeof(*hba), pm_qos.get_work);
if (!atomic_read(&hba->pm_qos.count))
return;
mutex_lock(&hba->pm_qos.lock);
if (atomic_read(&hba->pm_qos.count) && !hba->pm_qos.active) {
pm_qos_update_request(&hba->pm_qos.req, 67);
hba->pm_qos.active = true;
}
mutex_unlock(&hba->pm_qos.lock);
}
static void ufshcd_pm_qos_put_worker(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, typeof(*hba), pm_qos.put_work);
if (atomic_read(&hba->pm_qos.count))
return;
mutex_lock(&hba->pm_qos.lock);
if (!atomic_read(&hba->pm_qos.count) && hba->pm_qos.active) {
pm_qos_update_request(&hba->pm_qos.req, PM_QOS_DEFAULT_VALUE);
hba->pm_qos.active = false;
}
mutex_unlock(&hba->pm_qos.lock);
}
static void ufshcd_pm_qos_get(struct ufs_hba *hba)
{
if (atomic_inc_return(&hba->pm_qos.count) == 1)
queue_work(system_unbound_wq, &hba->pm_qos.get_work);
}
static void ufshcd_pm_qos_put(struct ufs_hba *hba)
{
if (atomic_dec_return(&hba->pm_qos.count) == 0)
queue_work(system_unbound_wq, &hba->pm_qos.put_work);
}
/**
* ufshcd_queuecommand - main entry point for SCSI requests
* @cmd: command from SCSI Midlayer
* @done: call back function
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
{
struct ufshcd_lrb *lrbp;
struct ufs_hba *hba;
unsigned long flags;
int tag;
int err = 0;
bool has_read_lock = false;
bool cmd_sent = false;
hba = shost_priv(host);
if (!cmd || !cmd->request || !hba)
return -EINVAL;
/* Wake the CPU managing the IRQ as soon as possible */
ufshcd_pm_qos_get(hba);
tag = cmd->request->tag;
if (!ufshcd_valid_tag(hba, tag)) {
dev_err(hba->dev,
"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
__func__, tag, cmd, cmd->request);
BUG();
}
err = ufshcd_get_read_lock(hba, cmd->device->lun);
if (unlikely(err < 0)) {
if (err == -EPERM) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out_pm_qos;
}
if (err == -EAGAIN) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out_pm_qos;
}
} else if (err == 1) {
has_read_lock = true;
}
/*
* err might be non-zero here but logic later in this function
* assumes that err is set to 0.
*/
err = 0;
spin_lock_irqsave(hba->host->host_lock, flags);
/* if error handling is in progress, return host busy */
if (ufshcd_eh_in_progress(hba)) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out_unlock;
}
if (hba->extcon && ufshcd_is_card_offline(hba)) {
set_host_byte(cmd, DID_BAD_TARGET);
cmd->scsi_done(cmd);
goto out_unlock;
}
switch (hba->ufshcd_state) {
case UFSHCD_STATE_OPERATIONAL:
break;
case UFSHCD_STATE_EH_SCHEDULED:
case UFSHCD_STATE_RESET:
err = SCSI_MLQUEUE_HOST_BUSY;
goto out_unlock;
case UFSHCD_STATE_ERROR:
set_host_byte(cmd, DID_ERROR);
cmd->scsi_done(cmd);
goto out_unlock;
default:
dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
__func__, hba->ufshcd_state);
set_host_byte(cmd, DID_BAD_TARGET);
cmd->scsi_done(cmd);
goto out_unlock;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
hba->req_abort_count = 0;
/* acquire the tag to make sure device cmds don't use it */
if (test_and_set_bit_lock(tag, &hba->lrb_in_use)) {
/*
* Dev manage command in progress, requeue the command.
* Requeuing the command helps in cases where the request *may*
* find different tag instead of waiting for dev manage command
* completion.
*/
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
hba->ufs_stats.clk_hold.ctx = QUEUE_CMD;
err = ufshcd_hold(hba, true);
if (err) {
err = SCSI_MLQUEUE_HOST_BUSY;
clear_bit_unlock(tag, &hba->lrb_in_use);
goto out;
}
if (ufshcd_is_clkgating_allowed(hba))
WARN_ON(hba->clk_gating.state != CLKS_ON);
err = ufshcd_hibern8_hold(hba, true);
if (err) {
clear_bit_unlock(tag, &hba->lrb_in_use);
err = SCSI_MLQUEUE_HOST_BUSY;
hba->ufs_stats.clk_rel.ctx = QUEUE_CMD;
ufshcd_release(hba, true);
goto out;
}
if (ufshcd_is_hibern8_on_idle_allowed(hba))
WARN_ON(hba->hibern8_on_idle.state != HIBERN8_EXITED);
/* IO svc time latency histogram */
if (hba != NULL && cmd->request != NULL) {
if (hba->latency_hist_enabled) {
switch (req_op(cmd->request)) {
case REQ_OP_READ:
case REQ_OP_WRITE:
cmd->request->lat_hist_io_start = ktime_get();
cmd->request->lat_hist_enabled = 1;
}
} else
cmd->request->lat_hist_enabled = 0;
}
WARN_ON(hba->clk_gating.state != CLKS_ON);
lrbp = &hba->lrb[tag];
WARN_ON(lrbp->cmd);
lrbp->cmd = cmd;
lrbp->sense_bufflen = UFSHCD_REQ_SENSE_SIZE;
lrbp->sense_buffer = cmd->sense_buffer;
lrbp->task_tag = tag;
lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
err = ufshcd_prepare_lrbp_crypto(hba, cmd, lrbp);
if (err) {
ufshcd_release(hba, false);
lrbp->cmd = NULL;
clear_bit_unlock(tag, &hba->lrb_in_use);
goto out;
}
lrbp->req_abort_skip = false;
err = ufshcd_comp_scsi_upiu(hba, lrbp);
if (err) {
if (err != -EAGAIN)
dev_err(hba->dev,
"%s: failed to compose upiu %d cmd:0x%08x lun:%d\n",
__func__, err, cmd, lrbp->lun);
lrbp->cmd = NULL;
clear_bit_unlock(tag, &hba->lrb_in_use);
ufshcd_release_all(hba);
goto out;
}
err = ufshcd_map_sg(hba, lrbp);
if (err) {
lrbp->cmd = NULL;
clear_bit_unlock(tag, &hba->lrb_in_use);
ufshcd_release_all(hba);
goto out;
}
/* Make sure descriptors are ready before ringing the doorbell */
wmb();
/* issue command to the controller */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
err = ufshcd_send_command(hba, tag);
if (err) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
scsi_dma_unmap(lrbp->cmd);
lrbp->cmd = NULL;
clear_bit_unlock(tag, &hba->lrb_in_use);
ufshcd_release_all(hba);
dev_err(hba->dev, "%s: failed sending command, %d\n",
__func__, err);
if (err == -EINVAL) {
set_host_byte(cmd, DID_ERROR);
if (has_read_lock)
ufshcd_put_read_lock(hba);
cmd->scsi_done(cmd);
err = 0;
goto out_pm_qos;
}
goto out;
}
cmd_sent = true;
out_unlock:
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
if (has_read_lock)
ufshcd_put_read_lock(hba);
out_pm_qos:
if (!cmd_sent)
ufshcd_pm_qos_put(hba);
return err;
}
static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
{
lrbp->cmd = NULL;
lrbp->sense_bufflen = 0;
lrbp->sense_buffer = NULL;
lrbp->task_tag = tag;
lrbp->lun = 0; /* device management cmd is not specific to any LUN */
lrbp->intr_cmd = true; /* No interrupt aggregation */
#if IS_ENABLED(CONFIG_SCSI_UFS_CRYPTO)
lrbp->crypto_enable = false; /* No crypto operations */
#endif
hba->dev_cmd.type = cmd_type;
return ufshcd_comp_devman_upiu(hba, lrbp);
}
static int
ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
{
int err = 0;
unsigned long flags;
u32 mask = 1 << tag;
/* clear outstanding transaction before retry */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_utrl_clear(hba, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/*
* wait for for h/w to clear corresponding bit in door-bell.
* max. wait is 1 sec.
*/
err = ufshcd_wait_for_register(hba,
REG_UTP_TRANSFER_REQ_DOOR_BELL,
mask, ~mask, 1000, 1000, true);
return err;
}
static int
ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
/* Get the UPIU response */
query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
UPIU_RSP_CODE_OFFSET;
return query_res->response;
}
/**
* ufshcd_dev_cmd_completion() - handles device management command responses
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*/
static int
ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int resp;
int err = 0;
hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
switch (resp) {
case UPIU_TRANSACTION_NOP_IN:
if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
err = -EINVAL;
dev_err(hba->dev, "%s: unexpected response %x\n",
__func__, resp);
}
break;
case UPIU_TRANSACTION_QUERY_RSP:
err = ufshcd_check_query_response(hba, lrbp);
if (!err)
err = ufshcd_copy_query_response(hba, lrbp);
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
err = -EPERM;
dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
__func__);
break;
default:
err = -EINVAL;
dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
__func__, resp);
break;
}
return err;
}
static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, int max_timeout)
{
int err = 0;
unsigned long time_left;
unsigned long flags;
time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
msecs_to_jiffies(max_timeout));
/* Make sure descriptors are ready before ringing the doorbell */
wmb();
spin_lock_irqsave(hba->host->host_lock, flags);
hba->dev_cmd.complete = NULL;
if (likely(time_left)) {
err = ufshcd_get_tr_ocs(lrbp);
if (!err)
err = ufshcd_dev_cmd_completion(hba, lrbp);
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (!time_left) {
err = -ETIMEDOUT;
dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
__func__, lrbp->task_tag);
if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
/* successfully cleared the command, retry if needed */
err = -EAGAIN;
/*
* in case of an error, after clearing the doorbell,
* we also need to clear the outstanding_request
* field in hba
*/
ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
}
if (err && err != -EAGAIN)
ufsdbg_set_err_state(hba);
return err;
}
/**
* ufshcd_get_dev_cmd_tag - Get device management command tag
* @hba: per-adapter instance
* @tag: pointer to variable with available slot value
*
* Get a free slot and lock it until device management command
* completes.
*
* Returns false if free slot is unavailable for locking, else
* return true with tag value in @tag.
*/
static bool ufshcd_get_dev_cmd_tag(struct ufs_hba *hba, int *tag_out)
{
int tag;
bool ret = false;
unsigned long tmp;
if (!tag_out)
goto out;
do {
tmp = ~hba->lrb_in_use;
tag = find_last_bit(&tmp, hba->nutrs);
if (tag >= hba->nutrs)
goto out;
} while (test_and_set_bit_lock(tag, &hba->lrb_in_use));
*tag_out = tag;
ret = true;
out:
return ret;
}
static inline void ufshcd_put_dev_cmd_tag(struct ufs_hba *hba, int tag)
{
clear_bit_unlock(tag, &hba->lrb_in_use);
}
/**
* ufshcd_exec_dev_cmd - API for sending device management requests
* @hba - UFS hba
* @cmd_type - specifies the type (NOP, Query...)
* @timeout - time in seconds
*
* NOTE: Since there is only one available tag for device management commands,
* it is expected you hold the hba->dev_cmd.lock mutex.
*/
static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
enum dev_cmd_type cmd_type, int timeout)
{
struct ufshcd_lrb *lrbp;
int err;
int tag;
struct completion wait;
unsigned long flags;
bool has_read_lock = false;
/*
* May get invoked from shutdown and IOCTL contexts.
* In shutdown context, it comes in with lock acquired.
* In error recovery context, it may come with lock acquired.
*/
if (!ufshcd_is_shutdown_ongoing(hba) && !ufshcd_eh_in_progress(hba)) {
down_read(&hba->lock);
has_read_lock = true;
}
/*
* Get free slot, sleep if slots are unavailable.
* Even though we use wait_event() which sleeps indefinitely,
* the maximum wait time is bounded by SCSI request timeout.
*/
wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag));
init_completion(&wait);
lrbp = &hba->lrb[tag];
WARN_ON(lrbp->cmd);
err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
if (unlikely(err))
goto out_put_tag;
hba->dev_cmd.complete = &wait;
/* Make sure descriptors are ready before ringing the doorbell */
wmb();
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
err = ufshcd_send_command(hba, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (err) {
dev_err(hba->dev, "%s: failed sending command, %d\n",
__func__, err);
goto out_put_tag;
}
err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
out_put_tag:
ufshcd_put_dev_cmd_tag(hba, tag);
wake_up(&hba->dev_cmd.tag_wq);
if (has_read_lock)
up_read(&hba->lock);
#if defined(SEC_UFS_ERROR_COUNT)
if (err && (cmd_type != DEV_CMD_TYPE_NOP))
SEC_ufs_query_error_check(hba, cmd_type);
#endif
return err;
}
/**
* ufshcd_init_query() - init the query response and request parameters
* @hba: per-adapter instance
* @request: address of the request pointer to be initialized
* @response: address of the response pointer to be initialized
* @opcode: operation to perform
* @idn: flag idn to access
* @index: LU number to access
* @selector: query/flag/descriptor further identification
*/
static inline void ufshcd_init_query(struct ufs_hba *hba,
struct ufs_query_req **request, struct ufs_query_res **response,
enum query_opcode opcode, u8 idn, u8 index, u8 selector)
{
int idn_t = (int)idn;
ufsdbg_error_inject_dispatcher(hba,
ERR_INJECT_QUERY, idn_t, (int *)&idn_t);
idn = idn_t;
*request = &hba->dev_cmd.query.request;
*response = &hba->dev_cmd.query.response;
memset(*request, 0, sizeof(struct ufs_query_req));
memset(*response, 0, sizeof(struct ufs_query_res));
(*request)->upiu_req.opcode = opcode;
(*request)->upiu_req.idn = idn;
(*request)->upiu_req.index = index;
(*request)->upiu_req.selector = selector;
ufshcd_update_query_stats(hba, opcode, idn);
}
static int ufshcd_query_flag_retry(struct ufs_hba *hba,
enum query_opcode opcode, enum flag_idn idn, bool *flag_res)
{
int ret;
int retries;
for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
ret = ufshcd_query_flag(hba, opcode, idn, flag_res);
if (ret)
dev_dbg(hba->dev,
"%s: failed with error %d, retries %d\n",
__func__, ret, retries);
else
break;
}
if (ret)
dev_err(hba->dev,
"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
__func__, opcode, idn, ret, retries);
return ret;
}
/**
* ufshcd_query_flag() - API function for sending flag query requests
* hba: per-adapter instance
* query_opcode: flag query to perform
* idn: flag idn to access
* flag_res: the flag value after the query request completes
*
* Returns 0 for success, non-zero in case of failure
*/
int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
enum flag_idn idn, bool *flag_res)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err, index = 0, selector = 0;
int timeout = QUERY_REQ_TIMEOUT;
BUG_ON(!hba);
ufshcd_hold_all(hba);
mutex_lock(&hba->dev_cmd.lock);
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
switch (opcode) {
case UPIU_QUERY_OPCODE_SET_FLAG:
case UPIU_QUERY_OPCODE_CLEAR_FLAG:
case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
if (!flag_res) {
/* No dummy reads */
dev_err(hba->dev, "%s: Invalid argument for read request\n",
__func__);
err = -EINVAL;
goto out_unlock;
}
break;
default:
dev_err(hba->dev,
"%s: Expected query flag opcode but got = %d\n",
__func__, opcode);
err = -EINVAL;
goto out_unlock;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
if (err) {
dev_err(hba->dev,
"%s: Sending flag query for idn %d failed, err = %d\n",
__func__, request->upiu_req.idn, err);
goto out_unlock;
}
if (flag_res)
*flag_res = (be32_to_cpu(response->upiu_res.value) &
MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
out_unlock:
mutex_unlock(&hba->dev_cmd.lock);
ufshcd_release_all(hba);
return err;
}
/**
* ufshcd_query_attr - API function for sending attribute requests
* hba: per-adapter instance
* opcode: attribute opcode
* idn: attribute idn to access
* index: index field
* selector: selector field
* attr_val: the attribute value after the query request completes
*
* Returns 0 for success, non-zero in case of failure
*/
int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err;
BUG_ON(!hba);
ufshcd_hold_all(hba);
if (!attr_val) {
dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
mutex_lock(&hba->dev_cmd.lock);
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
switch (opcode) {
case UPIU_QUERY_OPCODE_WRITE_ATTR:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
request->upiu_req.value = cpu_to_be32(*attr_val);
break;
case UPIU_QUERY_OPCODE_READ_ATTR:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
break;
default:
dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
__func__, opcode);
err = -EINVAL;
goto out_unlock;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err) {
dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
__func__, opcode,
request->upiu_req.idn, index, err);
goto out_unlock;
}
*attr_val = be32_to_cpu(response->upiu_res.value);
out_unlock:
mutex_unlock(&hba->dev_cmd.lock);
out:
ufshcd_release_all(hba);
return err;
}
/**
* ufshcd_query_attr_retry() - API function for sending query
* attribute with retries
* @hba: per-adapter instance
* @opcode: attribute opcode
* @idn: attribute idn to access
* @index: index field
* @selector: selector field
* @attr_val: the attribute value after the query request
* completes
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_query_attr_retry(struct ufs_hba *hba,
enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
u32 *attr_val)
{
int ret = 0;
u32 retries;
for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
ret = ufshcd_query_attr(hba, opcode, idn, index,
selector, attr_val);
if (ret)
dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
__func__, ret, retries);
else
break;
}
if (ret)
dev_err(hba->dev,
"%s: query attribute, idn %d, failed with error %d after %d retires\n",
__func__, idn, ret, retries);
return ret;
}
static int __ufshcd_query_descriptor(struct ufs_hba *hba,
enum query_opcode opcode, enum desc_idn idn, u8 index,
u8 selector, u8 *desc_buf, int *buf_len)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err;
BUG_ON(!hba);
ufshcd_hold_all(hba);
if (!desc_buf) {
dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
__func__, *buf_len);
err = -EINVAL;
goto out;
}
mutex_lock(&hba->dev_cmd.lock);
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
hba->dev_cmd.query.descriptor = desc_buf;
request->upiu_req.length = cpu_to_be16(*buf_len);
switch (opcode) {
case UPIU_QUERY_OPCODE_WRITE_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
break;
default:
dev_err(hba->dev,
"%s: Expected query descriptor opcode but got = 0x%.2x\n",
__func__, opcode);
err = -EINVAL;
goto out_unlock;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err) {
dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
__func__, opcode,
request->upiu_req.idn, index, err);
goto out_unlock;
}
*buf_len = be16_to_cpu(response->upiu_res.length);
out_unlock:
hba->dev_cmd.query.descriptor = NULL;
mutex_unlock(&hba->dev_cmd.lock);
out:
ufshcd_release_all(hba);
return err;
}
/**
* ufshcd_query_descriptor_retry - API function for sending descriptor
* requests
* hba: per-adapter instance
* opcode: attribute opcode
* idn: attribute idn to access
* index: index field
* selector: selector field
* desc_buf: the buffer that contains the descriptor
* buf_len: length parameter passed to the device
*
* Returns 0 for success, non-zero in case of failure.
* The buf_len parameter will contain, on return, the length parameter
* received on the response.
*/
int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
enum query_opcode opcode,
enum desc_idn idn, u8 index,
u8 selector,
u8 *desc_buf, int *buf_len)
{
int err;
int retries;
for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
err = __ufshcd_query_descriptor(hba, opcode, idn, index,
selector, desc_buf, buf_len);
if (!err || err == -EINVAL)
break;
}
return err;
}
EXPORT_SYMBOL(ufshcd_query_descriptor_retry);
/**
* ufshcd_map_desc_id_to_length - map descriptor IDN to its length
* @hba: Pointer to adapter instance
* @desc_id: descriptor idn value
* @desc_len: mapped desc length (out)
*
* Return 0 in case of success, non-zero otherwise
*/
int ufshcd_map_desc_id_to_length(struct ufs_hba *hba,
enum desc_idn desc_id, int *desc_len)
{
switch (desc_id) {
case QUERY_DESC_IDN_DEVICE:
*desc_len = hba->desc_size.dev_desc;
break;
case QUERY_DESC_IDN_POWER:
*desc_len = hba->desc_size.pwr_desc;
break;
case QUERY_DESC_IDN_GEOMETRY:
*desc_len = hba->desc_size.geom_desc;
break;
case QUERY_DESC_IDN_CONFIGURATION:
*desc_len = hba->desc_size.conf_desc;
break;
case QUERY_DESC_IDN_UNIT:
*desc_len = hba->desc_size.unit_desc;
break;
case QUERY_DESC_IDN_INTERCONNECT:
*desc_len = hba->desc_size.interc_desc;
break;
case QUERY_DESC_IDN_STRING:
*desc_len = QUERY_DESC_MAX_SIZE;
break;
case QUERY_DESC_IDN_HEALTH:
*desc_len = hba->desc_size.hlth_desc;
break;
case QUERY_DESC_IDN_RFU_0:
case QUERY_DESC_IDN_RFU_1:
*desc_len = 0;
break;
default:
*desc_len = 0;
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
/**
* ufshcd_read_desc_param - read the specified descriptor parameter
* @hba: Pointer to adapter instance
* @desc_id: descriptor idn value
* @desc_index: descriptor index
* @param_offset: offset of the parameter to read
* @param_read_buf: pointer to buffer where parameter would be read
* @param_size: sizeof(param_read_buf)
*
* Return 0 in case of success, non-zero otherwise
*/
static int ufshcd_read_desc_param(struct ufs_hba *hba,
enum desc_idn desc_id,
int desc_index,
u8 param_offset,
u8 *param_read_buf,
u8 param_size)
{
int ret;
u8 *desc_buf;
int buff_len;
/* Safety check */
if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
return -EINVAL;
/* Get the max length of descriptor from structure filled up at probe
* time.
*/
ret = ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
/* Sanity checks */
if (ret || !buff_len) {
dev_err(hba->dev, "%s: Failed to get full descriptor length",
__func__);
return ret;
}
/* Boundary check */
if (param_size == 0 || (param_offset + param_size) > buff_len) {
dev_err(hba->dev, "%s: Out of desc boundary or null size",
__func__);
return -EINVAL;
}
desc_buf = kmalloc(buff_len, GFP_KERNEL);
if (!desc_buf)
return -ENOMEM;
/* Request for full descriptor */
ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
desc_id, desc_index, 0,
desc_buf, &buff_len);
if (ret) {
dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d",
__func__, desc_id, desc_index, param_offset, ret);
goto out;
}
/* Sanity check */
if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header",
__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
ret = -EINVAL;
goto out;
}
memcpy(param_read_buf, &desc_buf[param_offset], param_size);
out:
kfree(desc_buf);
return ret;
}
static inline int ufshcd_read_desc(struct ufs_hba *hba,
enum desc_idn desc_id,
int desc_index,
u8 *buf,
u32 size)
{
return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size);
}
static inline int ufshcd_read_power_desc(struct ufs_hba *hba,
u8 *buf,
u32 size)
{
return ufshcd_read_desc(hba, QUERY_DESC_IDN_POWER, 0, buf, size);
}
int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size)
{
return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size);
}
/**
* ufshcd_read_desc_length - read the specified descriptor length from header
* @hba: Pointer to adapter instance
* @desc_id: descriptor idn value
* @desc_index: descriptor index
* @desc_length: pointer to variable to read the length of descriptor
*
* Return 0 in case of success, non-zero otherwise
*/
static int ufshcd_read_desc_length(struct ufs_hba *hba,
enum desc_idn desc_id,
int desc_index,
int *desc_length)
{
int ret;
u8 header[QUERY_DESC_HDR_SIZE];
int header_len = QUERY_DESC_HDR_SIZE;
if (desc_id >= QUERY_DESC_IDN_MAX)
return -EINVAL;
ret = ufshcd_read_desc_param(hba, desc_id, desc_index,
0, header, header_len);
if (ret) {
dev_err(hba->dev, "%s: Failed to get descriptor header id %d",
__func__, desc_id);
return ret;
} else if (desc_id != header[QUERY_DESC_DESC_TYPE_OFFSET]) {
dev_warn(hba->dev, "%s: descriptor header id %d and desc_id %d mismatch",
__func__, header[QUERY_DESC_DESC_TYPE_OFFSET],
desc_id);
ret = -EINVAL;
}
*desc_length = header[QUERY_DESC_LENGTH_OFFSET];
return ret;
}
/**
* ufshcd_read_string_desc - read string descriptor
* @hba: pointer to adapter instance
* @desc_index: descriptor index
* @buf: pointer to buffer where descriptor would be read
* @size: size of buf
* @ascii: if true convert from unicode to ascii characters
*
* Return 0 in case of success, non-zero otherwise
*/
#define ASCII_STD true
#define UTF16_STD false
static int ufshcd_read_string_desc(struct ufs_hba *hba, int desc_index,
u8 *buf, u32 size, bool ascii)
{
int err = 0;
err = ufshcd_read_desc(hba,
QUERY_DESC_IDN_STRING, desc_index, buf, size);
if (err) {
dev_err(hba->dev, "%s: reading String Desc failed after %d retries. err = %d\n",
__func__, QUERY_REQ_RETRIES, err);
goto out;
}
if (ascii) {
int desc_len;
int ascii_len;
int i;
char *buff_ascii;
desc_len = buf[0];
/* remove header and divide by 2 to move from UTF16 to UTF8 */
ascii_len = (desc_len - QUERY_DESC_HDR_SIZE) / 2 + 1;
if (size < ascii_len + QUERY_DESC_HDR_SIZE) {
dev_err(hba->dev, "%s: buffer allocated size is too small\n",
__func__);
err = -ENOMEM;
goto out;
}
buff_ascii = kzalloc(ascii_len, GFP_KERNEL);
if (!buff_ascii) {
err = -ENOMEM;
goto out;
}
/*
* the descriptor contains string in UTF16 format
* we need to convert to utf-8 so it can be displayed
*/
utf16s_to_utf8s((wchar_t *)&buf[QUERY_DESC_HDR_SIZE],
desc_len - QUERY_DESC_HDR_SIZE,
UTF16_BIG_ENDIAN, buff_ascii, ascii_len);
/* replace non-printable or non-ASCII characters with spaces */
for (i = 0; i < ascii_len; i++)
ufshcd_remove_non_printable(&buff_ascii[i]);
memset(buf + QUERY_DESC_HDR_SIZE, 0,
size - QUERY_DESC_HDR_SIZE);
memcpy(buf + QUERY_DESC_HDR_SIZE, buff_ascii, ascii_len);
buf[QUERY_DESC_LENGTH_OFFSET] = ascii_len + QUERY_DESC_HDR_SIZE;
kfree(buff_ascii);
}
out:
return err;
}
/**
* ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
* @hba: Pointer to adapter instance
* @lun: lun id
* @param_offset: offset of the parameter to read
* @param_read_buf: pointer to buffer where parameter would be read
* @param_size: sizeof(param_read_buf)
*
* Return 0 in case of success, non-zero otherwise
*/
static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
int lun,
enum unit_desc_param param_offset,
u8 *param_read_buf,
u32 param_size)
{
/*
* Unit descriptors are only available for general purpose LUs (LUN id
* from 0 to 7) and RPMB Well known LU.
*/
if (!ufs_is_valid_unit_desc_lun(lun))
return -EOPNOTSUPP;
return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
param_offset, param_read_buf, param_size);
}
static int __ufshcd_query_vendor_func(struct ufs_hba *hba,
u8 query_fn, enum query_opcode opcode, enum desc_idn idn, u8 index,
u8 selector, u8 *desc_buf, int *buf_len)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err;
BUG_ON(!hba);
if (!desc_buf) {
dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
__func__, opcode);
return -EINVAL;
}
pm_runtime_get_sync(hba->dev);
ufshcd_hold_all(hba);
mutex_lock(&hba->dev_cmd.lock);
request = &hba->dev_cmd.query.request;
response = &hba->dev_cmd.query.response;
memset(request, 0, sizeof(struct ufs_query_req));
memset(response, 0, sizeof(struct ufs_query_res));
request->query_func = query_fn;
request->upiu_req.opcode = opcode;
request->upiu_req.idn = idn;
request->upiu_req.index = index;
request->upiu_req.selector = selector;
hba->dev_cmd.query.descriptor = desc_buf;
request->upiu_req.length = cpu_to_be16(*buf_len);
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err) {
dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
__func__, opcode,
request->upiu_req.idn, index, err);
goto out_unlock;
}
hba->dev_cmd.query.descriptor = NULL;
*buf_len = be16_to_cpu(response->upiu_res.length);
out_unlock:
mutex_unlock(&hba->dev_cmd.lock);
ufshcd_release_all(hba);
pm_runtime_put_sync(hba->dev);
return err;
}
/**
* ufshcd_vendor_specific_func - Vendor Specific Read/Write Functions
*
* @hba: pointer to adapter instance
* @buf: pointer to buffer where read/write function
* @size: size of buf
*
* Return 0 in case of success, non-zero otherwise
*/
int ufshcd_vendor_specific_func(struct ufs_hba *hba, u8 query_fn,
enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector,
u8 *buf, u32 *size)
{
int err = 0;
int retries;
for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
err = __ufshcd_query_vendor_func(hba, query_fn, opcode, idn, index,
selector, buf, size);
if (!err || err == -EINVAL)
break;
dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
}
if (err)
dev_err(hba->dev,
"%s is failed!! Query Function=0x%x err = %d\n",
__func__, query_fn, err);
else
dev_err(hba->dev,
"%s is OK!! Query Function=0x%x err = %d\n",
__func__, query_fn, err);
return err;
}
static int UFS_Toshiba_K2_query_fatal_mode(struct ufs_hba *hba)
{
u8 dbuf[512] = {0, };
int dsize = sizeof(dbuf);
int result = 0;
/*enter fatal mode*/
dbuf[0] = 0x0C, dbuf[4] = 0xA2, dbuf[5] = 0xA0, dbuf[6] = 0x6A, dbuf[7] = 0x04;
result = ufshcd_vendor_specific_func(hba,
UPIU_QUERY_FUNC_VENDOR_TOSHIBA_FATALMODE,
0, 0, 0, 0, dbuf, &dsize);
if (result)
dev_err(hba->dev, "%s: failed to enter Toshiba K2 fatal mode. result = %d\n",
__func__, result);
else
hba->UFS_fatal_mode_done = true;
return result;
}
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
/* call back for block layer */
void ufshcd_tw_ctrl(struct scsi_device *sdev, int en)
{
int err;
struct ufs_hba *hba;
bool has_lock = false;
hba = shost_priv(sdev->host);
mutex_lock(&hba->tw_ctrl_mutex);
has_lock = true;
pr_err("UFS: try TW %s.\n", en ? "On" : "Off");
if (!hba->support_tw)
goto out;
if (hba->pm_op_in_progress) {
dev_err(hba->dev, "%s: tw ctrl during pm operation is not allowed.\n",
__func__);
goto out;
}
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
dev_err(hba->dev, "%s: ufs host is not available.\n",
__func__);
goto out;
}
if (hba->tw_state_not_allowed) {
dev_err(hba->dev, "%s: tw ctrl is not allowed(e.g. ufs driver is suspended).\n",
__func__);
goto out;
}
if (ufshcd_is_tw_err(hba))
dev_err(hba->dev, "%s: previous turbo write control was failed.\n",
__func__);
if (en) {
if (ufshcd_is_tw_on(hba)) {
dev_err(hba->dev, "%s: turbo write already enabled. tw_state = %d\n",
__func__, hba->ufs_tw_state);
goto out;
}
pm_runtime_get_sync(hba->dev);
if (hba->tw_state_not_allowed) { // check again
dev_err(hba->dev, "%s: tw ctrl %s is not allowed(e.g. ufs driver is suspended)\n",
__func__, en ? "On" : "Off");
goto out_rpm_put;
}
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_WB_EN, NULL);
if (err) {
ufshcd_set_tw_err(hba);
dev_err(hba->dev, "%s: enable turbo write failed. err = %d\n",
__func__, err);
} else {
ufshcd_set_tw_on(hba);
dev_info(hba->dev, "%s: ufs turbo write enabled \n", __func__);
}
} else {
if (ufshcd_is_tw_off(hba)) {
dev_err(hba->dev, "%s: turbo write already disabled. tw_state = %d\n",
__func__, hba->ufs_tw_state);
goto out;
}
pm_runtime_get_sync(hba->dev);
if (hba->tw_state_not_allowed) { // check again
dev_err(hba->dev, "%s: tw ctrl %s is not allowed(e.g. ufs driver is suspended)\n",
__func__, en ? "On" : "Off");
goto out_rpm_put;
}
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
QUERY_FLAG_IDN_WB_EN, NULL);
if (err) {
ufshcd_set_tw_err(hba);
dev_err(hba->dev, "%s: disable turbo write failed. err = %d\n",
__func__, err);
} else {
ufshcd_set_tw_off(hba);
dev_info(hba->dev, "%s: ufs turbo write disabled \n", __func__);
}
}
SEC_ufs_update_tw_info(hba, 0);
out_rpm_put:
/*
* tw_ctrl_mutex must be unlocked before the pm_runtime_put_sync() is called
* to prevent deadlock issue.
*
* ufshcd_suspend() calls mutex_lock(&hba->tw_ctrl_mutex)
*/
mutex_unlock(&hba->tw_ctrl_mutex);
has_lock = false;
pm_runtime_put_sync(hba->dev);
out:
if (has_lock)
mutex_unlock(&hba->tw_ctrl_mutex);
}
static void ufshcd_reset_tw(struct ufs_hba *hba, bool force)
{
int err = 0;
if (!hba->support_tw)
return;
if (ufshcd_is_tw_off(hba)) {
dev_info(hba->dev, "%s: turbo write already disabled. tw_state = %d\n",
__func__, hba->ufs_tw_state);
return;
}
if (ufshcd_is_tw_err(hba))
dev_err(hba->dev, "%s: previous turbo write control was failed.\n",
__func__);
if (force)
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
QUERY_FLAG_IDN_WB_EN, NULL);
if (err) {
ufshcd_set_tw_err(hba);
dev_err(hba->dev, "%s: disable turbo write failed. err = %d\n",
__func__, err);
} else {
ufshcd_set_tw_off(hba);
dev_info(hba->dev, "%s: ufs turbo write disabled \n", __func__);
}
SEC_ufs_update_tw_info(hba, 0);
scsi_reset_tw_state(hba->host);
}
#if IS_ENABLED(CONFIG_SCSI_UFS_SUPPORT_TW_MAN_GC)
static int ufshcd_get_tw_buf_status(struct ufs_hba *hba, u32 *status)
{
return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 0, 0, status);
}
static int ufshcd_tw_manual_flush_ctrl(struct ufs_hba *hba, int en)
{
int err = 0;
dev_info(hba->dev, "%s: %sable turbo write manual flush\n",
__func__, en ? "en" : "dis");
if (en) {
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN, NULL);
if (err)
dev_err(hba->dev, "%s: enable turbo write failed. err = %d\n",
__func__, err);
} else {
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN, NULL);
if (err)
dev_err(hba->dev, "%s: disable turbo write failed. err = %d\n",
__func__, err);
}
return err;
}
static int ufshcd_tw_flush_ctrl(struct ufs_hba *hba)
{
int err = 0;
u32 curr_status = 0;
err = ufshcd_get_tw_buf_status(hba, &curr_status);
if (!err && (curr_status <= UFS_TW_MANUAL_FLUSH_THRESHOLD)) {
dev_info(hba->dev, "%s: enable tw manual flush, buf status : %d\n",
__func__, curr_status);
ufshcd_scsi_block_requests(hba->host);
err = ufshcd_tw_manual_flush_ctrl(hba, 1);
if (!err) {
mdelay(100);
err = ufshcd_tw_manual_flush_ctrl(hba, 0);
if (err)
dev_err(hba->dev, "%s: disable tw manual flush failed. err = %d\n",
__func__, err);
} else
dev_err(hba->dev, "%s: enable tw manual flush failed. err = %d\n",
__func__, err);
ufshcd_scsi_unblock_requests(hba->host);
}
return err;
}
#endif
#endif // CONFIG_BLK_TURBO_WRITE
/**
* ufshcd_memory_alloc - allocate memory for host memory space data structures
* @hba: per adapter instance
*
* 1. Allocate DMA memory for Command Descriptor array
* Each command descriptor consist of Command UPIU, Response UPIU and PRDT
* 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
* 3. Allocate DMA memory for UTP Task Management Request Descriptor List
* (UTMRDL)
* 4. Allocate memory for local reference block(lrb).
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_memory_alloc(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
/* Allocate memory for UTP command descriptors */
ucdl_size = (sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs);
hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
ucdl_size,
&hba->ucdl_dma_addr,
GFP_KERNEL);
/*
* UFSHCI requires UTP command descriptor to be 128 byte aligned.
* make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
* if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
* be aligned to 128 bytes as well
*/
if (!hba->ucdl_base_addr ||
WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(hba->dev,
"Command Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Transfer descriptors
* UFSHCI requires 1024 byte alignment of UTRD
*/
utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
utrdl_size,
&hba->utrdl_dma_addr,
GFP_KERNEL);
if (!hba->utrdl_base_addr ||
WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(hba->dev,
"Transfer Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Task Management descriptors
* UFSHCI requires 1024 byte alignment of UTMRD
*/
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
utmrdl_size,
&hba->utmrdl_dma_addr,
GFP_KERNEL);
if (!hba->utmrdl_base_addr ||
WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(hba->dev,
"Task Management Descriptor Memory allocation failed\n");
goto out;
}
/* Allocate memory for local reference block */
hba->lrb = devm_kzalloc(hba->dev,
hba->nutrs * sizeof(struct ufshcd_lrb),
GFP_KERNEL);
if (!hba->lrb) {
dev_err(hba->dev, "LRB Memory allocation failed\n");
goto out;
}
return 0;
out:
return -ENOMEM;
}
/**
* ufshcd_host_memory_configure - configure local reference block with
* memory offsets
* @hba: per adapter instance
*
* Configure Host memory space
* 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
* address.
* 2. Update each UTRD with Response UPIU offset, Response UPIU length
* and PRDT offset.
* 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
* into local reference block.
*/
static void ufshcd_host_memory_configure(struct ufs_hba *hba)
{
struct utp_transfer_cmd_desc *cmd_descp;
struct utp_transfer_req_desc *utrdlp;
dma_addr_t cmd_desc_dma_addr;
dma_addr_t cmd_desc_element_addr;
u16 response_offset;
u16 prdt_offset;
int cmd_desc_size;
int i;
utrdlp = hba->utrdl_base_addr;
cmd_descp = hba->ucdl_base_addr;
response_offset =
offsetof(struct utp_transfer_cmd_desc, response_upiu);
prdt_offset =
offsetof(struct utp_transfer_cmd_desc, prd_table);
cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
cmd_desc_dma_addr = hba->ucdl_dma_addr;
for (i = 0; i < hba->nutrs; i++) {
/* Configure UTRD with command descriptor base address */
cmd_desc_element_addr =
(cmd_desc_dma_addr + (cmd_desc_size * i));
utrdlp[i].command_desc_base_addr_lo =
cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
utrdlp[i].command_desc_base_addr_hi =
cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
/* Response upiu and prdt offset should be in double words */
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
utrdlp[i].response_upiu_offset =
cpu_to_le16(response_offset);
utrdlp[i].prd_table_offset =
cpu_to_le16(prdt_offset);
utrdlp[i].response_upiu_length =
cpu_to_le16(ALIGNED_UPIU_SIZE);
} else {
utrdlp[i].response_upiu_offset =
cpu_to_le16((response_offset >> 2));
utrdlp[i].prd_table_offset =
cpu_to_le16((prdt_offset >> 2));
utrdlp[i].response_upiu_length =
cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
}
hba->lrb[i].utr_descriptor_ptr = (utrdlp + i);
hba->lrb[i].utrd_dma_addr = hba->utrdl_dma_addr +
(i * sizeof(struct utp_transfer_req_desc));
hba->lrb[i].ucd_req_ptr = (struct utp_upiu_req *)cmd_descp;
hba->lrb[i].ucd_req_dma_addr = cmd_desc_element_addr;
hba->lrb[i].ucd_rsp_ptr =
(struct utp_upiu_rsp *)cmd_descp->response_upiu;
hba->lrb[i].ucd_rsp_dma_addr = cmd_desc_element_addr +
response_offset;
hba->lrb[i].ucd_prdt_ptr =
(struct ufshcd_sg_entry *)cmd_descp->prd_table;
hba->lrb[i].ucd_prdt_dma_addr = cmd_desc_element_addr +
prdt_offset;
cmd_descp = (void *)cmd_descp + cmd_desc_size;
}
}
/**
* ufshcd_dme_link_startup - Notify Unipro to perform link startup
* @hba: per adapter instance
*
* UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
* in order to initialize the Unipro link startup procedure.
* Once the Unipro links are up, the device connected to the controller
* is detected.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_dme_link_startup(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev,
"dme-link-startup: error code %d\n", ret);
return ret;
}
static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
{
#define MIN_DELAY_BEFORE_DME_CMDS_US 1000
unsigned long min_sleep_time_us;
if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
return;
/*
* last_dme_cmd_tstamp will be 0 only for 1st call to
* this function
*/
if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
} else {
unsigned long delta =
(unsigned long) ktime_to_us(
ktime_sub(ktime_get(),
hba->last_dme_cmd_tstamp));
if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
min_sleep_time_us =
MIN_DELAY_BEFORE_DME_CMDS_US - delta;
else
return; /* no more delay required */
}
/* allow sleep for extra 50us if needed */
usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
}
static inline void ufshcd_save_tstamp_of_last_dme_cmd(
struct ufs_hba *hba)
{
if (hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)
hba->last_dme_cmd_tstamp = ktime_get();
}
/**
* ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
* @hba: per adapter instance
* @attr_sel: uic command argument1
* @attr_set: attribute set type as uic command argument2
* @mib_val: setting value as uic command argument3
* @peer: indicate whether peer or local
*
* Returns 0 on success, non-zero value on failure
*/
int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
u8 attr_set, u32 mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-set",
"dme-peer-set"
};
const char *set = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
ufsdbg_error_inject_dispatcher(hba,
ERR_INJECT_DME_ATTR, attr_sel, &attr_sel);
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
uic_cmd.argument1 = attr_sel;
uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
uic_cmd.argument3 = mib_val;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries, err %d\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val,
UFS_UIC_COMMAND_RETRIES - retries, ret);
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
/**
* ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
* @hba: per adapter instance
* @attr_sel: uic command argument1
* @mib_val: the value of the attribute as returned by the UIC command
* @peer: indicate whether peer or local
*
* Returns 0 on success, non-zero value on failure
*/
int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
u32 *mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-get",
"dme-peer-get"
};
const char *get = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
struct ufs_pa_layer_attr orig_pwr_info;
struct ufs_pa_layer_attr temp_pwr_info;
bool pwr_mode_change = false;
if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
orig_pwr_info = hba->pwr_info;
temp_pwr_info = orig_pwr_info;
if (orig_pwr_info.pwr_tx == FAST_MODE ||
orig_pwr_info.pwr_rx == FAST_MODE) {
temp_pwr_info.pwr_tx = FASTAUTO_MODE;
temp_pwr_info.pwr_rx = FASTAUTO_MODE;
pwr_mode_change = true;
} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
orig_pwr_info.pwr_rx == SLOW_MODE) {
temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
pwr_mode_change = true;
}
if (pwr_mode_change) {
ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
if (ret)
goto out;
}
}
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
ufsdbg_error_inject_dispatcher(hba,
ERR_INJECT_DME_ATTR, attr_sel, &attr_sel);
uic_cmd.argument1 = attr_sel;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
get, UIC_GET_ATTR_ID(attr_sel), ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
get, UIC_GET_ATTR_ID(attr_sel),
UFS_UIC_COMMAND_RETRIES - retries);
if (mib_val && !ret)
*mib_val = uic_cmd.argument3;
if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
&& pwr_mode_change)
ufshcd_change_power_mode(hba, &orig_pwr_info);
out:
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
/**
* ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
* state) and waits for it to take effect.
*
* @hba: per adapter instance
* @cmd: UIC command to execute
*
* DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
* DME_HIBERNATE_EXIT commands take some time to take its effect on both host
* and device UniPro link and hence it's final completion would be indicated by
* dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
* addition to normal UIC command completion Status (UCCS). This function only
* returns after the relevant status bits indicate the completion.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
{
struct completion uic_async_done;
unsigned long flags;
u8 status;
int ret;
bool reenable_intr = false;
int wait_retries = 6; /* Allows 3secs max wait time */
mutex_lock(&hba->uic_cmd_mutex);
init_completion(&uic_async_done);
ufshcd_add_delay_before_dme_cmd(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->uic_async_done = &uic_async_done;
if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
/*
* Make sure UIC command completion interrupt is disabled before
* issuing UIC command.
*/
wmb();
reenable_intr = true;
}
ret = __ufshcd_send_uic_cmd(hba, cmd, false);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ret) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
cmd->command, cmd->argument3, ret);
goto out;
}
more_wait:
if (!wait_for_completion_timeout(hba->uic_async_done,
msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
u32 intr_status = 0;
s64 ts_since_last_intr;
dev_err(hba->dev,
"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
cmd->command, cmd->argument3);
/*
* The controller must have triggered interrupt but ISR couldn't
* run due to interrupt starvation.
* Or ISR must have executed just after the timeout
* (which clears IS registers)
* If either of these two cases is true, then
* wait for little more time for completion.
*/
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
ts_since_last_intr = ktime_ms_delta(ktime_get(),
hba->ufs_stats.last_intr_ts);
if ((intr_status & UFSHCD_UIC_PWR_MASK) ||
((hba->ufs_stats.last_intr_status & UFSHCD_UIC_PWR_MASK) &&
(ts_since_last_intr < (s64)UIC_CMD_TIMEOUT))) {
dev_info(hba->dev, "IS:0x%08x last_intr_sts:0x%08x last_intr_ts:%lld, retry-cnt:%d\n",
intr_status, hba->ufs_stats.last_intr_status,
hba->ufs_stats.last_intr_ts, wait_retries);
if (wait_retries--)
goto more_wait;
/*
* If same state continues event after more wait time,
* something must be hogging CPU.
*/
BUG_ON(hba->crash_on_err);
}
ret = -ETIMEDOUT;
goto out;
}
status = ufshcd_get_upmcrs(hba);
if (status != PWR_LOCAL) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%0x failed, host upmcrs:0x%x\n",
cmd->command, status);
ret = (status != PWR_OK) ? status : -1;
}
ufshcd_dme_cmd_log(hba, "dme_cmpl_2", hba->active_uic_cmd->command);
out:
if (ret) {
#if defined(SEC_UFS_ERROR_COUNT)
SEC_ufs_uic_error_check(hba, true, false);
#endif
ufsdbg_set_err_state(hba);
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_host_regs(hba);
ufshcd_print_cmd_log(hba);
if (hba->crash_on_err)
BUG_ON(1);
}
ufshcd_save_tstamp_of_last_dme_cmd(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->active_uic_cmd = NULL;
hba->uic_async_done = NULL;
if (reenable_intr)
ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
spin_unlock_irqrestore(hba->host->host_lock, flags);
mutex_unlock(&hba->uic_cmd_mutex);
return ret;
}
/**
* ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
* using DME_SET primitives.
* @hba: per adapter instance
* @mode: powr mode value
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
{
struct uic_command uic_cmd = {0};
int ret;
if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
ret = ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
if (ret) {
dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
__func__, ret);
goto out;
}
}
uic_cmd.command = UIC_CMD_DME_SET;
uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
uic_cmd.argument3 = mode;
hba->ufs_stats.clk_hold.ctx = PWRCTL_CMD_SEND;
ufshcd_hold_all(hba);
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
hba->ufs_stats.clk_rel.ctx = PWRCTL_CMD_SEND;
ufshcd_release_all(hba);
out:
return ret;
}
static int ufshcd_link_recovery(struct ufs_hba *hba)
{
int ret = 0;
unsigned long flags;
ufshcd_enable_irq(hba);
/*
* Check if there is any race with fatal error handling.
* If so, wait for it to complete. Even though fatal error
* handling does reset and restore in some cases, don't assume
* anything out of it. We are just avoiding race here.
*/
do {
spin_lock_irqsave(hba->host->host_lock, flags);
if (!(work_pending(&hba->eh_work) ||
hba->ufshcd_state == UFSHCD_STATE_RESET))
break;
spin_unlock_irqrestore(hba->host->host_lock, flags);
dev_dbg(hba->dev, "%s: reset in progress 1\n", __func__);
flush_work(&hba->eh_work);
} while (1);
/*
* we don't know if previous reset had really reset the host controller
* or not. So let's force reset here to be sure.
*/
hba->ufshcd_state = UFSHCD_STATE_ERROR;
hba->force_host_reset = true;
ufshcd_set_eh_in_progress(hba);
schedule_work(&hba->eh_work);
/* wait for the reset work to finish */
do {
if (!(work_pending(&hba->eh_work) ||
hba->ufshcd_state == UFSHCD_STATE_RESET))
break;
spin_unlock_irqrestore(hba->host->host_lock, flags);
dev_dbg(hba->dev, "%s: reset in progress 2\n", __func__);
flush_work(&hba->eh_work);
spin_lock_irqsave(hba->host->host_lock, flags);
} while (1);
if (!((hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) &&
ufshcd_is_link_active(hba)))
ret = -ENOLINK;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
static int __ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
{
int ret;
struct uic_command uic_cmd = {0};
ktime_t start = ktime_get();
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_HIBERN8_ENTER, 0, &ret);
/*
* Do full reinit if enter failed or if LINERESET was detected during
* Hibern8 operation. After LINERESET, link moves to default PWM-G1
* mode hence full reinit is required to move link to HS speeds.
*/
if (ret || hba->full_init_linereset) {
int err;
hba->full_init_linereset = false;
ufshcd_update_error_stats(hba, UFS_ERR_HIBERN8_ENTER);
dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
__func__, ret);
#if defined(SEC_UFS_ERROR_COUNT)
SEC_ufs_operation_check(hba, UIC_CMD_DME_HIBER_ENTER);
#endif
/*
* If link recovery fails then return error code returned from
* ufshcd_link_recovery().
* If link recovery succeeds then return -EAGAIN to attempt
* hibern8 enter retry again.
*/
err = ufshcd_link_recovery(hba);
if (err) {
dev_err(hba->dev, "%s: link recovery failed", __func__);
ret = err;
} else {
ret = -EAGAIN;
}
} else {
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
POST_CHANGE);
dev_dbg(hba->dev, "%s: Hibern8 Enter at %lld us", __func__,
ktime_to_us(ktime_get()));
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
SEC_ufs_update_h8_info(hba, true);
#endif
}
return ret;
}
int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
{
int ret = 0, retries;
for (retries = UIC_HIBERN8_ENTER_RETRIES; retries > 0; retries--) {
ret = __ufshcd_uic_hibern8_enter(hba);
if (!ret)
goto out;
else if (ret != -EAGAIN)
/* Unable to recover the link, so no point proceeding */
BUG();
}
out:
return ret;
}
int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
ktime_t start = ktime_get();
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_HIBERN8_EXIT, 0, &ret);
/* Do full reinit if exit failed */
if (ret) {
ufshcd_update_error_stats(hba, UFS_ERR_HIBERN8_EXIT);
dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
__func__, ret);
#if defined(SEC_UFS_ERROR_COUNT)
SEC_ufs_operation_check(hba, UIC_CMD_DME_HIBER_EXIT);
#endif
ret = ufshcd_link_recovery(hba);
/* Unable to recover the link, so no point proceeding */
if (ret)
BUG();
} else {
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
POST_CHANGE);
dev_dbg(hba->dev, "%s: Hibern8 Exit at %lld us", __func__,
ktime_to_us(ktime_get()));
hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
hba->ufs_stats.hibern8_exit_cnt++;
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
SEC_ufs_update_h8_info(hba, false);
#endif
}
return ret;
}
/**
* ufshcd_init_pwr_info - setting the POR (power on reset)
* values in hba power info
* @hba: per-adapter instance
*/
static void ufshcd_init_pwr_info(struct ufs_hba *hba)
{
hba->pwr_info.gear_rx = UFS_PWM_G1;
hba->pwr_info.gear_tx = UFS_PWM_G1;
hba->pwr_info.lane_rx = 1;
hba->pwr_info.lane_tx = 1;
hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
hba->pwr_info.hs_rate = 0;
}
/**
* ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
* @hba: per-adapter instance
*/
static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
{
struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
if (hba->max_pwr_info.is_valid)
return 0;
pwr_info->pwr_tx = FAST_MODE;
pwr_info->pwr_rx = FAST_MODE;
pwr_info->hs_rate = PA_HS_MODE_B;
/* Get the connected lane count */
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
&pwr_info->lane_rx);
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&pwr_info->lane_tx);
if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
__func__,
pwr_info->lane_rx,
pwr_info->lane_tx);
return -EINVAL;
}
/*
* First, get the maximum gears of HS speed.
* If a zero value, it means there is no HSGEAR capability.
* Then, get the maximum gears of PWM speed.
*/
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
__func__, pwr_info->gear_rx);
return -EINVAL;
} else {
if (hba->limit_rx_pwm_gear > 0 &&
(hba->limit_rx_pwm_gear < pwr_info->gear_rx))
pwr_info->gear_rx = hba->limit_rx_pwm_gear;
}
pwr_info->pwr_rx = SLOW_MODE;
} else {
if (hba->limit_rx_hs_gear > 0 &&
(hba->limit_rx_hs_gear < pwr_info->gear_rx))
pwr_info->gear_rx = hba->limit_rx_hs_gear;
}
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
__func__, pwr_info->gear_tx);
return -EINVAL;
} else {
if (hba->limit_tx_pwm_gear > 0 &&
(hba->limit_tx_pwm_gear < pwr_info->gear_tx))
pwr_info->gear_tx = hba->limit_tx_pwm_gear;
}
pwr_info->pwr_tx = SLOW_MODE;
} else {
if (hba->limit_tx_hs_gear > 0 &&
(hba->limit_tx_hs_gear < pwr_info->gear_tx))
pwr_info->gear_tx = hba->limit_tx_hs_gear;
}
hba->max_pwr_info.is_valid = true;
return 0;
}
int ufshcd_change_power_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_mode)
{
int ret = 0;
u32 peer_rx_hs_adapt_initial_cap;
/* if already configured to the requested pwr_mode */
if (!hba->restore_needed &&
pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
dev_dbg(hba->dev, "%s: power already configured\n", __func__);
return 0;
}
ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_PWR_CHANGE, 0, &ret);
if (ret)
return ret;
/*
* Configure attributes for power mode change with below.
* - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
* - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
* - PA_HSSERIES
*/
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
pwr_mode->lane_rx);
if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
pwr_mode->pwr_rx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
pwr_mode->lane_tx);
if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
pwr_mode->pwr_tx == FASTAUTO_MODE ||
pwr_mode->pwr_rx == FAST_MODE ||
pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
pwr_mode->hs_rate);
if (pwr_mode->gear_tx == UFS_HS_G4) {
ret = ufshcd_dme_peer_get(hba,
UIC_ARG_MIB_SEL(RX_HS_ADAPT_INITIAL_CAPABILITY,
UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
&peer_rx_hs_adapt_initial_cap);
if (ret) {
dev_err(hba->dev,
"%s: RX_HS_ADAPT_INITIAL_CAP get failed %d\n",
__func__, ret);
peer_rx_hs_adapt_initial_cap =
PA_PEERRXHSADAPTINITIAL_Default;
}
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PEERRXHSADAPTINITIAL),
peer_rx_hs_adapt_initial_cap);
/* INITIAL ADAPT */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXHSADAPTTYPE),
PA_INITIAL_ADAPT);
} else if (hba->ufs_version >= UFSHCI_VERSION_30) {
/* NO ADAPT */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXHSADAPTTYPE), PA_NO_ADAPT);
}
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
DL_FC0ProtectionTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
DL_TC0ReplayTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
DL_AFC0ReqTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
DL_FC0ProtectionTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
DL_TC0ReplayTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
DL_AFC0ReqTimeOutVal_Default);
ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
| pwr_mode->pwr_tx);
if (ret) {
ufshcd_update_error_stats(hba, UFS_ERR_POWER_MODE_CHANGE);
dev_err(hba->dev,
"%s: power mode change failed %d\n", __func__, ret);
} else {
ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
pwr_mode);
memcpy(&hba->pwr_info, pwr_mode,
sizeof(struct ufs_pa_layer_attr));
hba->ufs_stats.power_mode_change_cnt++;
}
return ret;
}
/**
* ufshcd_config_pwr_mode - configure a new power mode
* @hba: per-adapter instance
* @desired_pwr_mode: desired power configuration
*/
static int ufshcd_config_pwr_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *desired_pwr_mode)
{
struct ufs_pa_layer_attr final_params = { 0 };
int ret;
ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
desired_pwr_mode, &final_params);
if (ret)
memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
ret = ufshcd_change_power_mode(hba, &final_params);
if (!ret)
ufshcd_print_pwr_info(hba);
return ret;
}
/**
* ufshcd_complete_dev_init() - checks device readiness
* hba: per-adapter instance
*
* Set fDeviceInit flag and poll until device toggles it.
*/
static int ufshcd_complete_dev_init(struct ufs_hba *hba)
{
int err;
bool flag_res = 1;
unsigned long timeout;
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT, NULL);
if (err) {
dev_err(hba->dev,
"%s setting fDeviceInit flag failed with error %d\n",
__func__, err);
goto out;
}
/* Poll fDeviceInit flag to be cleared */
timeout = jiffies + msecs_to_jiffies(DEV_INIT_COMPL_TIMEOUT);
do {
err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT, &flag_res);
if (!flag_res)
break;
usleep_range(1000, 1000);
} while (time_before(jiffies, timeout));
if (err)
dev_err(hba->dev,
"%s reading fDeviceInit flag failed with error %d\n",
__func__, err);
else if (flag_res)
dev_err(hba->dev,
"%s fDeviceInit was not cleared by the device\n",
__func__);
out:
return err;
}
/**
* ufshcd_make_hba_operational - Make UFS controller operational
* @hba: per adapter instance
*
* To bring UFS host controller to operational state,
* 1. Enable required interrupts
* 2. Configure interrupt aggregation
* 3. Program UTRL and UTMRL base address
* 4. Configure run-stop-registers
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_make_hba_operational(struct ufs_hba *hba)
{
int err = 0;
u32 reg;
/* Enable required interrupts */
ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
/* Configure interrupt aggregation */
if (ufshcd_is_intr_aggr_allowed(hba))
ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
else
ufshcd_disable_intr_aggr(hba);
/* Configure UTRL and UTMRL base address registers */
ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_H);
ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_H);
/*
* Make sure base address and interrupt setup are updated before
* enabling the run/stop registers below.
*/
wmb();
/*
* UCRDY, UTMRLDY and UTRLRDY bits must be 1
*/
reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
if (!(ufshcd_get_lists_status(reg))) {
ufshcd_enable_run_stop_reg(hba);
} else {
dev_err(hba->dev,
"Host controller not ready to process requests");
err = -EIO;
goto out;
}
out:
return err;
}
/**
* ufshcd_hba_stop - Send controller to reset state
* @hba: per adapter instance
* @can_sleep: perform sleep or just spin
*/
static inline void ufshcd_hba_stop(struct ufs_hba *hba, bool can_sleep)
{
int err;
ufshcd_crypto_disable(hba);
ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
CONTROLLER_ENABLE, CONTROLLER_DISABLE,
10, 1, can_sleep);
if (err)
dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
}
/**
* ufshcd_hba_enable - initialize the controller
* @hba: per adapter instance
*
* The controller resets itself and controller firmware initialization
* sequence kicks off. When controller is ready it will set
* the Host Controller Enable bit to 1.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_hba_enable(struct ufs_hba *hba)
{
int retry;
/*
* msleep of 1 and 5 used in this function might result in msleep(20),
* but it was necessary to send the UFS FPGA to reset mode during
* development and testing of this driver. msleep can be changed to
* mdelay and retry count can be reduced based on the controller.
*/
if (!ufshcd_is_hba_active(hba))
/* change controller state to "reset state" */
ufshcd_hba_stop(hba, true);
/* UniPro link is disabled at this point */
ufshcd_set_link_off(hba);
ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
/* start controller initialization sequence */
ufshcd_hba_start(hba);
/*
* To initialize a UFS host controller HCE bit must be set to 1.
* During initialization the HCE bit value changes from 1->0->1.
* When the host controller completes initialization sequence
* it sets the value of HCE bit to 1. The same HCE bit is read back
* to check if the controller has completed initialization sequence.
* So without this delay the value HCE = 1, set in the previous
* instruction might be read back.
* This delay can be changed based on the controller.
*/
msleep(1);
/* wait for the host controller to complete initialization */
retry = 10;
while (ufshcd_is_hba_active(hba)) {
if (retry) {
retry--;
} else {
dev_err(hba->dev,
"Controller enable failed\n");
return -EIO;
}
msleep(5);
}
/* enable UIC related interrupts */
ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
return 0;
}
static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
{
int tx_lanes, i, err = 0;
if (!peer)
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
else
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
for (i = 0; i < tx_lanes; i++) {
if (!peer)
err = ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
else
err = ufshcd_dme_peer_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
if (err) {
dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
__func__, peer, i, err);
break;
}
}
return err;
}
static inline int ufshcd_disable_host_tx_lcc(struct ufs_hba *hba)
{
return ufshcd_disable_tx_lcc(hba, false);
}
static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
{
return ufshcd_disable_tx_lcc(hba, true);
}
/**
* ufshcd_link_startup - Initialize unipro link startup
* @hba: per adapter instance
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_link_startup(struct ufs_hba *hba)
{
int ret;
int retries = DME_LINKSTARTUP_RETRIES;
bool link_startup_again = false;
/*
* If UFS device isn't active then we will have to issue link startup
* 2 times to make sure the device state move to active.
*/
if (!ufshcd_is_ufs_dev_active(hba))
link_startup_again = true;
link_startup:
do {
ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
ret = ufshcd_dme_link_startup(hba);
if (ret)
ufshcd_update_error_stats(hba, UFS_ERR_LINKSTARTUP);
/* check if device is detected by inter-connect layer */
if (!ret && !ufshcd_is_device_present(hba)) {
ufshcd_update_error_stats(hba, UFS_ERR_LINKSTARTUP);
dev_err(hba->dev, "%s: Device not present\n", __func__);
ret = -ENXIO;
goto out;
}
/*
* DME link lost indication is only received when link is up,
* but we can't be sure if the link is up until link startup
* succeeds. So reset the local Uni-Pro and try again.
*/
if ((ret && !retries && !link_startup_again) ||
(ret && ufshcd_hba_enable(hba)))
goto out;
} while (ret && retries--);
if (ret && link_startup_again) {
link_startup_again = false;
ret = ufshcd_reset_device(hba);
if (ret)
dev_warn(hba->dev, "%s: device reset failed. err %d\n",
__func__, ret);
retries = DME_LINKSTARTUP_RETRIES;
goto link_startup;
}
if (ret)
/* failed to get the link up... retire */
goto out;
/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
ufshcd_init_pwr_info(hba);
ufshcd_print_pwr_info(hba);
if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
ret = ufshcd_disable_device_tx_lcc(hba);
if (ret)
goto out;
}
if (hba->dev_info.quirks & UFS_DEVICE_QUIRK_BROKEN_LCC) {
ret = ufshcd_disable_host_tx_lcc(hba);
if (ret)
goto out;
}
/* Include any host controller configuration via UIC commands */
ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
if (ret)
goto out;
ret = ufshcd_make_hba_operational(hba);
out:
if (ret)
dev_err(hba->dev, "link startup failed %d\n", ret);
/*
* For some external cards, link startup succeeds only after few link
* startup attempts and err_state may get set in this case.
* But as the link startup has finally succeded, we are clearing the
* error state.
*/
else if (hba->extcon)
ufsdbg_clr_err_state(hba);
#if defined(SEC_UFS_ERROR_COUNT)
if (ret)
SEC_ufs_operation_check(hba, UIC_CMD_DME_LINK_STARTUP);
#endif
return ret;
}
/**
* ufshcd_verify_dev_init() - Verify device initialization
* @hba: per-adapter instance
*
* Send NOP OUT UPIU and wait for NOP IN response to check whether the
* device Transport Protocol (UTP) layer is ready after a reset.
* If the UTP layer at the device side is not initialized, it may
* not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
* and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
*/
static int ufshcd_verify_dev_init(struct ufs_hba *hba)
{
int err = 0;
int retries;
ufshcd_hold_all(hba);
mutex_lock(&hba->dev_cmd.lock);
for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
NOP_OUT_TIMEOUT);
if (!err || err == -ETIMEDOUT)
break;
dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
}
mutex_unlock(&hba->dev_cmd.lock);
ufshcd_release_all(hba);
if (err)
dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
#if defined(SEC_UFS_ERROR_COUNT)
if (err)
SEC_ufs_query_error_check(hba, DEV_CMD_TYPE_NOP);
#endif
return err;
}
/**
* ufshcd_set_queue_depth - set lun queue depth
* @sdev: pointer to SCSI device
*
* Read bLUQueueDepth value and activate scsi tagged command
* queueing. For WLUN, queue depth is set to 1. For best-effort
* cases (bLUQueueDepth = 0) the queue depth is set to a maximum
* value that host can queue.
*/
static void ufshcd_set_queue_depth(struct scsi_device *sdev)
{
int ret = 0;
u8 lun_qdepth;
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
lun_qdepth = hba->nutrs;
ret = ufshcd_read_unit_desc_param(hba,
ufshcd_scsi_to_upiu_lun(sdev->lun),
UNIT_DESC_PARAM_LU_Q_DEPTH,
&lun_qdepth,
sizeof(lun_qdepth));
/* Some WLUN doesn't support unit descriptor */
if (ret == -EOPNOTSUPP)
lun_qdepth = 1;
else if (!lun_qdepth)
/* eventually, we can figure out the real queue depth */
lun_qdepth = hba->nutrs;
else
lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
__func__, lun_qdepth);
scsi_change_queue_depth(sdev, lun_qdepth);
}
/**
* ufshcd_get_bootlunID - get boot lun
* @sdev: pointer to SCSI device
*
* Read bBootLunID in UNIT Descriptor to find boot LUN
*/
static void ufshcd_get_bootlunID(struct scsi_device *sdev)
{
int ret = 0;
u8 bBootLunID = 0;
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
ret = ufshcd_read_unit_desc_param(hba,
ufshcd_scsi_to_upiu_lun(sdev->lun),
UNIT_DESC_PARAM_BOOT_LUN_ID,
&bBootLunID,
sizeof(bBootLunID));
/* Some WLUN doesn't support unit descriptor */
if (ret)
sdev->bootlunID = 0;
else
sdev->bootlunID = bBootLunID;
}
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
/**
* ufshcd_get_twbuf_unit - get tw buffer alloc units
* @sdev: pointer to SCSI device
*
* Read dLUNumTurboWriteBufferAllocUnits in UNIT Descriptor
* to check if LU supports turbo write feature
*/
static void ufshcd_get_twbuf_unit(struct scsi_device *sdev)
{
int ret = 0;
u32 dLUNumTurboWriteBufferAllocUnits = 0;
u8 desc_buf[4];
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
if (!hba->support_tw)
return;
ret = ufshcd_read_unit_desc_param(hba,
ufshcd_scsi_to_upiu_lun(sdev->lun),
UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
desc_buf,
sizeof(dLUNumTurboWriteBufferAllocUnits));
/* Some WLUN doesn't support unit descriptor */
if ((ret == -EOPNOTSUPP) || scsi_is_wlun(sdev->lun)) {
sdev->support_tw_lu = false;
return;
}
dLUNumTurboWriteBufferAllocUnits = ((desc_buf[0] << 24)|
(desc_buf[1] << 16) |
(desc_buf[2] << 8) |
desc_buf[3]);
if (dLUNumTurboWriteBufferAllocUnits) {
sdev->support_tw_lu = true;
dev_info(hba->dev, "%s: LU %d supports tw, twbuf unit : 0x%x\n",
__func__, sdev->lun, dLUNumTurboWriteBufferAllocUnits);
} else
sdev->support_tw_lu = false;
}
#endif
/*
* ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
* @hba: per-adapter instance
* @lun: UFS device lun id
* @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
*
* Returns 0 in case of success and b_lu_write_protect status would be returned
* @b_lu_write_protect parameter.
* Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
* Returns -EINVAL in case of invalid parameters passed to this function.
*/
static int ufshcd_get_lu_wp(struct ufs_hba *hba,
u8 lun,
u8 *b_lu_write_protect)
{
int ret;
if (!b_lu_write_protect)
ret = -EINVAL;
/*
* According to UFS device spec, RPMB LU can't be write
* protected so skip reading bLUWriteProtect parameter for
* it. For other W-LUs, UNIT DESCRIPTOR is not available.
*/
else if (lun >= UFS_UPIU_MAX_GENERAL_LUN)
ret = -ENOTSUPP;
else
ret = ufshcd_read_unit_desc_param(hba,
lun,
UNIT_DESC_PARAM_LU_WR_PROTECT,
b_lu_write_protect,
sizeof(*b_lu_write_protect));
return ret;
}
/**
* ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
* status
* @hba: per-adapter instance
* @sdev: pointer to SCSI device
*
*/
static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
struct scsi_device *sdev)
{
if (hba->dev_info.f_power_on_wp_en &&
!hba->dev_info.is_lu_power_on_wp) {
u8 b_lu_write_protect;
if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
&b_lu_write_protect) &&
(b_lu_write_protect == UFS_LU_POWER_ON_WP))
hba->dev_info.is_lu_power_on_wp = true;
}
}
/**
* ufshcd_slave_alloc - handle initial SCSI device configurations
* @sdev: pointer to SCSI device
*
* Returns success
*/
static int ufshcd_slave_alloc(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
sdev->use_10_for_ms = 1;
/* allow SCSI layer to restart the device in case of errors */
sdev->allow_restart = 1;
/* REPORT SUPPORTED OPERATION CODES is not supported */
sdev->no_report_opcodes = 1;
/* WRITE_SAME command is not supported */
sdev->no_write_same = 1;
ufshcd_set_queue_depth(sdev);
ufshcd_get_lu_power_on_wp_status(hba, sdev);
ufshcd_get_bootlunID(sdev);
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
ufshcd_get_twbuf_unit(sdev);
#endif
return 0;
}
/**
* ufshcd_change_queue_depth - change queue depth
* @sdev: pointer to SCSI device
* @depth: required depth to set
*
* Change queue depth and make sure the max. limits are not crossed.
*/
static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
{
struct ufs_hba *hba = shost_priv(sdev->host);
if (depth > hba->nutrs)
depth = hba->nutrs;
return scsi_change_queue_depth(sdev, depth);
}
/**
* ufshcd_slave_configure - adjust SCSI device configurations
* @sdev: pointer to SCSI device
*/
static int ufshcd_slave_configure(struct scsi_device *sdev)
{
struct ufs_hba *hba = shost_priv(sdev->host);
struct request_queue *q = sdev->request_queue;
blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
blk_queue_max_segment_size(q, PRDT_DATA_BYTE_COUNT_MAX);
if (hba->scsi_cmd_timeout) {
blk_queue_rq_timeout(q, hba->scsi_cmd_timeout * HZ);
scsi_set_cmd_timeout_override(sdev, hba->scsi_cmd_timeout * HZ);
}
sdev->autosuspend_delay = UFSHCD_AUTO_SUSPEND_DELAY_MS;
sdev->use_rpm_auto = 1;
ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
return 0;
}
/**
* ufshcd_slave_destroy - remove SCSI device configurations
* @sdev: pointer to SCSI device
*/
static void ufshcd_slave_destroy(struct scsi_device *sdev)
{
struct ufs_hba *hba;
struct request_queue *q = sdev->request_queue;
hba = shost_priv(sdev->host);
/* Drop the reference as it won't be needed anymore */
if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->sdev_ufs_device = NULL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
ufshcd_crypto_destroy_rq_keyslot_manager(hba, q);
}
/**
* ufshcd_task_req_compl - handle task management request completion
* @hba: per adapter instance
* @index: index of the completed request
* @resp: task management service response
*
* Returns non-zero value on error, zero on success
*/
static int ufshcd_task_req_compl(struct ufs_hba *hba, u32 index, u8 *resp)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_rsp *task_rsp_upiup;
unsigned long flags;
int ocs_value;
int task_result;
spin_lock_irqsave(hba->host->host_lock, flags);
/* Clear completed tasks from outstanding_tasks */
__clear_bit(index, &hba->outstanding_tasks);
task_req_descp = hba->utmrdl_base_addr;
ocs_value = ufshcd_get_tmr_ocs(&task_req_descp[index]);
if (ocs_value == OCS_SUCCESS) {
task_rsp_upiup = (struct utp_upiu_task_rsp *)
task_req_descp[index].task_rsp_upiu;
task_result = be32_to_cpu(task_rsp_upiup->output_param1);
task_result = task_result & MASK_TM_SERVICE_RESP;
if (resp)
*resp = (u8)task_result;
} else {
dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
__func__, ocs_value);
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ocs_value;
}
/**
* ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
* @lrb: pointer to local reference block of completed command
* @scsi_status: SCSI command status
*
* Returns value base on SCSI command status
*/
static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
{
int result = 0;
switch (scsi_status) {
case SAM_STAT_CHECK_CONDITION:
ufshcd_copy_sense_data(lrbp);
case SAM_STAT_GOOD:
result |= DID_OK << 16 |
COMMAND_COMPLETE << 8 |
scsi_status;
break;
case SAM_STAT_TASK_SET_FULL:
case SAM_STAT_BUSY:
case SAM_STAT_TASK_ABORTED:
ufshcd_copy_sense_data(lrbp);
result |= scsi_status;
break;
default:
result |= DID_ERROR << 16;
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_rsp_status - Get overall status of the response
* @hba: per adapter instance
* @lrb: pointer to local reference block of completed command
*
* Returns result of the command to notify SCSI midlayer
*/
static inline int
ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int result = 0;
int scsi_status;
int ocs;
bool print_prdt;
/* overall command status of utrd */
ocs = ufshcd_get_tr_ocs(lrbp);
switch (ocs) {
case OCS_SUCCESS:
result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
switch (result) {
case UPIU_TRANSACTION_RESPONSE:
/*
* get the response UPIU result to extract
* the SCSI command status
*/
result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
/*
* get the result based on SCSI status response
* to notify the SCSI midlayer of the command status
*/
scsi_status = result & MASK_SCSI_STATUS;
result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
if (hba->dev_info.quirks & UFS_DEVICE_QUIRK_SUPPORT_QUERY_FATAL_MODE) {
if (scsi_status == SAM_STAT_CHECK_CONDITION) {
int sense_key = (0x0F & lrbp->sense_buffer[2]);
dev_err(hba->dev, "%s: CHECK CONDITION sense key = %d",
__func__, sense_key);
if ((sense_key == MEDIUM_ERROR) && !hba->UFS_fatal_mode_done)
schedule_work(&hba->fatal_mode_work);
}
}
/*
* Currently we are only supporting BKOPs exception
* events hence we can ignore BKOPs exception event
* during power management callbacks. BKOPs exception
* event is not expected to be raised in runtime suspend
* callback as it allows the urgent bkops.
* During system suspend, we are anyway forcefully
* disabling the bkops and if urgent bkops is needed
* it will be enabled on system resume. Long term
* solution could be to abort the system suspend if
* UFS device needs urgent BKOPs.
*/
if (!hba->pm_op_in_progress &&
ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) &&
scsi_host_in_recovery(hba->host)) {
/*
* Prevent suspend once eeh_work is scheduled
* to avoid deadlock between ufshcd_suspend
* and exception event handler.
*/
if (schedule_work(&hba->eeh_work)) {
pm_runtime_get_noresume(hba->dev);
dev_info(hba->dev, "exception event reported\n");
}
}
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
result = DID_ERROR << 16;
dev_err(hba->dev,
"Reject UPIU not fully implemented\n");
break;
default:
result = DID_ERROR << 16;
dev_err(hba->dev,
"Unexpected request response code = %x\n",
result);
break;
}
break;
case OCS_ABORTED:
result |= DID_ABORT << 16;
break;
case OCS_INVALID_COMMAND_STATUS:
result |= DID_REQUEUE << 16;
break;
case OCS_INVALID_CMD_TABLE_ATTR:
case OCS_INVALID_PRDT_ATTR:
case OCS_MISMATCH_DATA_BUF_SIZE:
case OCS_MISMATCH_RESP_UPIU_SIZE:
case OCS_PEER_COMM_FAILURE:
case OCS_FATAL_ERROR:
case OCS_DEVICE_FATAL_ERROR:
case OCS_INVALID_CRYPTO_CONFIG:
case OCS_GENERAL_CRYPTO_ERROR:
default:
result |= DID_ERROR << 16;
dev_err(hba->dev,
"OCS error from controller = %x for tag %d\n",
ocs, lrbp->task_tag);
/*
* This is called in interrupt context, hence avoid sleep
* while printing debug registers. Also print only the minimum
* debug registers needed to debug OCS failure.
*/
__ufshcd_print_host_regs(hba, true);
ufshcd_print_host_state(hba);
break;
} /* end of switch */
if ((host_byte(result) != DID_OK) && !hba->silence_err_logs) {
print_prdt = (ocs == OCS_INVALID_PRDT_ATTR ||
ocs == OCS_MISMATCH_DATA_BUF_SIZE);
ufshcd_print_trs(hba, 1 << lrbp->task_tag, print_prdt);
}
if ((host_byte(result) == DID_ERROR) ||
(host_byte(result) == DID_ABORT))
ufsdbg_set_err_state(hba);
return result;
}
/**
* ufshcd_uic_cmd_compl - handle completion of uic command
* @hba: per adapter instance
* @intr_status: interrupt status generated by the controller
*
* Returns
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
{
irqreturn_t retval = IRQ_NONE;
if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
hba->active_uic_cmd->argument2 |=
ufshcd_get_uic_cmd_result(hba);
hba->active_uic_cmd->argument3 =
ufshcd_get_dme_attr_val(hba);
complete(&hba->active_uic_cmd->done);
retval = IRQ_HANDLED;
}
if (intr_status & UFSHCD_UIC_PWR_MASK) {
if (hba->uic_async_done) {
complete(hba->uic_async_done);
retval = IRQ_HANDLED;
} else if (ufshcd_is_auto_hibern8_supported(hba) &&
hba->hibern8_on_idle.is_enabled) {
/*
* If uic_async_done flag is not set then this
* is an Auto hibern8 err interrupt.
* Perform a host reset followed by a full
* link recovery.
*/
hba->ufshcd_state = UFSHCD_STATE_ERROR;
hba->force_host_reset = true;
dev_err(hba->dev, "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
__func__, (intr_status & UIC_HIBERNATE_ENTER) ?
"Enter" : "Exit",
intr_status, ufshcd_get_upmcrs(hba));
/*
* It is possible to see auto-h8 errors during card
* removal, so set this flag and let the error handler
* decide if this error is seen while card was present
* or due to card removal.
* If error is seen during card removal, we don't want
* to printout the debug messages.
*/
hba->auto_h8_err = true;
schedule_work(&hba->eh_work);
retval = IRQ_HANDLED;
}
}
return retval;
}
/**
* __ufshcd_transfer_req_compl - handle SCSI and query command completion
* @hba: per adapter instance
* @completed_reqs: requests to complete
*/
static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
unsigned long completed_reqs)
{
struct ufshcd_lrb *lrbp;
struct scsi_cmnd *cmd;
int result;
int index;
struct request *req;
#if defined(CONFIG_UFS_DATA_LOG)
#if defined(CONFIG_UFS_DATA_LOG_MAGIC_CODE)
struct scatterlist *sg;
int sg_segments;
unsigned long magicword_rb = 0;
#endif
int i = 0;
int cpu = raw_smp_processor_id();
unsigned int dump_index;
#endif
for_each_set_bit(index, &completed_reqs, hba->nutrs) {
lrbp = &hba->lrb[index];
cmd = lrbp->cmd;
if (cmd) {
ufshcd_cond_add_cmd_trace(hba, index, "scsi_cmpl");
ufshcd_update_tag_stats_completion(hba, cmd);
result = ufshcd_transfer_rsp_status(hba, lrbp);
scsi_dma_unmap(cmd);
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
if (ufshcd_is_tw_on(hba) && (rq_data_dir(cmd->request) == WRITE)) {
int transfer_len = 0;
transfer_len = be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
SEC_ufs_update_tw_info(hba, transfer_len);
}
#endif
#if defined(CONFIG_UFS_DATA_LOG)
if (cmd->request && hba->host->ufs_sys_log_en) {
/*condition of data log*/
if (rq_data_dir(cmd->request) == READ &&
cmd->request->__sector >= hba->host->ufs_system_start &&
cmd->request->__sector < hba->host->ufs_system_end) {
dump_index = queuing_req[cmd->request->tag];
queuing_req[cmd->request->tag] = 0;
ufs_data_log[dump_index].end_time = cpu_clock(cpu);
sg_segments = scsi_sg_count(cmd);
ufs_data_log[dump_index].segments_cnt = sg_segments;
ufs_data_log[dump_index].done = 0xF;
#if defined(CONFIG_UFS_DATA_LOG_MAGIC_CODE)
scsi_for_each_sg(cmd, sg, sg_segments, i) {
/*
* Attempt to SG element for check magic word.
* If magic word should have been overwritten in read case,
* memory location will not be updated.
*/
ufs_data_log[dump_index].virt_addr = sg_virt(sg);
memcpy(&ufs_data_log[dump_index].datbuf, sg_virt(sg), UFS_DATA_BUF_SIZE);
memcpy(&magicword_rb, sg_virt(sg), UFS_DATA_BUF_SIZE);
if (magicword_rb == 0x1F5E3A7069245CBE) {
printk(KERN_ALERT "tag%d:sg[%d]:%p: page_link=%lx, offset=%d, length=%d\n",
index, i, sg, sg->page_link, sg->offset, sg->length);
}
}
#endif
}
}
#endif
cmd->result = result;
lrbp->complete_time_stamp = ktime_get();
update_req_stats(hba, lrbp);
ufshcd_complete_lrbp_crypto(hba, cmd, lrbp);
/* Mark completed command as NULL in LRB */
lrbp->cmd = NULL;
hba->ufs_stats.clk_rel.ctx = XFR_REQ_COMPL;
if (cmd->request) {
ufshcd_pm_qos_put(hba);
}
req = cmd->request;
if (req) {
/* Update IO svc time latency histogram */
if (req->lat_hist_enabled) {
ktime_t completion;
u_int64_t delta_us;
completion = ktime_get();
delta_us = ktime_us_delta(completion,
req->lat_hist_io_start);
/* rq_data_dir() => true if WRITE */
blk_update_latency_hist(&hba->io_lat_s,
(rq_data_dir(req) == READ),
delta_us);
}
}
clear_bit_unlock(index, &hba->lrb_in_use);
__ufshcd_release(hba, false);
__ufshcd_hibern8_release(hba, false);
/* Do not touch lrbp after scsi done */
cmd->scsi_done(cmd);
} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
if (hba->dev_cmd.complete) {
ufshcd_cond_add_cmd_trace(hba, index,
"dev_cmd_cmpl");
complete(hba->dev_cmd.complete);
}
}
if (ufshcd_is_clkscaling_supported(hba))
hba->clk_scaling.active_reqs--;
}
/* clear corresponding bits of completed commands */
hba->outstanding_reqs ^= completed_reqs;
ufshcd_clk_scaling_update_busy(hba);
/* we might have free'd some tags above */
wake_up(&hba->dev_cmd.tag_wq);
}
/**
* ufshcd_abort_outstanding_requests - abort all outstanding transfer requests.
* @hba: per adapter instance
* @result: error result to inform scsi layer about
*/
void ufshcd_abort_outstanding_transfer_requests(struct ufs_hba *hba, int result)
{
u8 index;
struct ufshcd_lrb *lrbp;
struct scsi_cmnd *cmd;
if (!hba->outstanding_reqs)
return;
for_each_set_bit(index, &hba->outstanding_reqs, hba->nutrs) {
lrbp = &hba->lrb[index];
cmd = lrbp->cmd;
if (cmd) {
ufshcd_cond_add_cmd_trace(hba, index, "scsi_failed");
ufshcd_update_error_stats(hba,
UFS_ERR_INT_FATAL_ERRORS);
scsi_dma_unmap(cmd);
cmd->result = result;
/* Clear pending transfer requests */
ufshcd_clear_cmd(hba, index);
ufshcd_outstanding_req_clear(hba, index);
lrbp->complete_time_stamp = ktime_get();
update_req_stats(hba, lrbp);
/* Mark completed command as NULL in LRB */
lrbp->cmd = NULL;
if (cmd->request) {
/*
* As we are accessing the "request" structure,
* this must be called before calling
* ->scsi_done() callback.
*/
ufshcd_pm_qos_put(hba);
}
clear_bit_unlock(index, &hba->lrb_in_use);
ufshcd_release_all(hba);
/* Do not touch lrbp after scsi done */
cmd->scsi_done(cmd);
} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE) {
if (hba->dev_cmd.complete) {
ufshcd_cond_add_cmd_trace(hba, index,
"dev_cmd_failed");
ufshcd_outstanding_req_clear(hba, index);
complete(hba->dev_cmd.complete);
}
}
if (ufshcd_is_clkscaling_supported(hba))
hba->clk_scaling.active_reqs--;
}
}
/**
* ufshcd_transfer_req_compl - handle SCSI and query command completion
* @hba: per adapter instance
*
* Returns
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
{
unsigned long completed_reqs;
u32 tr_doorbell;
/* Resetting interrupt aggregation counters first and reading the
* DOOR_BELL afterward allows us to handle all the completed requests.
* In order to prevent other interrupts starvation the DB is read once
* after reset. The down side of this solution is the possibility of
* false interrupt if device completes another request after resetting
* aggregation and before reading the DB.
*/
if (ufshcd_is_intr_aggr_allowed(hba))
ufshcd_reset_intr_aggr(hba);
tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
if (completed_reqs) {
__ufshcd_transfer_req_compl(hba, completed_reqs);
return IRQ_HANDLED;
} else {
return IRQ_NONE;
}
}
/**
* ufshcd_disable_ee - disable exception event
* @hba: per-adapter instance
* @mask: exception event to disable
*
* Disables exception event in the device so that the EVENT_ALERT
* bit is not set.
*
* Returns zero on success, non-zero error value on failure.
*/
static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
{
int err = 0;
u32 val;
if (!(hba->ee_ctrl_mask & mask))
goto out;
val = hba->ee_ctrl_mask & ~mask;
val &= MASK_EE_STATUS;
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
if (!err)
hba->ee_ctrl_mask &= ~mask;
out:
return err;
}
/**
* ufshcd_enable_ee - enable exception event
* @hba: per-adapter instance
* @mask: exception event to enable
*
* Enable corresponding exception event in the device to allow
* device to alert host in critical scenarios.
*
* Returns zero on success, non-zero error value on failure.
*/
static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
{
int err = 0;
u32 val;
if (hba->ee_ctrl_mask & mask)
goto out;
val = hba->ee_ctrl_mask | mask;
val &= MASK_EE_STATUS;
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
if (!err)
hba->ee_ctrl_mask |= mask;
out:
return err;
}
/**
* ufshcd_enable_auto_bkops - Allow device managed BKOPS
* @hba: per-adapter instance
*
* Allow device to manage background operations on its own. Enabling
* this might lead to inconsistent latencies during normal data transfers
* as the device is allowed to manage its own way of handling background
* operations.
*
* Returns zero on success, non-zero on failure.
*/
static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
{
int err = 0;
if (hba->auto_bkops_enabled)
goto out;
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_BKOPS_EN, NULL);
if (err) {
dev_err(hba->dev, "%s: failed to enable bkops %d\n",
__func__, err);
goto out;
}
hba->auto_bkops_enabled = true;
trace_ufshcd_auto_bkops_state(dev_name(hba->dev), 1);
/* No need of URGENT_BKOPS exception from the device */
err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
if (err)
dev_err(hba->dev, "%s: failed to disable exception event %d\n",
__func__, err);
out:
return err;
}
/**
* ufshcd_disable_auto_bkops - block device in doing background operations
* @hba: per-adapter instance
*
* Disabling background operations improves command response latency but
* has drawback of device moving into critical state where the device is
* not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
* host is idle so that BKOPS are managed effectively without any negative
* impacts.
*
* Returns zero on success, non-zero on failure.
*/
static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
{
int err = 0;
if (!hba->auto_bkops_enabled)
goto out;
/*
* If host assisted BKOPs is to be enabled, make sure
* urgent bkops exception is allowed.
*/
err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
if (err) {
dev_err(hba->dev, "%s: failed to enable exception event %d\n",
__func__, err);
goto out;
}
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
QUERY_FLAG_IDN_BKOPS_EN, NULL);
if (err) {
dev_err(hba->dev, "%s: failed to disable bkops %d\n",
__func__, err);
ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
goto out;
}
hba->auto_bkops_enabled = false;
trace_ufshcd_auto_bkops_state(dev_name(hba->dev), 0);
hba->is_urgent_bkops_lvl_checked = false;
out:
return err;
}
/**
* ufshcd_force_reset_auto_bkops - force reset auto bkops state
* @hba: per adapter instance
*
* After a device reset the device may toggle the BKOPS_EN flag
* to default value. The s/w tracking variables should be updated
* as well. This function would change the auto-bkops state based on
* UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
*/
static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
{
if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
hba->auto_bkops_enabled = false;
hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
ufshcd_enable_auto_bkops(hba);
} else {
hba->auto_bkops_enabled = true;
hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
ufshcd_disable_auto_bkops(hba);
}
hba->is_urgent_bkops_lvl_checked = false;
}
static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
{
return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
}
/**
* ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
* @hba: per-adapter instance
* @status: bkops_status value
*
* Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
* flag in the device to permit background operations if the device
* bkops_status is greater than or equal to "status" argument passed to
* this function, disable otherwise.
*
* Returns 0 for success, non-zero in case of failure.
*
* NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
* to know whether auto bkops is enabled or disabled after this function
* returns control to it.
*/
static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
enum bkops_status status)
{
int err;
u32 curr_status = 0;
err = ufshcd_get_bkops_status(hba, &curr_status);
if (err) {
dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
__func__, err);
goto out;
} else if (curr_status > BKOPS_STATUS_MAX) {
dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
__func__, curr_status);
err = -EINVAL;
goto out;
}
if (curr_status >= status) {
err = ufshcd_enable_auto_bkops(hba);
dev_info(hba->dev, "%s: auto_bkops enabled, ret %d, status : %d\n",
__func__, err, curr_status);
} else
err = ufshcd_disable_auto_bkops(hba);
out:
return err;
}
/**
* ufshcd_urgent_bkops - handle urgent bkops exception event
* @hba: per-adapter instance
*
* Enable fBackgroundOpsEn flag in the device to permit background
* operations.
*
* If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
* and negative error value for any other failure.
*/
static int ufshcd_urgent_bkops(struct ufs_hba *hba)
{
return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
}
static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
{
return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
}
static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
{
int err;
u32 curr_status = 0;
if (hba->is_urgent_bkops_lvl_checked)
goto enable_auto_bkops;
err = ufshcd_get_bkops_status(hba, &curr_status);
if (err) {
dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
__func__, err);
goto out;
} else
dev_info(hba->dev, "%s: urgent bkops(status:%d)\n",
__func__, curr_status);
/*
* We are seeing that some devices are raising the urgent bkops
* exception events even when BKOPS status doesn't indicate performace
* impacted or critical. Handle these device by determining their urgent
* bkops status at runtime.
*/
if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
__func__, curr_status);
/* update the current status as the urgent bkops level */
// hba->urgent_bkops_lvl = curr_status;
// hba->is_urgent_bkops_lvl_checked = true;
/* SEC does not follow this policy that BKOPS is enabled for these events */
goto out;
}
enable_auto_bkops:
err = ufshcd_enable_auto_bkops(hba);
if (!err)
dev_info(hba->dev, "%s: auto bkops is enabled\n", __func__);
out:
if (err < 0)
dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
__func__, err);
}
/**
* ufshcd_exception_event_handler - handle exceptions raised by device
* @work: pointer to work data
*
* Read bExceptionEventStatus attribute from the device and handle the
* exception event accordingly.
*/
static void ufshcd_exception_event_handler(struct work_struct *work)
{
struct ufs_hba *hba;
int err;
u32 status = 0;
hba = container_of(work, struct ufs_hba, eeh_work);
pm_runtime_get_sync(hba->dev);
ufshcd_scsi_block_requests(hba);
err = ufshcd_get_ee_status(hba, &status);
if (err) {
dev_err(hba->dev, "%s: failed to get exception status %d\n",
__func__, err);
goto out;
}
status &= hba->ee_ctrl_mask;
if (status & MASK_EE_URGENT_BKOPS)
ufshcd_bkops_exception_event_handler(hba);
out:
ufshcd_scsi_unblock_requests(hba);
/*
* pm_runtime_get_noresume is called while scheduling
* eeh_work to avoid suspend racing with exception work.
* Hence decrement usage counter using pm_runtime_put_noidle
* to allow suspend on completion of exception event handler.
*/
pm_runtime_put_noidle(hba->dev);
pm_runtime_put(hba->dev);
return;
}
/* Complete requests that have door-bell cleared */
static void ufshcd_complete_requests(struct ufs_hba *hba)
{
ufshcd_transfer_req_compl(hba);
ufshcd_tmc_handler(hba);
}
/**
* ufshcd_quirk_dl_nac_errors - This function checks if error handling is
* to recover from the DL NAC errors or not.
* @hba: per-adapter instance
*
* Returns true if error handling is required, false otherwise
*/
static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
{
unsigned long flags;
bool err_handling = true;
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
* device fatal error and/or DL NAC & REPLAY timeout errors.
*/
if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
goto out;
if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) {
/*
* we have to do error recovery but atleast silence the error
* logs.
*/
hba->silence_err_logs = true;
goto out;
}
if ((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
int err;
/*
* wait for 50ms to see if we can get any other errors or not.
*/
spin_unlock_irqrestore(hba->host->host_lock, flags);
msleep(50);
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* now check if we have got any other severe errors other than
* DL NAC error?
*/
if ((hba->saved_err & INT_FATAL_ERRORS) ||
((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) {
if (((hba->saved_err & INT_FATAL_ERRORS) ==
DEVICE_FATAL_ERROR) || (hba->saved_uic_err &
~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))
hba->silence_err_logs = true;
goto out;
}
/*
* As DL NAC is the only error received so far, send out NOP
* command to confirm if link is still active or not.
* - If we don't get any response then do error recovery.
* - If we get response then clear the DL NAC error bit.
*/
/* silence the error logs from NOP command */
hba->silence_err_logs = true;
spin_unlock_irqrestore(hba->host->host_lock, flags);
err = ufshcd_verify_dev_init(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->silence_err_logs = false;
if (err) {
hba->silence_err_logs = true;
goto out;
}
/* Link seems to be alive hence ignore the DL NAC errors */
if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
hba->saved_err &= ~UIC_ERROR;
/* clear NAC error */
hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
if (!hba->saved_uic_err) {
err_handling = false;
goto out;
}
/*
* there seems to be some errors other than NAC, so do error
* recovery
*/
hba->silence_err_logs = true;
}
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err_handling;
}
/**
* ufshcd_err_handler - handle UFS errors that require s/w attention
* @work: pointer to work structure
*/
static void ufshcd_err_handler(struct work_struct *work)
{
struct ufs_hba *hba;
unsigned long flags;
bool err_xfer = false, err_tm = false;
int err = 0;
int tag;
bool needs_reset = false;
bool clks_enabled = false;
hba = container_of(work, struct ufs_hba, eh_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->extcon) {
if (ufshcd_is_card_online(hba)) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
/*
* TODO: need better way to ensure that this delay is
* more than extcon's debounce-ms
*/
msleep(300);
spin_lock_irqsave(hba->host->host_lock, flags);
}
/*
* ignore error if card was online and offline/removed now or
* card was already offline.
*/
if (ufshcd_is_card_offline(hba)) {
hba->saved_err = 0;
hba->saved_uic_err = 0;
hba->saved_ce_err = 0;
hba->auto_h8_err = false;
hba->force_host_reset = false;
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
goto out;
}
}
ufsdbg_set_err_state(hba);
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
goto out;
/*
* Make sure the clocks are ON before we proceed with err
* handling. For the majority of cases err handler would be
* run with clocks ON. There is a possibility that the err
* handler was scheduled due to auto hibern8 error interrupt,
* in which case the clocks could be gated or be in the
* process of gating when the err handler runs.
*/
if (unlikely((hba->clk_gating.state != CLKS_ON) &&
(hba->clk_gating.state == REQ_CLKS_OFF &&
ufshcd_is_link_hibern8(hba)) &&
ufshcd_is_auto_hibern8_supported(hba) &&
hba->hibern8_on_idle.is_enabled)) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
hba->ufs_stats.clk_hold.ctx = ERR_HNDLR_WORK;
ufshcd_hold(hba, false);
spin_lock_irqsave(hba->host->host_lock, flags);
clks_enabled = true;
}
hba->ufshcd_state = UFSHCD_STATE_RESET;
ufshcd_set_eh_in_progress(hba);
/* Complete requests that have door-bell cleared by h/w */
ufshcd_complete_requests(hba);
if (hba->dev_info.quirks &
UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
bool ret;
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
ret = ufshcd_quirk_dl_nac_errors(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (!ret)
goto skip_err_handling;
}
/*
* Dump controller state before resetting. Transfer requests state
* will be dump as part of the request completion.
*/
if ((hba->saved_err & (INT_FATAL_ERRORS | UIC_ERROR | UIC_LINK_LOST)) ||
hba->auto_h8_err) {
dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x",
__func__, hba->saved_err, hba->saved_uic_err);
if (!hba->silence_err_logs) {
/* release lock as print host regs sleeps */
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_print_host_regs(hba);
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_tmrs(hba, hba->outstanding_tasks);
ufshcd_print_cmd_log(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
}
hba->auto_h8_err = false;
}
if ((hba->saved_err & (INT_FATAL_ERRORS | UIC_LINK_LOST))
|| hba->saved_ce_err || hba->force_host_reset ||
((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & (UFSHCD_UIC_DL_PA_INIT_ERROR |
UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
needs_reset = true;
/*
* if host reset is required then skip clearing the pending
* transfers forcefully because they will get cleared during
* host reset and restore
*/
if (needs_reset)
goto skip_pending_xfer_clear;
/* release lock as clear command might sleep */
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* Clear pending transfer requests */
for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
if (ufshcd_clear_cmd(hba, tag)) {
err_xfer = true;
goto lock_skip_pending_xfer_clear;
}
}
/* Clear pending task management requests */
for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
if (ufshcd_clear_tm_cmd(hba, tag)) {
err_tm = true;
goto lock_skip_pending_xfer_clear;
}
}
lock_skip_pending_xfer_clear:
spin_lock_irqsave(hba->host->host_lock, flags);
/* Complete the requests that are cleared by s/w */
ufshcd_complete_requests(hba);
if (err_xfer || err_tm)
needs_reset = true;
skip_pending_xfer_clear:
/* Fatal errors need reset */
if (needs_reset) {
unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
if (hba->saved_err & INT_FATAL_ERRORS)
ufshcd_update_error_stats(hba,
UFS_ERR_INT_FATAL_ERRORS);
if (hba->saved_ce_err)
ufshcd_update_error_stats(hba, UFS_ERR_CRYPTO_ENGINE);
if (hba->saved_err & UIC_ERROR)
ufshcd_update_error_stats(hba,
UFS_ERR_INT_UIC_ERROR);
if (err_xfer || err_tm)
ufshcd_update_error_stats(hba,
UFS_ERR_CLEAR_PEND_XFER_TM);
/*
* ufshcd_reset_and_restore() does the link reinitialization
* which will need atleast one empty doorbell slot to send the
* device management commands (NOP and query commands).
* If there is no slot empty at this moment then free up last
* slot forcefully.
*/
if (hba->outstanding_reqs == max_doorbells)
__ufshcd_transfer_req_compl(hba,
(1UL << (hba->nutrs - 1)));
spin_unlock_irqrestore(hba->host->host_lock, flags);
err = ufshcd_reset_and_restore(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (err) {
dev_err(hba->dev, "%s: reset and restore failed\n",
__func__);
hba->ufshcd_state = UFSHCD_STATE_ERROR;
}
/*
* Inform scsi mid-layer that we did reset and allow to handle
* Unit Attention properly.
*/
scsi_report_bus_reset(hba->host, 0);
hba->saved_err = 0;
hba->saved_uic_err = 0;
hba->saved_ce_err = 0;
hba->force_host_reset = false;
}
skip_err_handling:
if (!needs_reset) {
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
if (hba->saved_err || hba->saved_uic_err)
dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
__func__, hba->saved_err, hba->saved_uic_err);
}
hba->silence_err_logs = false;
if (clks_enabled) {
__ufshcd_release(hba, false);
hba->ufs_stats.clk_rel.ctx = ERR_HNDLR_WORK;
}
out:
ufshcd_clear_eh_in_progress(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_update_uic_reg_hist(struct ufs_uic_err_reg_hist *reg_hist,
u32 reg)
{
reg_hist->reg[reg_hist->pos] = reg;
reg_hist->tstamp[reg_hist->pos] = ktime_get();
reg_hist->pos = (reg_hist->pos + 1) % UIC_ERR_REG_HIST_LENGTH;
}
static void ufshcd_rls_handler(struct work_struct *work)
{
struct ufs_hba *hba;
int ret = 0;
u32 mode;
hba = container_of(work, struct ufs_hba, rls_work);
pm_runtime_get_sync(hba->dev);
down_write(&hba->lock);
ufshcd_scsi_block_requests(hba);
if (ufshcd_is_shutdown_ongoing(hba))
goto out;
ret = ufshcd_wait_for_doorbell_clr(hba, U64_MAX);
if (ret) {
dev_err(hba->dev,
"Timed out (%d) waiting for DB to clear\n",
ret);
goto out;
}
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
if (hba->pwr_info.pwr_rx != ((mode >> PWR_RX_OFFSET) & PWR_INFO_MASK))
hba->restore_needed = true;
if (hba->pwr_info.pwr_tx != (mode & PWR_INFO_MASK))
hba->restore_needed = true;
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_RXGEAR), &mode);
if (hba->pwr_info.gear_rx != mode)
hba->restore_needed = true;
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TXGEAR), &mode);
if (hba->pwr_info.gear_tx != mode)
hba->restore_needed = true;
if (hba->restore_needed)
ret = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
if (ret)
dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
__func__, ret);
else
hba->restore_needed = false;
out:
up_write(&hba->lock);
ufshcd_scsi_unblock_requests(hba);
pm_runtime_put_sync(hba->dev);
}
static void ufshcd_fatal_mode_handler(struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, fatal_mode_work);
ufshcd_scsi_block_requests(hba);
dev_err(hba->dev, "fatal mode %04x.\n", hba->dev_info.w_manufacturer_id);
if (hba->dev_info.w_manufacturer_id == UFS_VENDOR_TOSHIBA)
UFS_Toshiba_K2_query_fatal_mode(hba);
ufshcd_scsi_unblock_requests(hba);
}
/**
* ufshcd_update_uic_error - check and set fatal UIC error flags.
* @hba: per-adapter instance
*
* Returns
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
{
u32 reg;
irqreturn_t retval = IRQ_NONE;
/* PHY layer lane error */
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
(reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
/*
* To know whether this error is fatal or not, DB timeout
* must be checked but this error is handled separately.
*/
dev_dbg(hba->dev, "%s: UIC Lane error reported, reg 0x%x\n",
__func__, reg);
ufshcd_update_uic_error_cnt(hba, reg, UFS_UIC_ERROR_PA);
ufshcd_update_uic_reg_hist(&hba->ufs_stats.pa_err, reg);
/*
* Don't ignore LINERESET indication during hibern8
* enter operation.
*/
if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
struct uic_command *cmd = hba->active_uic_cmd;
if (cmd) {
if (cmd->command == UIC_CMD_DME_HIBER_ENTER) {
dev_err(hba->dev, "%s: LINERESET during hibern8 enter, reg 0x%x\n",
__func__, reg);
hba->full_init_linereset = true;
}
}
if (!hba->full_init_linereset)
schedule_work(&hba->rls_work);
}
retval |= IRQ_HANDLED;
}
/* PA_INIT_ERROR is fatal and needs UIC reset */
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
(reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
ufshcd_update_uic_error_cnt(hba, reg, UFS_UIC_ERROR_DL);
ufshcd_update_uic_reg_hist(&hba->ufs_stats.dl_err, reg);
if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) {
hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
} else if (hba->dev_info.quirks &
UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
hba->uic_error |=
UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
else if (reg &
UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
hba->uic_error |=
UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
}
retval |= IRQ_HANDLED;
}
/* UIC NL/TL/DME errors needs software retry */
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
if ((reg & UIC_NETWORK_LAYER_ERROR) &&
(reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
ufshcd_update_uic_reg_hist(&hba->ufs_stats.nl_err, reg);
hba->uic_error |= UFSHCD_UIC_NL_ERROR;
retval |= IRQ_HANDLED;
}
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
(reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
ufshcd_update_uic_reg_hist(&hba->ufs_stats.tl_err, reg);
hba->uic_error |= UFSHCD_UIC_TL_ERROR;
retval |= IRQ_HANDLED;
}
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
if ((reg & UIC_DME_ERROR) &&
(reg & UIC_DME_ERROR_CODE_MASK)) {
ufshcd_update_uic_error_cnt(hba, reg, UFS_UIC_ERROR_DME);
ufshcd_update_uic_reg_hist(&hba->ufs_stats.dme_err, reg);
hba->uic_error |= UFSHCD_UIC_DME_ERROR;
retval |= IRQ_HANDLED;
}
dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
__func__, hba->uic_error);
#if defined(SEC_UFS_ERROR_COUNT)
if (hba->uic_error || hba->full_init_linereset)
SEC_ufs_uic_error_check(hba, true, false);
#endif
return retval;
}
/**
* ufshcd_check_errors - Check for errors that need s/w attention
* @hba: per-adapter instance
*
* Returns
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba)
{
bool queue_eh_work = false;
irqreturn_t retval = IRQ_NONE;
if (hba->errors & INT_FATAL_ERRORS || hba->ce_error)
queue_eh_work = true;
if (hba->errors & UIC_LINK_LOST) {
dev_err(hba->dev, "%s: UIC_LINK_LOST received, errors 0x%x\n",
__func__, hba->errors);
queue_eh_work = true;
}
#if defined(SEC_UFS_ERROR_COUNT)
if (queue_eh_work)
SEC_ufs_uic_error_check(hba, false, true);
#endif
if (hba->errors & UIC_ERROR) {
hba->uic_error = 0;
retval = ufshcd_update_uic_error(hba);
if (hba->uic_error)
queue_eh_work = true;
}
if (hba->extcon && ufshcd_is_card_offline(hba)) {
/* ignore UIC errors if card is offline */
retval |= IRQ_HANDLED;
} else if (queue_eh_work) {
/*
* update the transfer error masks to sticky bits, let's do this
* irrespective of current ufshcd_state.
*/
hba->saved_err |= hba->errors;
hba->saved_uic_err |= hba->uic_error;
hba->saved_ce_err |= hba->ce_error;
/* handle fatal errors only when link is functional */
if (hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) {
/*
* Set error handling in progress flag early so that we
* don't issue new requests any more.
*/
ufshcd_set_eh_in_progress(hba);
hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED;
schedule_work(&hba->eh_work);
}
retval |= IRQ_HANDLED;
}
/*
* if (!queue_eh_work) -
* Other errors are either non-fatal where host recovers
* itself without s/w intervention or errors that will be
* handled by the SCSI core layer.
*/
return retval;
}
/**
* ufshcd_tmc_handler - handle task management function completion
* @hba: per adapter instance
*
* Returns
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
{
u32 tm_doorbell;
tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks;
if (hba->tm_condition) {
wake_up(&hba->tm_wq);
return IRQ_HANDLED;
} else {
return IRQ_NONE;
}
}
/**
* ufshcd_sl_intr - Interrupt service routine
* @hba: per adapter instance
* @intr_status: contains interrupts generated by the controller
*
* Returns
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
{
irqreturn_t retval = IRQ_NONE;
ufsdbg_error_inject_dispatcher(hba,
ERR_INJECT_INTR, intr_status, &intr_status);
hba->errors = UFSHCD_ERROR_MASK & intr_status;
if (hba->errors || hba->ce_error)
retval |= ufshcd_check_errors(hba);
if (intr_status & UFSHCD_UIC_MASK)
retval |= ufshcd_uic_cmd_compl(hba, intr_status);
if (intr_status & UTP_TASK_REQ_COMPL)
retval |= ufshcd_tmc_handler(hba);
if (intr_status & UTP_TRANSFER_REQ_COMPL)
retval |= ufshcd_transfer_req_compl(hba);
return retval;
}
/**
* ufshcd_intr - Main interrupt service routine
* @irq: irq number
* @__hba: pointer to adapter instance
*
* Returns
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_intr(int irq, void *__hba)
{
u32 intr_status, enabled_intr_status;
irqreturn_t retval = IRQ_NONE;
struct ufs_hba *hba = __hba;
int retries = hba->nutrs;
spin_lock(hba->host->host_lock);
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
hba->ufs_stats.last_intr_status = intr_status;
hba->ufs_stats.last_intr_ts = ktime_get();
/*
* There could be max of hba->nutrs reqs in flight and in worst case
* if the reqs get finished 1 by 1 after the interrupt status is
* read, make sure we handle them by checking the interrupt status
* again in a loop until we process all of the reqs before returning.
*/
do {
enabled_intr_status =
intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
if (intr_status)
ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
if (enabled_intr_status)
retval |= ufshcd_sl_intr(hba, enabled_intr_status);
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
} while (intr_status && --retries);
if (retval == IRQ_NONE) {
dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x\n",
__func__, intr_status);
ufshcd_hex_dump(hba, "host regs: ", hba->mmio_base,
UFSHCI_REG_SPACE_SIZE);
}
spin_unlock(hba->host->host_lock);
return retval;
}
static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
{
int err = 0;
u32 mask = 1 << tag;
unsigned long flags;
if (!test_bit(tag, &hba->outstanding_tasks))
goto out;
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_writel(hba, ~(1 << tag), REG_UTP_TASK_REQ_LIST_CLEAR);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* poll for max. 1 sec to clear door bell register by h/w */
err = ufshcd_wait_for_register(hba,
REG_UTP_TASK_REQ_DOOR_BELL,
mask, 0, 1000, 1000, true);
out:
return err;
}
/**
* ufshcd_issue_tm_cmd - issues task management commands to controller
* @hba: per adapter instance
* @lun_id: LUN ID to which TM command is sent
* @task_id: task ID to which the TM command is applicable
* @tm_function: task management function opcode
* @tm_response: task management service response return value
*
* Returns non-zero value on error, zero on success.
*/
static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
u8 tm_function, u8 *tm_response)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_req *task_req_upiup;
struct Scsi_Host *host;
unsigned long flags;
int free_slot;
int err;
int task_tag;
host = hba->host;
/*
* Get free slot, sleep if slots are unavailable.
* Even though we use wait_event() which sleeps indefinitely,
* the maximum wait time is bounded by %TM_CMD_TIMEOUT.
*/
wait_event(hba->tm_tag_wq, ufshcd_get_tm_free_slot(hba, &free_slot));
hba->ufs_stats.clk_hold.ctx = TM_CMD_SEND;
ufshcd_hold_all(hba);
spin_lock_irqsave(host->host_lock, flags);
task_req_descp = hba->utmrdl_base_addr;
task_req_descp += free_slot;
/* Configure task request descriptor */
task_req_descp->header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
task_req_descp->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* Configure task request UPIU */
task_req_upiup =
(struct utp_upiu_task_req *) task_req_descp->task_req_upiu;
task_tag = hba->nutrs + free_slot;
task_req_upiup->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_TASK_REQ, 0,
lun_id, task_tag);
task_req_upiup->header.dword_1 =
UPIU_HEADER_DWORD(0, tm_function, 0, 0);
/*
* The host shall provide the same value for LUN field in the basic
* header and for Input Parameter.
*/
task_req_upiup->input_param1 = cpu_to_be32(lun_id);
task_req_upiup->input_param2 = cpu_to_be32(task_id);
ufshcd_vops_setup_task_mgmt(hba, free_slot, tm_function);
/* send command to the controller */
__set_bit(free_slot, &hba->outstanding_tasks);
/* Make sure descriptors are ready before ringing the task doorbell */
wmb();
ufshcd_writel(hba, 1 << free_slot, REG_UTP_TASK_REQ_DOOR_BELL);
/* Make sure that doorbell is committed immediately */
wmb();
spin_unlock_irqrestore(host->host_lock, flags);
/* wait until the task management command is completed */
err = wait_event_timeout(hba->tm_wq,
test_bit(free_slot, &hba->tm_condition),
msecs_to_jiffies(TM_CMD_TIMEOUT));
if (!err) {
dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
__func__, tm_function);
if (ufshcd_clear_tm_cmd(hba, free_slot))
dev_WARN(hba->dev, "%s: unable clear tm cmd (slot %d) after timeout\n",
__func__, free_slot);
spin_lock_irqsave(host->host_lock, flags);
__clear_bit(free_slot, &hba->outstanding_tasks);
spin_unlock_irqrestore(host->host_lock, flags);
err = -ETIMEDOUT;
} else {
err = ufshcd_task_req_compl(hba, free_slot, tm_response);
}
clear_bit(free_slot, &hba->tm_condition);
ufshcd_put_tm_slot(hba, free_slot);
wake_up(&hba->tm_tag_wq);
hba->ufs_stats.clk_rel.ctx = TM_CMD_SEND;
ufshcd_release_all(hba);
return err;
}
/**
* ufshcd_eh_device_reset_handler - device reset handler registered to
* scsi layer.
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned int tag;
u32 pos;
int err;
u8 resp = 0xF;
struct ufshcd_lrb *lrbp;
unsigned long flags;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
ufshcd_print_cmd_log(hba);
lrbp = &hba->lrb[tag];
err = ufshcd_issue_tm_cmd(hba, lrbp->lun, 0, UFS_LOGICAL_RESET, &resp);
if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
if (!err)
err = resp;
goto out;
}
/* clear the commands that were pending for corresponding LUN */
for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
if (hba->lrb[pos].lun == lrbp->lun) {
err = ufshcd_clear_cmd(hba, pos);
if (err)
break;
}
}
spin_lock_irqsave(host->host_lock, flags);
ufshcd_transfer_req_compl(hba);
spin_unlock_irqrestore(host->host_lock, flags);
out:
hba->req_abort_count = 0;
if (!err) {
dev_info(hba->dev, "%s: LU reset succeeded\n", __func__);
err = SUCCESS;
} else {
dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
err = FAILED;
}
return err;
}
static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
{
struct ufshcd_lrb *lrbp;
int tag;
for_each_set_bit(tag, &bitmap, hba->nutrs) {
lrbp = &hba->lrb[tag];
lrbp->req_abort_skip = true;
}
}
/**
* ufshcd_abort - abort a specific command
* @cmd: SCSI command pointer
*
* Abort the pending command in device by sending UFS_ABORT_TASK task management
* command, and in host controller by clearing the door-bell register. There can
* be race between controller sending the command to the device while abort is
* issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
* really issued and then try to abort it.
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned long flags;
unsigned int tag;
int err = 0;
int poll_cnt;
u8 resp = 0xF;
struct ufshcd_lrb *lrbp;
u32 reg;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
if (!ufshcd_valid_tag(hba, tag)) {
dev_err(hba->dev,
"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
__func__, tag, cmd, cmd->request);
BUG();
}
if (cmd->cmnd[0] == READ_10 || cmd->cmnd[0] == WRITE_10) {
unsigned long lba = (cmd->cmnd[2] << 24) |
(cmd->cmnd[3] << 16) |
(cmd->cmnd[4] << 8) |
(cmd->cmnd[5] << 0);
unsigned int sct = (cmd->cmnd[7] << 8) |
(cmd->cmnd[8] << 0);
sector_t lba_bi_sector = 0;
if (cmd->request->bio)
lba_bi_sector = cmd->request->bio->bi_iter.bi_sector;
dev_err(hba->dev, "%s: tag:%d, cmd:0x%x, "
"lba:0x%08lx(0x%llx), sct:0x%04x, retries %d\n",
__func__, tag, cmd->cmnd[0], lba,
(unsigned long long)lba_bi_sector, sct, cmd->allowed);
} else {
dev_err(hba->dev, "%s: tag:%d, cmd:0x%x, retries %d\n",
__func__, tag, cmd->cmnd[0], cmd->allowed);
}
lrbp = &hba->lrb[tag];
ufshcd_update_error_stats(hba, UFS_ERR_TASK_ABORT);
if (!ufshcd_valid_tag(hba, tag)) {
dev_err(hba->dev,
"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
__func__, tag, cmd, cmd->request);
BUG();
}
/*
* Task abort to the device W-LUN is illegal. When this command
* will fail, due to spec violation, scsi err handling next step
* will be to send LU reset which, again, is a spec violation.
* To avoid these unnecessary/illegal step we skip to the last error
* handling stage: reset and restore.
*/
if ((lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) ||
(lrbp->lun == UFS_UPIU_REPORT_LUNS_WLUN) ||
(lrbp->lun == UFS_UPIU_BOOT_WLUN) ||
(lrbp->lun == UFS_UPIU_RPMB_WLUN))
return ufshcd_eh_host_reset_handler(cmd);
ufshcd_hold_all(hba);
reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
/* If command is already aborted/completed, return SUCCESS */
if (!(test_bit(tag, &hba->outstanding_reqs))) {
dev_err(hba->dev,
"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
__func__, tag, hba->outstanding_reqs, reg);
goto out;
}
if (!(reg & (1 << tag))) {
dev_err(hba->dev,
"%s: cmd was completed, but without a notifying intr, tag = %d",
__func__, tag);
}
/* Print Transfer Request of aborted task */
dev_err(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
/*
* Print detailed info about aborted request.
* As more than one request might get aborted at the same time,
* print full information only for the first aborted request in order
* to reduce repeated printouts. For other aborted requests only print
* basic details.
*/
#if defined(SEC_UFS_ERROR_COUNT)
SEC_ufs_utp_error_check(hba, cmd, false, 0);
#endif
scsi_print_command(cmd);
if (!hba->req_abort_count) {
ufshcd_print_fsm_state(hba);
ufshcd_print_host_regs(hba);
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_trs(hba, 1 << tag, true);
/* crash the system upon setting this debugfs. */
if (hba->crash_on_err)
BUG_ON(1);
} else {
ufshcd_print_trs(hba, 1 << tag, false);
}
hba->req_abort_count++;
/* Skip task abort in case previous aborts failed and report failure */
if (lrbp->req_abort_skip) {
err = -EIO;
goto out;
}
for (poll_cnt = 100; poll_cnt; poll_cnt--) {
err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
UFS_QUERY_TASK, &resp);
if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
/* cmd pending in the device */
dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
__func__, tag);
break;
} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
/*
* cmd not pending in the device, check if it is
* in transition.
*/
dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
__func__, tag);
reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
if (reg & (1 << tag)) {
/* sleep for max. 200us to stabilize */
usleep_range(100, 200);
continue;
}
/* command completed already */
dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
__func__, tag);
goto out;
} else {
dev_err(hba->dev,
"%s: no response from device. tag = %d, err %d\n",
__func__, tag, err);
if (!err)
err = resp; /* service response error */
#if defined(SEC_UFS_ERROR_COUNT)
SEC_ufs_utp_error_check(hba, NULL, true, UFS_QUERY_TASK);
#endif
goto out;
}
}
if (!poll_cnt) {
err = -EBUSY;
goto out;
}
err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
UFS_ABORT_TASK, &resp);
if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
if (!err) {
err = resp; /* service response error */
dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
__func__, tag, err);
}
#if defined(SEC_UFS_ERROR_COUNT)
SEC_ufs_utp_error_check(hba, NULL, true, UFS_ABORT_TASK);
#endif
goto out;
}
err = ufshcd_clear_cmd(hba, tag);
if (err) {
dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
__func__, tag, err);
goto out;
}
scsi_dma_unmap(cmd);
spin_lock_irqsave(host->host_lock, flags);
ufshcd_outstanding_req_clear(hba, tag);
hba->lrb[tag].cmd = NULL;
spin_unlock_irqrestore(host->host_lock, flags);
clear_bit_unlock(tag, &hba->lrb_in_use);
wake_up(&hba->dev_cmd.tag_wq);
out:
if (!err) {
err = SUCCESS;
if ((hba->dev_info.quirks & UFS_DEVICE_QUIRK_SUPPORT_QUERY_FATAL_MODE) &&
!hba->UFS_fatal_mode_done) {
unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
if (hba->outstanding_reqs == max_doorbells)
__ufshcd_transfer_req_compl(hba,
(1UL << (hba->nutrs - 1)));
schedule_work(&hba->fatal_mode_work);
}
} else {
dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
err = FAILED;
}
/*
* This ufshcd_release_all() corresponds to the original scsi cmd that
* got aborted here (as we won't get any IRQ for it).
*/
ufshcd_release_all(hba);
return err;
}
/**
* ufshcd_host_reset_and_restore - reset and restore host controller
* @hba: per-adapter instance
*
* Note that host controller reset may issue DME_RESET to
* local and remote (device) Uni-Pro stack and the attributes
* are reset to default state.
*
* Returns zero on success, non-zero on failure
*/
static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
{
int err;
unsigned long flags;
/*
* Stop the host controller and complete the requests
* cleared by h/w
*/
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_hba_stop(hba, false);
hba->silence_err_logs = true;
ufshcd_complete_requests(hba);
hba->silence_err_logs = false;
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* scale up clocks to max frequency before full reinitialization */
ufshcd_set_clk_freq(hba, true);
err = ufshcd_hba_enable(hba);
if (err) {
/* ufshcd_probe_hba() will put it */
if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress)
pm_runtime_put_sync(hba->dev);
goto out;
}
/* Establish the link again and restore the device */
err = ufshcd_probe_hba(hba);
if (!err && (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)) {
err = -EIO;
goto out;
}
out:
if (err)
dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
return err;
}
static int ufshcd_detect_device(struct ufs_hba *hba)
{
int err = 0;
err = ufshcd_vops_full_reset(hba);
if (err)
dev_warn(hba->dev, "%s: full reset returned %d\n",
__func__, err);
err = ufshcd_reset_device(hba);
if (err)
dev_warn(hba->dev, "%s: device reset failed. err %d\n",
__func__, err);
return ufshcd_host_reset_and_restore(hba);
}
/**
* ufshcd_reset_and_restore - reset and re-initialize host/device
* @hba: per-adapter instance
*
* Reset and recover device, host and re-establish link. This
* is helpful to recover the communication in fatal error conditions.
*
* Returns zero on success, non-zero on failure
*/
static int ufshcd_reset_and_restore(struct ufs_hba *hba)
{
int err = 0;
int retries = MAX_HOST_RESET_RETRIES;
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
ufshcd_reset_tw(hba, false);
#endif
ssleep(2);
ufshcd_enable_irq(hba);
do {
if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress)
pm_runtime_get_sync(hba->dev);
err = ufshcd_detect_device(hba);
} while (err && --retries);
/*
* There is no point proceeding even after failing
* to recover after multiple retries.
*/
if (err && ufshcd_is_embedded_dev(hba))
BUG();
return err;
}
/**
* ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
* @cmd - SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
{
int err = SUCCESS;
unsigned long flags;
struct ufs_hba *hba;
hba = shost_priv(cmd->device->host);
/*
* Check if there is any race with fatal error handling.
* If so, wait for it to complete. Even though fatal error
* handling does reset and restore in some cases, don't assume
* anything out of it. We are just avoiding race here.
*/
do {
spin_lock_irqsave(hba->host->host_lock, flags);
if (!(work_pending(&hba->eh_work) ||
hba->ufshcd_state == UFSHCD_STATE_RESET ||
hba->ufshcd_state == UFSHCD_STATE_EH_SCHEDULED))
break;
spin_unlock_irqrestore(hba->host->host_lock, flags);
dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
flush_work(&hba->eh_work);
} while (1);
/*
* we don't know if previous reset had really reset the host controller
* or not. So let's force reset here to be sure.
*/
hba->ufshcd_state = UFSHCD_STATE_ERROR;
hba->force_host_reset = true;
schedule_work(&hba->eh_work);
/* wait for the reset work to finish */
do {
if (!(work_pending(&hba->eh_work) ||
hba->ufshcd_state == UFSHCD_STATE_RESET))
break;
spin_unlock_irqrestore(hba->host->host_lock, flags);
dev_err(hba->dev, "%s: reset in progress - 2\n", __func__);
flush_work(&hba->eh_work);
spin_lock_irqsave(hba->host->host_lock, flags);
} while (1);
if (!((hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) &&
ufshcd_is_link_active(hba))) {
err = FAILED;
hba->ufshcd_state = UFSHCD_STATE_ERROR;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err;
}
/**
* ufshcd_get_max_icc_level - calculate the ICC level
* @sup_curr_uA: max. current supported by the regulator
* @start_scan: row at the desc table to start scan from
* @buff: power descriptor buffer
*
* Returns calculated max ICC level for specific regulator
*/
static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
{
int i;
int curr_uA;
u16 data;
u16 unit;
for (i = start_scan; i >= 0; i--) {
data = be16_to_cpup((__be16 *)&buff[2 * i]);
unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
ATTR_ICC_LVL_UNIT_OFFSET;
curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
switch (unit) {
case UFSHCD_NANO_AMP:
curr_uA = curr_uA / 1000;
break;
case UFSHCD_MILI_AMP:
curr_uA = curr_uA * 1000;
break;
case UFSHCD_AMP:
curr_uA = curr_uA * 1000 * 1000;
break;
case UFSHCD_MICRO_AMP:
default:
break;
}
if (sup_curr_uA >= curr_uA)
break;
}
if (i < 0) {
i = 0;
pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
}
return (u32)i;
}
/**
* ufshcd_find_max_sup_active_icc_level - find the max ICC level
* In case regulators are not initialized we'll return 0
* @hba: per-adapter instance
* @desc_buf: power descriptor buffer to extract ICC levels from.
* @len: length of desc_buff
*
* Returns calculated max ICC level
*/
static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
u8 *desc_buf, int len)
{
u32 icc_level = 0;
/*
* VCCQ rail is optional for removable UFS card and also most of the
* vendors don't use this rail for embedded UFS devices as well. So
* it is normal that VCCQ rail may not be provided for given platform.
*/
if (!hba->vreg_info.vcc || !hba->vreg_info.vccq2) {
dev_err(hba->dev, "%s: Regulator capability was not set, bActiveICCLevel=%d\n",
__func__, icc_level);
goto out;
}
if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
icc_level = ufshcd_get_max_icc_level(
hba->vreg_info.vcc->max_uA,
POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
icc_level = ufshcd_get_max_icc_level(
hba->vreg_info.vccq->max_uA,
icc_level,
&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
icc_level = ufshcd_get_max_icc_level(
hba->vreg_info.vccq2->max_uA,
icc_level,
&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
out:
return icc_level;
}
static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
{
int ret;
int buff_len = hba->desc_size.pwr_desc;
u8 *desc_buf = NULL;
u32 icc_level;
if (buff_len) {
desc_buf = kmalloc(buff_len, GFP_KERNEL);
if (!desc_buf)
return;
}
ret = ufshcd_read_power_desc(hba, desc_buf, buff_len);
if (ret) {
dev_err(hba->dev,
"%s: Failed reading power descriptor.len = %d ret = %d",
__func__, buff_len, ret);
goto out;
}
icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
buff_len);
dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
if (ret)
dev_err(hba->dev,
"%s: Failed configuring bActiveICCLevel = %d ret = %d",
__func__, icc_level, ret);
out:
kfree(desc_buf);
}
static int ufshcd_set_low_vcc_level(struct ufs_hba *hba,
struct ufs_dev_desc *dev_desc)
{
int ret;
struct ufs_vreg *vreg = hba->vreg_info.vcc;
/* Check if device supports the low voltage VCC feature */
if (dev_desc->wspecversion < 0x300)
return 0;
/*
* Check if host has support for low VCC voltage?
* In addition, also check if we have already set the low VCC level
* or not?
*/
if (!vreg->low_voltage_sup || vreg->low_voltage_active)
return 0;
/* Put the device in sleep before lowering VCC level */
ret = ufshcd_set_dev_pwr_mode(hba, UFS_SLEEP_PWR_MODE);
/* Switch off VCC before switching it ON at 2.5v */
ret = ufshcd_disable_vreg(hba->dev, vreg);
/* add ~2ms delay before renabling VCC at lower voltage */
usleep_range(2000, 2100);
/* Now turn back VCC ON at low voltage */
vreg->low_voltage_active = true;
ret = ufshcd_enable_vreg(hba->dev, vreg);
/* Bring the device in active now */
ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
return ret;
}
/**
* ufshcd_scsi_add_wlus - Adds required W-LUs
* @hba: per-adapter instance
*
* UFS devices can support upto 4 well known logical units:
* "REPORT_LUNS" (address: 01h)
* "UFS Device" (address: 50h)
* "RPMB" (address: 44h)
* "BOOT" (address: 30h)
*
* "REPORT_LUNS" & "UFS Device" are mandatory for all device classes (see
* "bDeviceSubClass" parameter of device descriptor) while "BOOT" is supported
* only for bootable devices. "RPMB" is only supported with embedded devices.
*
* UFS device's power management needs to be controlled by "POWER CONDITION"
* field of SSU (START STOP UNIT) command. But this "power condition" field
* will take effect only when its sent to "UFS device" well known logical unit
* hence we require the scsi_device instance to represent this logical unit in
* order for the UFS host driver to send the SSU command for power management.
* We also require the scsi_device instance for "RPMB" (Replay Protected Memory
* Block) LU so user space process can control this LU. User space may also
* want to have access to BOOT LU.
* This function tries to add scsi device instances for each of all well known
* LUs (except "REPORT LUNS" LU) depending on device class.
*
* Returns zero on success (all required W-LUs are added successfully),
* non-zero error value on failure (if failed to add any of the required W-LU).
*/
static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
{
int ret = 0;
struct scsi_device *sdev_rpmb = NULL;
struct scsi_device *sdev_boot = NULL;
bool is_bootable_dev = false;
bool is_embedded_dev = false;
if ((hba->dev_info.b_device_sub_class == UFS_DEV_EMBEDDED_BOOTABLE) ||
(hba->dev_info.b_device_sub_class == UFS_DEV_REMOVABLE_BOOTABLE))
is_bootable_dev = true;
if ((hba->dev_info.b_device_sub_class == UFS_DEV_EMBEDDED_BOOTABLE) ||
(hba->dev_info.b_device_sub_class == UFS_DEV_EMBEDDED_NON_BOOTABLE))
is_embedded_dev = true;
hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
if (IS_ERR(hba->sdev_ufs_device)) {
ret = PTR_ERR(hba->sdev_ufs_device);
dev_err(hba->dev, "%s: failed adding DEVICE_WLUN. ret %d\n",
__func__, ret);
hba->sdev_ufs_device = NULL;
goto out;
}
scsi_device_put(hba->sdev_ufs_device);
if (is_bootable_dev) {
sdev_boot = __scsi_add_device(hba->host, 0, 0,
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN),
NULL);
if (IS_ERR(sdev_boot)) {
dev_err(hba->dev, "%s: failed adding BOOT_WLUN. ret %d\n",
__func__, ret);
ret = PTR_ERR(sdev_boot);
goto remove_sdev_ufs_device;
}
scsi_device_put(sdev_boot);
}
if (is_embedded_dev) {
sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN),
NULL);
if (IS_ERR(sdev_rpmb)) {
dev_err(hba->dev, "%s: failed adding RPMB_WLUN. ret %d\n",
__func__, ret);
ret = PTR_ERR(sdev_rpmb);
goto remove_sdev_boot;
}
scsi_device_put(sdev_rpmb);
}
goto out;
remove_sdev_boot:
if (is_bootable_dev)
scsi_remove_device(sdev_boot);
remove_sdev_ufs_device:
scsi_remove_device(hba->sdev_ufs_device);
out:
return ret;
}
static int ufs_get_device_desc(struct ufs_hba *hba,
struct ufs_dev_desc *dev_desc)
{
int err;
u8 model_index;
u8 str_desc_buf[QUERY_DESC_MAX_SIZE + 1] = {0};
u8 desc_buf[hba->desc_size.dev_desc];
err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc);
if (err) {
dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
__func__, err);
goto out;
}
/*
* getting vendor (manufacturerID) and Bank Index in big endian
* format
*/
dev_desc->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
/* the device desc size of ufs 3.1 is different with the one of prev ver. */
hba->support_tw = false;
if (hba->desc_size.dev_desc < (DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 3)) {
dev_err(hba->dev, "%s: desc_size.dev_desc = %d.\n", __func__,
hba->desc_size.dev_desc);
goto get_model_string;
}
dev_desc->dextfeatsupport = ((desc_buf[DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP] << 24)|
(desc_buf[DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 1] << 16) |
(desc_buf[DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 2] << 8) |
desc_buf[DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 3]);
if (dev_desc->dextfeatsupport & 0x100) {
dev_info(hba->dev,"%s: ufs device supports turbo write\n", __func__);
if (hba->dev_info.i_lt < UFS_TW_DISABLE_THRESHOLD) {
/* if device supports tw, enable hibern flush */
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8, NULL);
if (err) {
dev_err(hba->dev, "%s: Failed to enable tw hibern flush. err = %d\n",
__func__, err);
goto get_model_string;
}
hba->support_tw = true;
dev_info(hba->dev,"%s: ufs turbo write is enabled\n", __func__);
}
}
get_model_string:
#endif
err = ufshcd_read_string_desc(hba, model_index, str_desc_buf,
QUERY_DESC_MAX_SIZE, ASCII_STD);
if (err) {
dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
__func__, err);
goto out;
}
str_desc_buf[QUERY_DESC_MAX_SIZE] = '\0';
strlcpy(dev_desc->model, (str_desc_buf + QUERY_DESC_HDR_SIZE),
min_t(u8, str_desc_buf[QUERY_DESC_LENGTH_OFFSET],
MAX_MODEL_LEN));
/* Null terminate the model string */
dev_desc->model[MAX_MODEL_LEN] = '\0';
dev_desc->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
dev_info(hba->dev, "%s: UFS spec 0x%04x.\n",
__func__, dev_desc->wspecversion);
out:
return err;
}
static void ufs_fixup_device_setup(struct ufs_hba *hba,
struct ufs_dev_desc *dev_desc)
{
struct ufs_dev_fix *f;
for (f = ufs_fixups; f->quirk; f++) {
if ((f->w_manufacturer_id == dev_desc->wmanufacturerid ||
f->w_manufacturer_id == UFS_ANY_VENDOR) &&
(STR_PRFX_EQUAL(f->model, dev_desc->model) ||
!strcmp(f->model, UFS_ANY_MODEL)))
hba->dev_info.quirks |= f->quirk;
}
}
/**
* ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
* @hba: per-adapter instance
*
* PA_TActivate parameter can be tuned manually if UniPro version is less than
* 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
* RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
* the hibern8 exit latency.
*
* Returns zero on success, non-zero error value on failure.
*/
static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
{
int ret = 0;
u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
if (!ufshcd_is_unipro_pa_params_tuning_req(hba))
return 0;
ret = ufshcd_dme_peer_get(hba,
UIC_ARG_MIB_SEL(
RX_MIN_ACTIVATETIME_CAPABILITY,
UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
&peer_rx_min_activatetime);
if (ret)
goto out;
/* make sure proper unit conversion is applied */
tuned_pa_tactivate =
((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
/ PA_TACTIVATE_TIME_UNIT_US);
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
tuned_pa_tactivate);
out:
return ret;
}
/**
* ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
* @hba: per-adapter instance
*
* PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
* 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
* TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
* This optimal value can help reduce the hibern8 exit latency.
*
* Returns zero on success, non-zero error value on failure.
*/
static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
{
int ret = 0;
u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
u32 max_hibern8_time, tuned_pa_hibern8time;
ret = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&local_tx_hibern8_time_cap);
if (ret)
goto out;
ret = ufshcd_dme_peer_get(hba,
UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
&peer_rx_hibern8_time_cap);
if (ret)
goto out;
max_hibern8_time = max(local_tx_hibern8_time_cap,
peer_rx_hibern8_time_cap);
/* make sure proper unit conversion is applied */
tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
/ PA_HIBERN8_TIME_UNIT_US);
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
tuned_pa_hibern8time);
out:
return ret;
}
/**
* ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
* less than device PA_TACTIVATE time.
* @hba: per-adapter instance
*
* Some UFS devices require host PA_TACTIVATE to be lower than device
* PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
* for such devices.
*
* Returns zero on success, non-zero error value on failure.
*/
static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
{
int ret = 0;
u32 granularity, peer_granularity;
u32 pa_tactivate, peer_pa_tactivate;
u32 pa_tactivate_us, peer_pa_tactivate_us;
u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
&granularity);
if (ret)
goto out;
ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
&peer_granularity);
if (ret)
goto out;
if ((granularity < PA_GRANULARITY_MIN_VAL) ||
(granularity > PA_GRANULARITY_MAX_VAL)) {
dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
__func__, granularity);
return -EINVAL;
}
if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
(peer_granularity > PA_GRANULARITY_MAX_VAL)) {
dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
__func__, peer_granularity);
return -EINVAL;
}
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
if (ret)
goto out;
ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
&peer_pa_tactivate);
if (ret)
goto out;
pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
peer_pa_tactivate_us = peer_pa_tactivate *
gran_to_us_table[peer_granularity - 1];
if (pa_tactivate_us > peer_pa_tactivate_us) {
u32 new_peer_pa_tactivate;
new_peer_pa_tactivate = pa_tactivate_us /
gran_to_us_table[peer_granularity - 1];
new_peer_pa_tactivate++;
ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
new_peer_pa_tactivate);
}
out:
return ret;
}
static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
{
if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
ufshcd_tune_pa_tactivate(hba);
ufshcd_tune_pa_hibern8time(hba);
}
if (hba->dev_info.quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
/* set 1ms timeout for PA_TACTIVATE */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
if (hba->dev_info.quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
ufshcd_quirk_tune_host_pa_tactivate(hba);
ufshcd_vops_apply_dev_quirks(hba);
}
static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
{
int err_reg_hist_size = sizeof(struct ufs_uic_err_reg_hist);
memset(&hba->ufs_stats.pa_err, 0, err_reg_hist_size);
memset(&hba->ufs_stats.dl_err, 0, err_reg_hist_size);
memset(&hba->ufs_stats.nl_err, 0, err_reg_hist_size);
memset(&hba->ufs_stats.tl_err, 0, err_reg_hist_size);
memset(&hba->ufs_stats.dme_err, 0, err_reg_hist_size);
hba->req_abort_count = 0;
}
static void ufshcd_init_desc_sizes(struct ufs_hba *hba)
{
int err;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_DEVICE, 0,
&hba->desc_size.dev_desc);
if (err)
hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_POWER, 0,
&hba->desc_size.pwr_desc);
if (err)
hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_INTERCONNECT, 0,
&hba->desc_size.interc_desc);
if (err)
hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_CONFIGURATION, 0,
&hba->desc_size.conf_desc);
if (err)
hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_UNIT, 0,
&hba->desc_size.unit_desc);
if (err)
hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_GEOMETRY, 0,
&hba->desc_size.geom_desc);
if (err)
hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_HEALTH, 0,
&hba->desc_size.hlth_desc);
if (err)
hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
}
static void ufshcd_def_desc_sizes(struct ufs_hba *hba)
{
hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
}
static void ufshcd_apply_pm_quirks(struct ufs_hba *hba)
{
if (hba->dev_info.quirks & UFS_DEVICE_QUIRK_NO_LINK_OFF) {
if (ufs_get_pm_lvl_to_link_pwr_state(hba->rpm_lvl) ==
UIC_LINK_OFF_STATE) {
hba->rpm_lvl =
ufs_get_desired_pm_lvl_for_dev_link_state(
UFS_SLEEP_PWR_MODE,
UIC_LINK_HIBERN8_STATE);
dev_info(hba->dev, "UFS_DEVICE_QUIRK_NO_LINK_OFF enabled, changed rpm_lvl to %d\n",
hba->rpm_lvl);
}
if (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
UIC_LINK_OFF_STATE) {
hba->spm_lvl =
ufs_get_desired_pm_lvl_for_dev_link_state(
UFS_SLEEP_PWR_MODE,
UIC_LINK_HIBERN8_STATE);
dev_info(hba->dev, "UFS_DEVICE_QUIRK_NO_LINK_OFF enabled, changed spm_lvl to %d\n",
hba->spm_lvl);
}
}
}
/**
* ufshcd_set_dev_ref_clk - set the device bRefClkFreq
* @hba: per-adapter instance
*
* Read the current value of the bRefClkFreq attribute from device and update it
* if host is supplying different reference clock frequency than one mentioned
* in bRefClkFreq attribute.
*
* Returns zero on success, non-zero error value on failure.
*/
static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
{
int err = 0;
int ref_clk = -1;
static const char * const ref_clk_freqs[] = {"19.2 MHz", "26 MHz",
"38.4 MHz", "52 MHz"};
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
if (err) {
dev_err(hba->dev, "%s: failed reading bRefClkFreq. err = %d\n",
__func__, err);
goto out;
}
if ((ref_clk < 0) || (ref_clk > REF_CLK_FREQ_52_MHZ)) {
dev_err(hba->dev, "%s: invalid ref_clk setting = %d\n",
__func__, ref_clk);
err = -EINVAL;
goto out;
}
if (ref_clk == hba->dev_ref_clk_freq)
goto out; /* nothing to update */
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0,
&hba->dev_ref_clk_freq);
if (err)
dev_err(hba->dev, "%s: bRefClkFreq setting to %s failed\n",
__func__, ref_clk_freqs[hba->dev_ref_clk_freq]);
else
/*
* It is good to print this out here to debug any later failures
* related to gear switch.
*/
dev_info(hba->dev, "%s: bRefClkFreq setting to %s succeeded\n",
__func__, ref_clk_freqs[hba->dev_ref_clk_freq]);
out:
return err;
}
static int ufshcd_get_dev_ref_clk_gating_wait(struct ufs_hba *hba,
struct ufs_dev_desc *dev_desc)
{
int err = 0;
u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
if (dev_desc->wspecversion >= 0x300) {
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
&gating_wait);
if (err)
dev_err(hba->dev, "failed reading bRefClkGatingWait. err = %d, use default %uus\n",
err, gating_wait);
if (gating_wait == 0) {
gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
dev_err(hba->dev, "undefined ref clk gating wait time, use default %uus\n",
gating_wait);
}
}
hba->dev_ref_clk_gating_wait = gating_wait;
return err;
}
/*
* UN policy
* 20 digits : manid + mandate + serial number
* (sec, hynix : 7byte hex, toshiba : 6byte + 00, ascii)
*/
static void ufs_set_sec_unique_number(struct ufs_hba *hba,
u8 *str_desc_buf, u8 *desc_buf)
{
u8 manid;
u8 snum_buf[UFS_UN_MAX_DIGITS + 1];
manid = hba->dev_info.w_manufacturer_id & 0xFF;
memset(hba->unique_number, 0, sizeof(hba->unique_number));
memset(snum_buf, 0, sizeof(snum_buf));
memcpy(snum_buf, str_desc_buf + QUERY_DESC_HDR_SIZE, SERIAL_NUM_SIZE);
sprintf(hba->unique_number, "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
manid,
desc_buf[DEVICE_DESC_PARAM_MANF_DATE],
desc_buf[DEVICE_DESC_PARAM_MANF_DATE + 1],
snum_buf[0], snum_buf[1], snum_buf[2], snum_buf[3],
snum_buf[4], snum_buf[5], snum_buf[6]);
/* Null terminate the unique number string */
hba->unique_number[UFS_UN_MAX_DIGITS] = '\0';
hba->dev_info.w_manufacturer_date =
desc_buf[DEVICE_DESC_PARAM_MANF_DATE] << 8 |
desc_buf[DEVICE_DESC_PARAM_MANF_DATE + 1];
}
static int ufs_read_device_desc_data(struct ufs_hba *hba)
{
int err = 0;
u8 str_desc_buf[QUERY_DESC_STRING_MAX_SIZE + 1];
u8 health_buf[QUERY_DESC_HEALTH_DEF_SIZE];
u8 serial_num_index;
u8 *desc_buf = NULL;
if (hba->desc_size.dev_desc) {
desc_buf = kmalloc(hba->desc_size.dev_desc, GFP_KERNEL);
if (!desc_buf) {
err = -ENOMEM;
dev_err(hba->dev,
"%s: Failed to allocate desc_buf\n", __func__);
return err;
}
}
err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc);
if (err)
goto out;
/*
* getting vendor (manufacturerID) and Bank Index in big endian
* format
*/
hba->dev_info.w_manufacturer_id =
desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
hba->dev_info.b_device_sub_class =
desc_buf[DEVICE_DESC_PARAM_DEVICE_SUB_CLASS];
hba->dev_info.i_product_name = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
hba->dev_info.w_spec_version =
desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
serial_num_index = desc_buf[DEVICE_DESC_PARAM_SN];
memset(str_desc_buf, 0, QUERY_DESC_STRING_MAX_SIZE);
err = ufshcd_read_string_desc(hba, serial_num_index,
str_desc_buf, QUERY_DESC_STRING_MAX_SIZE, UTF16_STD);
if (err)
goto out;
str_desc_buf[QUERY_DESC_STRING_MAX_SIZE] = '\0';
ufs_set_sec_unique_number(hba, str_desc_buf, desc_buf);
err = ufshcd_read_desc(hba, QUERY_DESC_IDN_HEALTH, 0, health_buf,
QUERY_DESC_HEALTH_DEF_SIZE);
if (err) {
hba->dev_info.i_lt = 0x0;
dev_err(hba->dev, "%s: HEALTH desc read fail, err = %d\n",
__func__, err);
} else {
hba->dev_info.i_lt = health_buf[HEALTH_DESC_PARAM_LIFE_TIME_EST_A];
dev_info(hba->dev, "LT: 0x%01x%01x\n",
health_buf[HEALTH_DESC_PARAM_LIFE_TIME_EST_A],
health_buf[HEALTH_DESC_PARAM_LIFE_TIME_EST_B]);
}
out:
kfree(desc_buf);
return err;
}
static int ufshcd_reset_all_before_retry_setup_link(struct ufs_hba *hba)
{
int err = 0;
err = ufshcd_vops_full_reset(hba);
if (err)
dev_warn(hba->dev, "%s: full reset returned %d\n",
__func__, err);
err = ufshcd_reset_device(hba);
if (err)
dev_warn(hba->dev, "%s: device reset failed. err %d\n",
__func__, err);
ufshcd_hba_stop(hba, false);
/* scale up clocks to max frequency before full reinitialization */
ufshcd_set_clk_freq(hba, true);
err = ufshcd_hba_enable(hba);
if (err)
dev_warn(hba->dev, "%s: hba_enable failed. err %d\n",
__func__, err);
return err;
}
/**
* ufshcd_probe_hba - probe hba to detect device and initialize
* @hba: per-adapter instance
*
* Execute link-startup and verify device initialization
*/
static int ufshcd_probe_hba(struct ufs_hba *hba)
{
struct ufs_dev_desc card = {0};
int ret;
ktime_t start = ktime_get();
int link_retry_count = 0;
unsigned long flags;
retry:
mdelay(5);
ret = ufshcd_link_startup(hba);
if (ret)
goto out;
/* Debug counters initialization */
ufshcd_clear_dbg_ufs_stats(hba);
/* set the default level for urgent bkops */
hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
hba->is_urgent_bkops_lvl_checked = false;
/* UniPro link is active now */
ufshcd_set_link_active(hba);
ret = ufshcd_verify_dev_init(hba);
if (ret)
goto out;
ret = ufshcd_complete_dev_init(hba);
if (ret)
goto out;
/* clear any previous UFS device information */
memset(&hba->dev_info, 0, sizeof(hba->dev_info));
/* cache important parameters from device descriptor for later use */
ret = ufs_read_device_desc_data(hba);
if (ret)
goto out;
/* Init check for device descriptor sizes */
ufshcd_init_desc_sizes(hba);
ret = ufs_get_device_desc(hba, &card);
if (ret) {
dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
__func__, ret);
goto out;
}
if (card.wspecversion >= 0x300 && !hba->reinit_g4_rate_A) {
unsigned long flags;
int err;
hba->reinit_g4_rate_A = true;
err = ufshcd_vops_full_reset(hba);
if (err)
dev_warn(hba->dev, "%s: full reset returned %d\n",
__func__, err);
err = ufshcd_reset_device(hba);
if (err)
dev_warn(hba->dev, "%s: device reset failed. err %d\n",
__func__, err);
/* Reset the host controller */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_hba_stop(hba, false);
spin_unlock_irqrestore(hba->host->host_lock, flags);
ret = ufshcd_hba_enable(hba);
if (ret)
goto out;
goto retry;
}
ufs_fixup_device_setup(hba, &card);
ufshcd_tune_unipro_params(hba);
ufshcd_apply_pm_quirks(hba);
if (card.wspecversion < 0x300) {
ret = ufshcd_set_vccq_rail_unused(hba,
(hba->dev_info.quirks & UFS_DEVICE_NO_VCCQ) ?
true : false);
if (ret)
goto out;
}
/* UFS device is also active now */
ufshcd_set_ufs_dev_active(hba);
ufshcd_force_reset_auto_bkops(hba);
if (ufshcd_get_max_pwr_mode(hba)) {
dev_err(hba->dev,
"%s: Failed getting max supported power mode\n",
__func__);
} else {
ufshcd_get_dev_ref_clk_gating_wait(hba, &card);
/*
* Set the right value to bRefClkFreq before attempting to
* switch to HS gears.
*/
ufshcd_set_dev_ref_clk(hba);
ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
if (ret) {
dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
__func__, ret);
goto out;
}
}
/*
* bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
* and for removable UFS card as well, hence always set the parameter.
* Note: Error handler may issue the device reset hence resetting
* bActiveICCLevel as well so it is always safe to set this here.
*/
ufshcd_set_active_icc_lvl(hba);
/* set the state as operational after switching to desired gear */
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
if (hba->support_tw) {
if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
hba->SEC_tw_info.tw_state_ts = jiffies;
get_monotonic_boottime(&(hba->SEC_tw_info_old.timestamp));
}
}
#endif
/*
* If we are in error handling context or in power management callbacks
* context, no need to scan the host
*/
if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
bool flag;
if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
QUERY_FLAG_IDN_PWR_ON_WPE, &flag))
hba->dev_info.f_power_on_wp_en = flag;
/* Add required well known logical units to scsi mid layer */
ret = ufshcd_scsi_add_wlus(hba);
if (ret)
goto out;
/* lower VCC voltage level */
ufshcd_set_low_vcc_level(hba, &card);
/* Initialize devfreq after UFS device is detected */
if (ufshcd_is_clkscaling_supported(hba)) {
memcpy(&hba->clk_scaling.saved_pwr_info.info,
&hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
hba->clk_scaling.saved_pwr_info.is_valid = true;
hba->clk_scaling.is_scaled_up = true;
if (!hba->devfreq) {
ret = ufshcd_devfreq_init(hba);
if (ret)
goto out;
}
hba->clk_scaling.is_allowed = true;
}
scsi_scan_host(hba->host);
pm_runtime_put_sync(hba->dev);
}
/*
* Enable auto hibern8 if supported, after full host and
* device initialization.
*/
ufshcd_set_auto_hibern8_timer(hba, hba->hibern8_on_idle.delay_ms);
out:
if (ret && link_retry_count++ < UFS_LINK_SETUP_RETRIES) {
dev_err(hba->dev, "%s: error with %d, and will be reset.(%d)\n",
__func__, ret, link_retry_count);
#if defined(CONFIG_SCSI_UFS_TEST_MODE)
ufshcd_vops_dbg_register_dump(hba, false);
#endif
if (!ufshcd_reset_all_before_retry_setup_link(hba))
goto retry;
}
if (ret) {
dev_err(hba->dev, "%s: UFS link setup is failed with %d.\n",
__func__, ret);
ufsdbg_set_err_state(hba);
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_host_regs(hba);
ufshcd_print_cmd_log(hba);
ufshcd_set_ufs_dev_poweroff(hba);
ufshcd_set_link_off(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->ufshcd_state = UFSHCD_STATE_ERROR;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (hba->extcon) {
if (!ufshcd_is_card_online(hba))
ufsdbg_clr_err_state(hba);
ufshcd_set_card_offline(hba);
}
} else if (hba->extcon) {
ufshcd_set_card_online(hba);
}
/*
* If we failed to initialize the device or the device is not
* present, turn off the power/clocks etc.
*/
if (ret && !ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress)
pm_runtime_put_sync(hba->dev);
trace_ufshcd_init(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
static void ufshcd_remove_device(struct ufs_hba *hba)
{
struct scsi_device *sdev;
struct scsi_device *sdev_cache[UFS_MAX_LUS];
int sdev_count = 0, i;
unsigned long flags;
ufshcd_hold_all(hba);
/* Reset the host controller */
spin_lock_irqsave(hba->host->host_lock, flags);
hba->silence_err_logs = true;
ufshcd_hba_stop(hba, false);
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_set_ufs_dev_poweroff(hba);
ufshcd_set_link_off(hba);
__ufshcd_shutdown_clkscaling(hba);
/* Complete requests that have door-bell cleared by h/w */
ufshcd_complete_requests(hba);
/* remove all scsi devices */
list_for_each_entry(sdev, &hba->host->__devices, siblings) {
if (sdev_count < UFS_MAX_LUS) {
sdev_cache[sdev_count] = sdev;
sdev_count++;
}
}
for (i = 0; i < sdev_count; i++)
scsi_remove_device(sdev_cache[i]);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->silence_err_logs = false;
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_release_all(hba);
}
static void ufshcd_card_detect_handler(struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, card_detect_work);
if (ufshcd_is_card_online(hba) && !hba->sdev_ufs_device) {
pm_runtime_get_sync(hba->dev);
ufshcd_detect_device(hba);
/* ufshcd_probe_hba() calls pm_runtime_put_sync() on exit */
} else if (ufshcd_is_card_offline(hba) && hba->sdev_ufs_device) {
pm_runtime_get_sync(hba->dev);
ufshcd_remove_device(hba);
pm_runtime_put_sync(hba->dev);
ufsdbg_clr_err_state(hba);
}
}
static int ufshcd_card_detect_notifier(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct ufs_hba *hba = container_of(nb, struct ufs_hba, card_detect_nb);
if (event)
ufshcd_set_card_online(hba);
else
ufshcd_set_card_offline(hba);
if (ufshcd_is_card_offline(hba) && !hba->sdev_ufs_device)
goto out;
/*
* card insertion/removal are very infrequent events and having this
* message helps if there is some issue with card detection/removal.
*/
dev_info(hba->dev, "%s: card %s notification rcvd\n",
__func__, ufshcd_is_card_online(hba) ? "inserted" : "removed");
schedule_work(&hba->card_detect_work);
out:
return NOTIFY_DONE;
}
static int ufshcd_extcon_register(struct ufs_hba *hba)
{
int ret;
if (!hba->extcon)
return 0;
hba->card_detect_nb.notifier_call = ufshcd_card_detect_notifier;
ret = extcon_register_notifier(hba->extcon,
EXTCON_MECHANICAL,
&hba->card_detect_nb);
if (ret)
dev_err(hba->dev, "%s: extcon_register_notifier() failed, ret %d\n",
__func__, ret);
return ret;
}
static int ufshcd_extcon_unregister(struct ufs_hba *hba)
{
int ret;
if (!hba->extcon)
return 0;
ret = extcon_unregister_notifier(hba->extcon, EXTCON_MECHANICAL,
&hba->card_detect_nb);
if (ret)
dev_err(hba->dev, "%s: extcon_unregister_notifier() failed, ret %d\n",
__func__, ret);
return ret;
}
/**
* ufshcd_async_scan - asynchronous execution for probing hba
* @data: data pointer to pass to this function
* @cookie: cookie data
*/
static void ufshcd_async_scan(void *data, async_cookie_t cookie)
{
struct ufs_hba *hba = (struct ufs_hba *)data;
int ret, retry = 3;
/*
* Don't allow clock gating and hibern8 enter for faster device
* detection.
*/
pm_runtime_get_sync(hba->dev);
ufshcd_hold_all(hba);
ret = ufshcd_probe_hba(hba);
while (ret && retry) {
pr_err("%s failed. Err = %d. Retry %d\n", __func__, ret, retry);
ret = ufshcd_reset_and_restore(hba);
retry--;
}
ufshcd_release_all(hba);
pm_runtime_put_sync(hba->dev);
ufshcd_extcon_register(hba);
}
static enum blk_eh_timer_return ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
{
unsigned long flags;
struct Scsi_Host *host;
struct ufs_hba *hba;
int index;
bool found = false;
if (!scmd || !scmd->device || !scmd->device->host)
return BLK_EH_NOT_HANDLED;
host = scmd->device->host;
hba = shost_priv(host);
if (!hba)
return BLK_EH_NOT_HANDLED;
spin_lock_irqsave(host->host_lock, flags);
for_each_set_bit(index, &hba->outstanding_reqs, hba->nutrs) {
if (hba->lrb[index].cmd == scmd) {
found = true;
break;
}
}
spin_unlock_irqrestore(host->host_lock, flags);
/*
* Bypass SCSI error handling and reset the block layer timer if this
* SCSI command was not actually dispatched to UFS driver, otherwise
* let SCSI layer handle the error as usual.
*/
return found ? BLK_EH_NOT_HANDLED : BLK_EH_RESET_TIMER;
}
/**
* ufshcd_query_ioctl - perform user read queries
* @hba: per-adapter instance
* @lun: used for lun specific queries
* @buffer: user space buffer for reading and submitting query data and params
* @return: 0 for success negative error code otherwise
*
* Expected/Submitted buffer structure is struct ufs_ioctl_query_data.
* It will read the opcode, idn and buf_length parameters, and, put the
* response in the buffer field while updating the used size in buf_length.
*/
static int ufshcd_query_ioctl(struct ufs_hba *hba, u8 lun, void __user *buffer)
{
struct ufs_ioctl_query_data *ioctl_data;
int err = 0;
int length = 0;
void *data_ptr;
bool flag;
u32 att;
u8 index;
u8 *desc = NULL;
ioctl_data = kzalloc(sizeof(struct ufs_ioctl_query_data), GFP_KERNEL);
if (!ioctl_data) {
dev_err(hba->dev, "%s: Failed allocating %zu bytes\n", __func__,
sizeof(struct ufs_ioctl_query_data));
err = -ENOMEM;
goto out;
}
/* extract params from user buffer */
err = copy_from_user(ioctl_data, buffer,
sizeof(struct ufs_ioctl_query_data));
if (err) {
dev_err(hba->dev,
"%s: Failed copying buffer from user, err %d\n",
__func__, err);
goto out_release_mem;
}
/* verify legal parameters & send query */
switch (ioctl_data->opcode) {
case UPIU_QUERY_OPCODE_READ_DESC:
switch (ioctl_data->idn) {
case QUERY_DESC_IDN_DEVICE:
case QUERY_DESC_IDN_CONFIGURATION:
case QUERY_DESC_IDN_INTERCONNECT:
case QUERY_DESC_IDN_GEOMETRY:
case QUERY_DESC_IDN_POWER:
case QUERY_DESC_IDN_HEALTH:
index = 0;
break;
case QUERY_DESC_IDN_STRING:
index = 0;
if (ioctl_data->buf_size > 0) {
/* extract params from user buffer */
err = copy_from_user(&index,
buffer + sizeof(struct ufs_ioctl_query_data),
sizeof(u8));
if (err) {
dev_err(hba->dev,
"%s: Failed copying buffer from user, err %d\n",
__func__, err);
goto out_release_mem;
}
}
break;
case QUERY_DESC_IDN_UNIT:
if (!ufs_is_valid_unit_desc_lun(lun)) {
dev_err(hba->dev,
"%s: No unit descriptor for lun 0x%x\n",
__func__, lun);
err = -EINVAL;
goto out_release_mem;
}
index = lun;
break;
default:
goto out_einval;
}
length = min_t(int, QUERY_DESC_MAX_SIZE,
ioctl_data->buf_size);
desc = kzalloc(length, GFP_KERNEL);
if (!desc) {
dev_err(hba->dev, "%s: Failed allocating %d bytes\n",
__func__, length);
err = -ENOMEM;
goto out_release_mem;
}
err = ufshcd_query_descriptor_retry(hba, ioctl_data->opcode,
ioctl_data->idn, index, 0, desc, &length);
break;
case UPIU_QUERY_OPCODE_READ_ATTR:
switch (ioctl_data->idn) {
case QUERY_ATTR_IDN_BOOT_LU_EN:
case QUERY_ATTR_IDN_POWER_MODE:
case QUERY_ATTR_IDN_ACTIVE_ICC_LVL:
case QUERY_ATTR_IDN_OOO_DATA_EN:
case QUERY_ATTR_IDN_BKOPS_STATUS:
case QUERY_ATTR_IDN_PURGE_STATUS:
case QUERY_ATTR_IDN_MAX_DATA_IN:
case QUERY_ATTR_IDN_MAX_DATA_OUT:
case QUERY_ATTR_IDN_REF_CLK_FREQ:
case QUERY_ATTR_IDN_CONF_DESC_LOCK:
case QUERY_ATTR_IDN_MAX_NUM_OF_RTT:
case QUERY_ATTR_IDN_EE_CONTROL:
case QUERY_ATTR_IDN_EE_STATUS:
case QUERY_ATTR_IDN_SECONDS_PASSED:
index = 0;
break;
case QUERY_ATTR_IDN_DYN_CAP_NEEDED:
case QUERY_ATTR_IDN_CORR_PRG_BLK_NUM:
index = lun;
break;
default:
goto out_einval;
}
err = ufshcd_query_attr(hba, ioctl_data->opcode, ioctl_data->idn,
index, 0, &att);
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
switch (ioctl_data->idn) {
case QUERY_FLAG_IDN_FDEVICEINIT:
case QUERY_FLAG_IDN_PERMANENT_WPE:
case QUERY_FLAG_IDN_PWR_ON_WPE:
case QUERY_FLAG_IDN_BKOPS_EN:
case QUERY_FLAG_IDN_PURGE_ENABLE:
case QUERY_FLAG_IDN_FPHYRESOURCEREMOVAL:
case QUERY_FLAG_IDN_BUSY_RTC:
break;
default:
goto out_einval;
}
err = ufshcd_query_flag_retry(hba, ioctl_data->opcode,
ioctl_data->idn, &flag);
break;
default:
goto out_einval;
}
if (err) {
dev_err(hba->dev, "%s: Query for idn %d failed\n", __func__,
ioctl_data->idn);
goto out_release_mem;
}
/*
* copy response data
* As we might end up reading less data then what is specified in
* "ioctl_data->buf_size". So we are updating "ioctl_data->
* buf_size" to what exactly we have read.
*/
switch (ioctl_data->opcode) {
case UPIU_QUERY_OPCODE_READ_DESC:
ioctl_data->buf_size = min_t(int, ioctl_data->buf_size, length);
data_ptr = desc;
break;
case UPIU_QUERY_OPCODE_READ_ATTR:
ioctl_data->buf_size = sizeof(u32);
data_ptr = &att;
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
ioctl_data->buf_size = 1;
data_ptr = &flag;
break;
default:
goto out_einval;
}
/* copy to user */
err = copy_to_user(buffer, ioctl_data,
sizeof(struct ufs_ioctl_query_data));
if (err)
dev_err(hba->dev, "%s: Failed copying back to user.\n",
__func__);
err = copy_to_user(buffer + sizeof(struct ufs_ioctl_query_data),
data_ptr, ioctl_data->buf_size);
if (err)
dev_err(hba->dev, "%s: err %d copying back to user.\n",
__func__, err);
goto out_release_mem;
out_einval:
dev_err(hba->dev,
"%s: illegal ufs query ioctl data, opcode 0x%x, idn 0x%x\n",
__func__, ioctl_data->opcode, (unsigned int)ioctl_data->idn);
err = -EINVAL;
out_release_mem:
kfree(ioctl_data);
kfree(desc);
out:
return err;
}
/**
* ufshcd_ioctl - ufs ioctl callback registered in scsi_host
* @dev: scsi device required for per LUN queries
* @cmd: command opcode
* @buffer: user space buffer for transferring data
*
* Supported commands:
* UFS_IOCTL_QUERY
*/
static int ufshcd_ioctl(struct scsi_device *dev, int cmd, void __user *buffer)
{
struct ufs_hba *hba = shost_priv(dev->host);
int err = 0;
BUG_ON(!hba);
switch (cmd) {
case UFS_IOCTL_QUERY:
if (!buffer) {
dev_err(hba->dev, "%s: User buffer is NULL!\n",
__func__);
return -EINVAL;
}
pm_runtime_get_sync(hba->dev);
err = ufshcd_query_ioctl(hba, ufshcd_scsi_to_upiu_lun(dev->lun),
buffer);
pm_runtime_put_sync(hba->dev);
break;
default:
err = -ENOIOCTLCMD;
dev_dbg(hba->dev, "%s: Unsupported ioctl cmd %d\n", __func__,
cmd);
break;
}
return err;
}
static struct scsi_host_template ufshcd_driver_template = {
.module = THIS_MODULE,
.name = UFSHCD,
.proc_name = UFSHCD,
.queuecommand = ufshcd_queuecommand,
.slave_alloc = ufshcd_slave_alloc,
.slave_configure = ufshcd_slave_configure,
.slave_destroy = ufshcd_slave_destroy,
.change_queue_depth = ufshcd_change_queue_depth,
.eh_abort_handler = ufshcd_abort,
.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
.eh_host_reset_handler = ufshcd_eh_host_reset_handler,
.eh_timed_out = ufshcd_eh_timed_out,
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
.tw_ctrl = ufshcd_tw_ctrl,
#endif
.ioctl = ufshcd_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ufshcd_ioctl,
#endif
.this_id = -1,
.sg_tablesize = SG_ALL,
.cmd_per_lun = UFSHCD_CMD_PER_LUN,
.can_queue = UFSHCD_CAN_QUEUE,
.max_host_blocked = 1,
.track_queue_depth = 1,
};
static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
int ua)
{
int ret;
if (!vreg)
return 0;
/*
* "set_load" operation shall be required on those regulators
* which specifically configured current limitation. Otherwise
* zero max_uA may cause unexpected behavior when regulator is
* enabled or set as high power mode.
*/
if (!vreg->max_uA)
return 0;
ret = regulator_set_load(vreg->reg, ua);
if (ret < 0) {
dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
__func__, vreg->name, ua, ret);
}
return ret;
}
static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
struct ufs_vreg *vreg)
{
if (!vreg)
return 0;
else if (vreg->unused)
return 0;
else
return ufshcd_config_vreg_load(hba->dev, vreg,
UFS_VREG_LPM_LOAD_UA);
}
static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
struct ufs_vreg *vreg)
{
if (!vreg)
return 0;
else if (vreg->unused)
return 0;
else
return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
}
static int ufshcd_config_vreg(struct device *dev,
struct ufs_vreg *vreg, bool on)
{
int ret = 0;
struct regulator *reg;
const char *name;
int min_uV, uA_load;
BUG_ON(!vreg);
reg = vreg->reg;
name = vreg->name;
if (regulator_count_voltages(reg) > 0) {
uA_load = on ? vreg->max_uA : 0;
ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
if (ret)
goto out;
if (vreg->min_uV && vreg->max_uV) {
min_uV = on ? vreg->min_uV : 0;
if (vreg->low_voltage_sup && !vreg->low_voltage_active)
min_uV = vreg->max_uV;
ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
if (ret) {
dev_err(dev,
"%s: %s set voltage failed, err=%d\n",
__func__, name, ret);
goto out;
}
}
}
out:
return ret;
}
static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (!vreg)
goto out;
else if (vreg->enabled || vreg->unused)
goto out;
ret = ufshcd_config_vreg(dev, vreg, true);
if (!ret)
ret = regulator_enable(vreg->reg);
if (!ret)
vreg->enabled = true;
else
dev_err(dev, "%s: %s enable failed, err=%d\n",
__func__, vreg->name, ret);
out:
return ret;
}
static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (!vreg)
goto out;
else if (!vreg->enabled || vreg->unused)
goto out;
ret = regulator_disable(vreg->reg);
if (!ret) {
/* ignore errors on applying disable config */
ufshcd_config_vreg(dev, vreg, false);
vreg->enabled = false;
} else {
dev_err(dev, "%s: %s disable failed, err=%d\n",
__func__, vreg->name, ret);
}
out:
return ret;
}
static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
{
int ret = 0;
struct device *dev = hba->dev;
struct ufs_vreg_info *info = &hba->vreg_info;
if (!info)
goto out;
ret = ufshcd_toggle_vreg(dev, info->vcc, on);
if (ret)
goto out;
ret = ufshcd_toggle_vreg(dev, info->vccq, on);
if (ret)
goto out;
ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
if (ret)
goto out;
out:
if (ret) {
ufshcd_toggle_vreg(dev, info->vccq2, false);
ufshcd_toggle_vreg(dev, info->vccq, false);
ufshcd_toggle_vreg(dev, info->vcc, false);
}
return ret;
}
static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
{
struct ufs_vreg_info *info = &hba->vreg_info;
int ret = 0;
if (info->vdd_hba) {
ret = ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
if (!ret)
ufshcd_vops_update_sec_cfg(hba, on);
}
return ret;
}
static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (!vreg)
goto out;
vreg->reg = devm_regulator_get(dev, vreg->name);
if (IS_ERR(vreg->reg)) {
ret = PTR_ERR(vreg->reg);
dev_err(dev, "%s: %s get failed, err=%d\n",
__func__, vreg->name, ret);
}
out:
return ret;
}
static int ufshcd_init_vreg(struct ufs_hba *hba)
{
int ret = 0;
struct device *dev = hba->dev;
struct ufs_vreg_info *info = &hba->vreg_info;
if (!info)
goto out;
ret = ufshcd_get_vreg(dev, info->vcc);
if (ret)
goto out;
ret = ufshcd_get_vreg(dev, info->vccq);
if (ret)
goto out;
ret = ufshcd_get_vreg(dev, info->vccq2);
out:
return ret;
}
static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
{
struct ufs_vreg_info *info = &hba->vreg_info;
if (info)
return ufshcd_get_vreg(hba->dev, info->vdd_hba);
return 0;
}
static int ufshcd_set_vccq_rail_unused(struct ufs_hba *hba, bool unused)
{
int ret = 0;
struct ufs_vreg_info *info = &hba->vreg_info;
if (!info)
goto out;
else if (!info->vccq)
goto out;
if (unused) {
/* shut off the rail here */
ret = ufshcd_toggle_vreg(hba->dev, info->vccq, false);
/*
* Mark this rail as no longer used, so it doesn't get enabled
* later by mistake
*/
if (!ret)
info->vccq->unused = true;
} else {
/*
* rail should have been already enabled hence just make sure
* that unused flag is cleared.
*/
info->vccq->unused = false;
}
out:
return ret;
}
static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
bool keep_link_active, bool is_gating_context)
{
int ret = 0;
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
unsigned long flags;
ktime_t start = ktime_get();
bool clk_state_changed = false;
if (list_empty(head))
goto out;
/* call vendor specific bus vote before enabling the clocks */
if (on) {
ret = ufshcd_vops_set_bus_vote(hba, on);
if (ret)
return ret;
}
/*
* vendor specific setup_clocks ops may depend on clocks managed by
* this standard driver hence call the vendor specific setup_clocks
* before disabling the clocks managed here.
*/
if (!on) {
ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
if (ret)
return ret;
}
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
/*
* To keep link active, both device ref clock and unipro
* clock should be kept ON.
*/
if (keep_link_active &&
(!strcmp(clki->name, "ref_clk") ||
!strcmp(clki->name, "core_clk_unipro")))
continue;
clk_state_changed = on ^ clki->enabled;
if (on && !clki->enabled) {
ret = clk_prepare_enable(clki->clk);
if (ret) {
dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
__func__, clki->name, ret);
goto out;
}
} else if (!on && clki->enabled) {
clk_disable_unprepare(clki->clk);
}
clki->enabled = on;
dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
clki->name, on ? "en" : "dis");
}
}
/*
* vendor specific setup_clocks ops may depend on clocks managed by
* this standard driver hence call the vendor specific setup_clocks
* after enabling the clocks managed here.
*/
if (on) {
ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
if (ret)
goto out;
}
/*
* call vendor specific bus vote to remove the vote after
* disabling the clocks.
*/
if (!on)
ret = ufshcd_vops_set_bus_vote(hba, on);
out:
if (ret) {
if (on)
/* Can't do much if this fails */
(void) ufshcd_vops_set_bus_vote(hba, false);
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
clk_disable_unprepare(clki->clk);
}
} else if (!ret && on) {
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* restore the secure configuration as clocks are enabled */
ufshcd_vops_update_sec_cfg(hba, true);
}
if (clk_state_changed)
trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
(on ? "on" : "off"),
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
return ret;
}
static int ufshcd_enable_clocks(struct ufs_hba *hba)
{
return ufshcd_setup_clocks(hba, true, false, false);
}
static int ufshcd_disable_clocks(struct ufs_hba *hba,
bool is_gating_context)
{
return ufshcd_setup_clocks(hba, false, false, is_gating_context);
}
static int ufshcd_disable_clocks_keep_link_active(struct ufs_hba *hba,
bool is_gating_context)
{
return ufshcd_setup_clocks(hba, false, true, is_gating_context);
}
static int ufshcd_init_clocks(struct ufs_hba *hba)
{
int ret = 0;
struct ufs_clk_info *clki;
struct device *dev = hba->dev;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
goto out;
list_for_each_entry(clki, head, list) {
if (!clki->name)
continue;
clki->clk = devm_clk_get(dev, clki->name);
if (IS_ERR(clki->clk)) {
ret = PTR_ERR(clki->clk);
dev_err(dev, "%s: %s clk get failed, %d\n",
__func__, clki->name, ret);
goto out;
}
if (clki->max_freq) {
ret = clk_set_rate(clki->clk, clki->max_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->max_freq, ret);
goto out;
}
clki->curr_freq = clki->max_freq;
}
dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
clki->name, clk_get_rate(clki->clk));
}
out:
return ret;
}
static int ufshcd_variant_hba_init(struct ufs_hba *hba)
{
int err = 0;
if (!hba->var || !hba->var->vops)
goto out;
err = ufshcd_vops_init(hba);
if (err)
dev_err(hba->dev, "%s: variant %s init failed err %d\n",
__func__, ufshcd_get_var_name(hba), err);
out:
return err;
}
static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
{
if (!hba->var || !hba->var->vops)
return;
ufshcd_vops_exit(hba);
}
static int ufshcd_hba_init(struct ufs_hba *hba)
{
int err;
/*
* Handle host controller power separately from the UFS device power
* rails as it will help controlling the UFS host controller power
* collapse easily which is different than UFS device power collapse.
* Also, enable the host controller power before we go ahead with rest
* of the initialization here.
*/
err = ufshcd_init_hba_vreg(hba);
if (err)
goto out;
err = ufshcd_setup_hba_vreg(hba, true);
if (err)
goto out;
err = ufshcd_init_clocks(hba);
if (err)
goto out_disable_hba_vreg;
err = ufshcd_enable_clocks(hba);
if (err)
goto out_disable_hba_vreg;
err = ufshcd_init_vreg(hba);
if (err)
goto out_disable_clks;
err = ufshcd_setup_vreg(hba, true);
if (err)
goto out_disable_clks;
err = ufshcd_variant_hba_init(hba);
if (err)
goto out_disable_vreg;
hba->is_powered = true;
goto out;
out_disable_vreg:
ufshcd_setup_vreg(hba, false);
out_disable_clks:
ufshcd_disable_clocks(hba, false);
out_disable_hba_vreg:
ufshcd_setup_hba_vreg(hba, false);
out:
return err;
}
static void ufshcd_hba_exit(struct ufs_hba *hba)
{
if (hba->is_powered) {
ufshcd_extcon_unregister(hba);
ufshcd_variant_hba_exit(hba);
ufshcd_setup_vreg(hba, false);
if (ufshcd_is_clkscaling_supported(hba)) {
if (hba->devfreq)
ufshcd_suspend_clkscaling(hba);
if (hba->clk_scaling.workq)
destroy_workqueue(hba->clk_scaling.workq);
ufshcd_devfreq_remove(hba);
}
ufshcd_disable_clocks(hba, false);
ufshcd_setup_hba_vreg(hba, false);
hba->is_powered = false;
}
}
static int
ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
{
unsigned char cmd[6] = {REQUEST_SENSE,
0,
0,
0,
UFSHCD_REQ_SENSE_SIZE,
0};
char *buffer;
int ret;
buffer = kzalloc(UFSHCD_REQ_SENSE_SIZE, GFP_KERNEL);
if (!buffer) {
ret = -ENOMEM;
goto out;
}
ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
UFSHCD_REQ_SENSE_SIZE, NULL, NULL,
msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
if (ret)
pr_err("%s: failed with err %d\n", __func__, ret);
kfree(buffer);
out:
return ret;
}
/**
* ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
* power mode
* @hba: per adapter instance
* @pwr_mode: device power mode to set
*
* Returns 0 if requested power mode is set successfully
* Returns non-zero if failed to set the requested power mode
*/
static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
enum ufs_dev_pwr_mode pwr_mode)
{
unsigned char cmd[6] = { START_STOP };
struct scsi_sense_hdr sshdr;
struct scsi_device *sdp;
unsigned long flags;
int ret;
int retries = 0;
spin_lock_irqsave(hba->host->host_lock, flags);
sdp = hba->sdev_ufs_device;
if (sdp) {
ret = scsi_device_get(sdp);
if (!ret && !scsi_device_online(sdp)) {
ret = -ENODEV;
scsi_device_put(sdp);
}
} else {
ret = -ENODEV;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ret)
return ret;
/*
* If scsi commands fail, the scsi mid-layer schedules scsi error-
* handling, which would wait for host to be resumed. Since we know
* we are functional while we are here, skip host resume in error
* handling context.
*/
hba->host->eh_noresume = 1;
if (!hba->dev_info.is_ufs_dev_wlun_ua_cleared) {
ret = ufshcd_send_request_sense(hba, sdp);
if (ret)
goto out;
/* Unit attention condition is cleared now */
hba->dev_info.is_ufs_dev_wlun_ua_cleared = 1;
}
cmd[4] = pwr_mode << 4;
for (retries = 0; retries < 3; retries++) {
/*
* Current function would be generally called from the power management
* callbacks hence set the RQF_PM flag so that it doesn't resume the
* already suspended childs.
*/
ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
UFS_START_STOP_TIMEOUT, 2, 0, RQF_PM, NULL);
if (ret) {
sdev_printk(KERN_WARNING, sdp,
"START_STOP failed for power mode: %d, result %x, retries : %d\n",
pwr_mode, ret, retries);
if (driver_byte(ret) & DRIVER_SENSE)
scsi_print_sense_hdr(sdp, NULL, &sshdr);
}
else {
break;
}
}
if (!ret)
hba->curr_dev_pwr_mode = pwr_mode;
out:
scsi_device_put(sdp);
hba->host->eh_noresume = 0;
return ret;
}
static int ufshcd_link_state_transition(struct ufs_hba *hba,
enum uic_link_state req_link_state,
int check_for_bkops)
{
int ret = 0;
if (req_link_state == hba->uic_link_state)
return 0;
if (req_link_state == UIC_LINK_HIBERN8_STATE) {
ret = ufshcd_uic_hibern8_enter(hba);
if (!ret)
ufshcd_set_link_hibern8(hba);
else
goto out;
}
/*
* If autobkops is enabled, link can't be turned off because
* turning off the link would also turn off the device.
*/
else if ((req_link_state == UIC_LINK_OFF_STATE) &&
(!check_for_bkops || (check_for_bkops &&
!hba->auto_bkops_enabled))) {
/*
* Let's make sure that link is in low power mode, we are doing
* this currently by putting the link in Hibern8. Otherway to
* put the link in low power mode is to send the DME end point
* to device and then send the DME reset command to local
* unipro. But putting the link in hibern8 is much faster.
*/
ret = ufshcd_uic_hibern8_enter(hba);
if (ret)
goto out;
/*
* Change controller state to "reset state" which
* should also put the link in off/reset state
*/
ufshcd_hba_stop(hba, true);
/*
* TODO: Check if we need any delay to make sure that
* controller is reset
*/
ufshcd_set_link_off(hba);
}
out:
return ret;
}
static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
{
/*
* It seems some UFS devices may keep drawing more than sleep current
* (atleast for 500us) from UFS rails (especially from VCCQ rail).
* To avoid this situation, add 2ms delay before putting these UFS
* rails in LPM mode.
*/
if (!ufshcd_is_link_active(hba))
usleep_range(2000, 2100);
/*
* If UFS device is either in UFS_Sleep turn off VCC rail to save some
* power.
*
* If UFS device and link is in OFF state, all power supplies (VCC,
* VCCQ, VCCQ2) can be turned off if power on write protect is not
* required. If UFS link is inactive (Hibern8 or OFF state) and device
* is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
*
* Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
* in low power state which would save some power.
*/
if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
!hba->dev_info.is_lu_power_on_wp) {
ufshcd_setup_vreg(hba, false);
} else if (!ufshcd_is_ufs_dev_active(hba)) {
ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
if (!ufshcd_is_link_active(hba)) {
ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
}
}
}
static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
{
int ret = 0;
if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
!hba->dev_info.is_lu_power_on_wp) {
ret = ufshcd_setup_vreg(hba, true);
} else if (!ufshcd_is_ufs_dev_active(hba)) {
if (!ret && !ufshcd_is_link_active(hba)) {
ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
if (ret)
goto vcc_disable;
ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
if (ret)
goto vccq_lpm;
}
ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
}
goto out;
vccq_lpm:
ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
vcc_disable:
ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
out:
return ret;
}
static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
{
if (ufshcd_is_link_off(hba) ||
(ufshcd_is_link_hibern8(hba)
&& ufshcd_is_power_collapse_during_hibern8_allowed(hba)))
ufshcd_setup_hba_vreg(hba, false);
}
static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
{
if (ufshcd_is_link_off(hba) ||
(ufshcd_is_link_hibern8(hba)
&& ufshcd_is_power_collapse_during_hibern8_allowed(hba)))
ufshcd_setup_hba_vreg(hba, true);
}
/**
* ufshcd_suspend - helper function for suspend operations
* @hba: per adapter instance
* @pm_op: desired low power operation type
*
* This function will try to put the UFS device and link into low power
* mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
* (System PM level).
*
* If this function is called during shutdown, it will make sure that
* both UFS device and UFS link is powered off.
*
* NOTE: UFS device & link must be active before we enter in this function.
*
* Returns 0 for success and non-zero for failure
*/
static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
int ret = 0;
enum ufs_pm_level pm_lvl;
enum ufs_dev_pwr_mode req_dev_pwr_mode;
enum uic_link_state req_link_state;
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
if (!mutex_trylock(&hba->tw_ctrl_mutex)) {
dev_err(hba->dev, "%s has failed %d.\n", __func__, -EBUSY);
return -EBUSY;
}
#endif
hba->pm_op_in_progress = 1;
if (!ufshcd_is_shutdown_pm(pm_op)) {
pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
hba->rpm_lvl : hba->spm_lvl;
req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
} else {
req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
req_link_state = UIC_LINK_OFF_STATE;
}
ret = ufshcd_crypto_suspend(hba, pm_op);
if (ret)
goto out;
/*
* If we can't transition into any of the low power modes
* just gate the clocks.
*/
WARN_ON(hba->hibern8_on_idle.is_enabled &&
hba->hibern8_on_idle.active_reqs);
ufshcd_hold_all(hba);
hba->clk_gating.is_suspended = true;
hba->hibern8_on_idle.is_suspended = true;
if (hba->clk_scaling.is_allowed) {
cancel_work_sync(&hba->clk_scaling.suspend_work);
cancel_work_sync(&hba->clk_scaling.resume_work);
ufshcd_suspend_clkscaling(hba);
}
if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
req_link_state == UIC_LINK_ACTIVE_STATE) {
goto disable_clks;
}
if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
(req_link_state == hba->uic_link_state))
goto enable_gating;
/* UFS device & link must be active before we enter in this function */
if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba))
goto disable_clks;
if (ufshcd_is_runtime_pm(pm_op)) {
if (ufshcd_can_autobkops_during_suspend(hba)) {
/*
* The device is idle with no requests in the queue,
* allow background operations if bkops status shows
* that performance might be impacted.
*/
ret = ufshcd_urgent_bkops(hba);
if (ret)
goto enable_gating;
} else {
/* make sure that auto bkops is disabled */
ufshcd_disable_auto_bkops(hba);
}
}
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
#if IS_ENABLED(CONFIG_SCSI_UFS_SUPPORT_TW_MAN_GC)
if (!ufshcd_is_shutdown_pm(pm_op) && hba->support_tw && ufshcd_is_system_pm(pm_op))
ufshcd_tw_flush_ctrl(hba);
#endif
if (ufshcd_is_system_pm(pm_op))
ufshcd_reset_tw(hba, true);
#endif
if ((req_dev_pwr_mode != hba->curr_dev_pwr_mode) &&
((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
!ufshcd_is_runtime_pm(pm_op))) {
/* ensure that bkops is disabled */
ret = ufshcd_disable_auto_bkops(hba);
if (ret)
goto enable_gating;
ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
if (ret)
goto enable_gating;
}
ret = ufshcd_link_state_transition(hba, req_link_state, 1);
if (ret)
goto set_dev_active;
if (ufshcd_is_link_hibern8(hba) &&
ufshcd_is_hibern8_on_idle_allowed(hba))
hba->hibern8_on_idle.state = HIBERN8_ENTERED;
disable_clks:
/*
* Call vendor specific suspend callback. As these callbacks may access
* vendor specific host controller register space call them before the
* host clocks are ON.
*/
ret = ufshcd_vops_suspend(hba, pm_op);
if (ret)
goto set_link_active;
/*
* Disable the host irq as host controller as there won't be any
* host controller transaction expected till resume.
*/
ufshcd_disable_irq(hba);
/* reset the connected UFS device during power down */
if (ufshcd_is_link_off(hba)) {
ret = ufshcd_assert_device_reset(hba);
if (ret)
goto set_link_active;
}
if (!ufshcd_is_link_active(hba))
ret = ufshcd_disable_clocks(hba, false);
else
/*
* If link is active, device ref_clk and unipro clock can't be
* switched off.
*/
ret = ufshcd_disable_clocks_keep_link_active(hba, false);
if (ret)
goto set_link_active;
if (ufshcd_is_clkgating_allowed(hba)) {
hba->clk_gating.state = CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
}
if (!hba->auto_bkops_enabled ||
!(req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
req_link_state == UIC_LINK_ACTIVE_STATE))
ufshcd_vreg_set_lpm(hba);
/* Put the host controller in low power mode if possible */
ufshcd_hba_vreg_set_lpm(hba);
goto out;
set_link_active:
ufshcd_enable_irq(hba);
if (hba->clk_scaling.is_allowed)
ufshcd_resume_clkscaling(hba);
ufshcd_vreg_set_hpm(hba);
if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) {
ufshcd_set_link_active(hba);
} else if (ufshcd_is_link_off(hba)) {
ufshcd_update_error_stats(hba, UFS_ERR_VOPS_SUSPEND);
ufshcd_deassert_device_reset(hba);
ufshcd_host_reset_and_restore(hba);
}
set_dev_active:
if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
ufshcd_disable_auto_bkops(hba);
enable_gating:
if (hba->clk_scaling.is_allowed)
ufshcd_resume_clkscaling(hba);
hba->hibern8_on_idle.is_suspended = false;
hba->clk_gating.is_suspended = false;
ufshcd_release_all(hba);
ufshcd_crypto_resume(hba, pm_op);
out:
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
if (!ret && (ufshcd_is_system_pm(pm_op) ||
ufshcd_is_shutdown_pm(pm_op)))
hba->tw_state_not_allowed = true;
#endif
hba->pm_op_in_progress = 0;
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
mutex_unlock(&hba->tw_ctrl_mutex);
#endif
if (ret)
ufshcd_update_error_stats(hba, UFS_ERR_SUSPEND);
return ret;
}
/**
* ufshcd_resume - helper function for resume operations
* @hba: per adapter instance
* @pm_op: runtime PM or system PM
*
* This function basically brings the UFS device, UniPro link and controller
* to active state.
*
* Returns 0 for success and non-zero for failure
*/
static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
int ret;
enum uic_link_state old_link_state;
enum ufs_dev_pwr_mode old_pwr_mode;
hba->pm_op_in_progress = 1;
old_link_state = hba->uic_link_state;
old_pwr_mode = hba->curr_dev_pwr_mode;
ufshcd_hba_vreg_set_hpm(hba);
ret = ufshcd_vreg_set_hpm(hba);
if (ret)
goto out;
/* Make sure clocks are enabled before accessing controller */
ret = ufshcd_enable_clocks(hba);
if (ret)
goto disable_vreg;
/* enable the host irq as host controller would be active soon */
ufshcd_enable_irq(hba);
if (hba->restore) {
/* Configure UTRL and UTMRL base address registers */
ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_H);
ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_H);
/* Commit the registers */
mb();
}
/*
* Call vendor specific resume callback. As these callbacks may access
* vendor specific host controller register space call them when the
* host clocks are ON.
*/
ret = ufshcd_vops_resume(hba, pm_op);
if (ret)
goto disable_irq_and_vops_clks;
if (hba->extcon &&
(ufshcd_is_card_offline(hba) ||
(ufshcd_is_card_online(hba) && !hba->sdev_ufs_device)))
goto skip_dev_ops;
/* Resuming from hibernate, assume that link was OFF */
if (hba->restore)
ufshcd_set_link_off(hba);
if (ufshcd_is_link_hibern8(hba)) {
ret = ufshcd_uic_hibern8_exit(hba);
if (!ret) {
ufshcd_set_link_active(hba);
if (ufshcd_is_hibern8_on_idle_allowed(hba))
hba->hibern8_on_idle.state = HIBERN8_EXITED;
} else {
goto vendor_suspend;
}
} else if (ufshcd_is_link_off(hba)) {
/*
* A full initialization of the host and the device is required
* since the link was put to off during suspend.
*/
ret = ufshcd_reset_and_restore(hba);
/*
* ufshcd_reset_and_restore() should have already
* set the link state as active
*/
if (ret || !ufshcd_is_link_active(hba))
goto vendor_suspend;
/* mark link state as hibern8 exited */
if (ufshcd_is_hibern8_on_idle_allowed(hba))
hba->hibern8_on_idle.state = HIBERN8_EXITED;
}
if (!ufshcd_is_ufs_dev_active(hba)) {
ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
if (ret)
goto set_old_link_state;
}
ret = ufshcd_crypto_resume(hba, pm_op);
if (ret)
goto set_old_dev_pwr_mode;
if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
ufshcd_enable_auto_bkops(hba);
else
/*
* If BKOPs operations are urgently needed at this moment then
* keep auto-bkops enabled or else disable it.
*/
ufshcd_urgent_bkops(hba);
hba->clk_gating.is_suspended = false;
hba->hibern8_on_idle.is_suspended = false;
if (hba->clk_scaling.is_allowed)
ufshcd_resume_clkscaling(hba);
skip_dev_ops:
/* Schedule clock gating in case of no access to UFS device yet */
ufshcd_release_all(hba);
goto out;
set_old_dev_pwr_mode:
if (old_pwr_mode != hba->curr_dev_pwr_mode)
ufshcd_set_dev_pwr_mode(hba, old_pwr_mode);
set_old_link_state:
ufshcd_link_state_transition(hba, old_link_state, 0);
if (ufshcd_is_link_hibern8(hba) &&
ufshcd_is_hibern8_on_idle_allowed(hba))
hba->hibern8_on_idle.state = HIBERN8_ENTERED;
vendor_suspend:
ufshcd_vops_suspend(hba, pm_op);
disable_irq_and_vops_clks:
ufshcd_disable_irq(hba);
if (hba->clk_scaling.is_allowed)
ufshcd_suspend_clkscaling(hba);
ufshcd_disable_clocks(hba, false);
if (ufshcd_is_clkgating_allowed(hba))
hba->clk_gating.state = CLKS_OFF;
disable_vreg:
ufshcd_vreg_set_lpm(hba);
out:
hba->pm_op_in_progress = 0;
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
if (!ret && hba->tw_state_not_allowed)
hba->tw_state_not_allowed = false;
#endif
if (hba->restore)
hba->restore = false;
if (ret)
ufshcd_update_error_stats(hba, UFS_ERR_RESUME);
return ret;
}
/**
* ufshcd_system_suspend - system suspend routine
* @hba: per adapter instance
* @pm_op: runtime PM or system PM
*
* Check the description of ufshcd_suspend() function for more details.
*
* Returns 0 for success and non-zero for failure
*/
int ufshcd_system_suspend(struct ufs_hba *hba)
{
int ret = 0;
ktime_t start = ktime_get();
if (!hba || !hba->is_powered)
return 0;
if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
hba->curr_dev_pwr_mode) &&
(ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
hba->uic_link_state))
goto out;
if (pm_runtime_suspended(hba->dev)) {
/*
* UFS device and/or UFS link low power states during runtime
* suspend seems to be different than what is expected during
* system suspend. Hence runtime resume the devic & link and
* let the system suspend low power states to take effect.
* TODO: If resume takes longer time, we might have optimize
* it in future by not resuming everything if possible.
*/
ret = ufshcd_runtime_resume(hba);
if (ret)
goto out;
}
ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
out:
trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
if (!ret)
hba->is_sys_suspended = true;
return ret;
}
EXPORT_SYMBOL(ufshcd_system_suspend);
/**
* ufshcd_system_resume - system resume routine
* @hba: per adapter instance
*
* Returns 0 for success and non-zero for failure
*/
int ufshcd_system_resume(struct ufs_hba *hba)
{
int ret = 0;
ktime_t start = ktime_get();
if (!hba)
return -EINVAL;
if (!hba->is_powered || pm_runtime_suspended(hba->dev))
/*
* Let the runtime resume take care of resuming
* if runtime suspended.
*/
goto out;
else
ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
out:
trace_ufshcd_system_resume(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
if (!ret)
hba->is_sys_suspended = false;
return ret;
}
EXPORT_SYMBOL(ufshcd_system_resume);
/**
* ufshcd_runtime_suspend - runtime suspend routine
* @hba: per adapter instance
*
* Check the description of ufshcd_suspend() function for more details.
*
* Returns 0 for success and non-zero for failure
*/
int ufshcd_runtime_suspend(struct ufs_hba *hba)
{
int ret = 0;
ktime_t start = ktime_get();
if (!hba)
return -EINVAL;
if (!hba->is_powered)
goto out;
else
ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
out:
trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
EXPORT_SYMBOL(ufshcd_runtime_suspend);
/**
* ufshcd_runtime_resume - runtime resume routine
* @hba: per adapter instance
*
* This function basically brings the UFS device, UniPro link and controller
* to active state. Following operations are done in this function:
*
* 1. Turn on all the controller related clocks
* 2. Bring the UniPro link out of Hibernate state
* 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
* to active state.
* 4. If auto-bkops is enabled on the device, disable it.
*
* So following would be the possible power state after this function return
* successfully:
* S1: UFS device in Active state with VCC rail ON
* UniPro link in Active state
* All the UFS/UniPro controller clocks are ON
*
* Returns 0 for success and non-zero for failure
*/
int ufshcd_runtime_resume(struct ufs_hba *hba)
{
int ret = 0;
ktime_t start = ktime_get();
if (!hba)
return -EINVAL;
if (!hba->is_powered)
goto out;
else
ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
out:
trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
EXPORT_SYMBOL(ufshcd_runtime_resume);
int ufshcd_runtime_idle(struct ufs_hba *hba)
{
return 0;
}
EXPORT_SYMBOL(ufshcd_runtime_idle);
int ufshcd_system_freeze(struct ufs_hba *hba)
{
int ret = 0;
/*
* Run time resume the controller to make sure
* the PM work queue threads do not try to resume
* the child (scsi host), which leads to errors as
* the controller is not yet resumed.
*/
pm_runtime_get_sync(hba->dev);
ret = ufshcd_system_suspend(hba);
pm_runtime_put_sync(hba->dev);
/*
* Ensure no runtime PM operations take
* place in the hibernation and restore sequence
* on successful freeze operation.
*/
if (!ret)
pm_runtime_disable(hba->dev);
return ret;
}
EXPORT_SYMBOL(ufshcd_system_freeze);
int ufshcd_system_restore(struct ufs_hba *hba)
{
int ret = 0;
hba->restore = true;
ret = ufshcd_system_resume(hba);
/*
* Now any runtime PM operations can be
* allowed on successful restore operation
*/
if (!ret)
pm_runtime_enable(hba->dev);
return ret;
}
EXPORT_SYMBOL(ufshcd_system_restore);
int ufshcd_system_thaw(struct ufs_hba *hba)
{
int ret = 0;
ret = ufshcd_system_resume(hba);
if (!ret)
pm_runtime_enable(hba->dev);
return ret;
}
EXPORT_SYMBOL(ufshcd_system_thaw);
static inline ssize_t ufshcd_pm_lvl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count,
bool rpm)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags, value;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
if (value >= UFS_PM_LVL_MAX)
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
if (rpm)
hba->rpm_lvl = value;
else
hba->spm_lvl = value;
ufshcd_apply_pm_quirks(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t ufshcd_rpm_lvl_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
int curr_len;
u8 lvl;
curr_len = snprintf(buf, PAGE_SIZE,
"\nCurrent Runtime PM level [%d] => dev_state [%s] link_state [%s]\n",
hba->rpm_lvl,
ufschd_ufs_dev_pwr_mode_to_string(
ufs_pm_lvl_states[hba->rpm_lvl].dev_state),
ufschd_uic_link_state_to_string(
ufs_pm_lvl_states[hba->rpm_lvl].link_state));
curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len),
"\nAll available Runtime PM levels info:\n");
for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++)
curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len),
"\tRuntime PM level [%d] => dev_state [%s] link_state [%s]\n",
lvl,
ufschd_ufs_dev_pwr_mode_to_string(
ufs_pm_lvl_states[lvl].dev_state),
ufschd_uic_link_state_to_string(
ufs_pm_lvl_states[lvl].link_state));
return curr_len;
}
static ssize_t ufshcd_rpm_lvl_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
return ufshcd_pm_lvl_store(dev, attr, buf, count, true);
}
static void ufshcd_add_rpm_lvl_sysfs_nodes(struct ufs_hba *hba)
{
hba->rpm_lvl_attr.show = ufshcd_rpm_lvl_show;
hba->rpm_lvl_attr.store = ufshcd_rpm_lvl_store;
sysfs_attr_init(&hba->rpm_lvl_attr.attr);
hba->rpm_lvl_attr.attr.name = "rpm_lvl";
hba->rpm_lvl_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->rpm_lvl_attr))
dev_err(hba->dev, "Failed to create sysfs for rpm_lvl\n");
}
static ssize_t ufshcd_spm_lvl_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
int curr_len;
u8 lvl;
curr_len = snprintf(buf, PAGE_SIZE,
"\nCurrent System PM level [%d] => dev_state [%s] link_state [%s]\n",
hba->spm_lvl,
ufschd_ufs_dev_pwr_mode_to_string(
ufs_pm_lvl_states[hba->spm_lvl].dev_state),
ufschd_uic_link_state_to_string(
ufs_pm_lvl_states[hba->spm_lvl].link_state));
curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len),
"\nAll available System PM levels info:\n");
for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++)
curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len),
"\tSystem PM level [%d] => dev_state [%s] link_state [%s]\n",
lvl,
ufschd_ufs_dev_pwr_mode_to_string(
ufs_pm_lvl_states[lvl].dev_state),
ufschd_uic_link_state_to_string(
ufs_pm_lvl_states[lvl].link_state));
return curr_len;
}
static ssize_t ufshcd_spm_lvl_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
return ufshcd_pm_lvl_store(dev, attr, buf, count, false);
}
static void ufshcd_add_spm_lvl_sysfs_nodes(struct ufs_hba *hba)
{
hba->spm_lvl_attr.show = ufshcd_spm_lvl_show;
hba->spm_lvl_attr.store = ufshcd_spm_lvl_store;
sysfs_attr_init(&hba->spm_lvl_attr.attr);
hba->spm_lvl_attr.attr.name = "spm_lvl";
hba->spm_lvl_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->spm_lvl_attr))
dev_err(hba->dev, "Failed to create sysfs for spm_lvl\n");
}
static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba,
enum desc_idn desc_id,
u8 desc_index,
u8 param_offset,
u8 *sysfs_buf,
u8 param_size)
{
u8 desc_buf[8] = {0};
int ret;
if (param_size > 8)
return -EINVAL;
pm_runtime_get_sync(hba->dev);
ret = ufshcd_read_desc_param(hba, desc_id, desc_index,
param_offset, desc_buf, param_size);
pm_runtime_put_sync(hba->dev);
if (ret)
return -EINVAL;
switch (param_size) {
case 1:
ret = snprintf(sysfs_buf, PAGE_SIZE, "0x%02X\n", *desc_buf);
break;
case 2:
ret = snprintf(sysfs_buf, PAGE_SIZE, "0x%04X\n",
get_unaligned_be16(desc_buf));
break;
case 4:
ret = snprintf(sysfs_buf, PAGE_SIZE, "0x%08X\n",
get_unaligned_be32(desc_buf));
break;
case 8:
ret = snprintf(sysfs_buf, PAGE_SIZE, "0x%016llX\n",
get_unaligned_be64(desc_buf));
break;
}
return ret;
}
#define UFS_DESC_PARAM(_name, _puname, _duname, _size) \
static ssize_t _name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct ufs_hba *hba = dev_get_drvdata(dev); \
return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \
0, _duname##_DESC_PARAM##_puname, buf, _size); \
} \
static DEVICE_ATTR_RO(_name)
#define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \
UFS_DESC_PARAM(_name, _uname, HEALTH, _size)
UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1);
UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1);
UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1);
static struct attribute *ufs_sysfs_health_descriptor[] = {
&dev_attr_eol_info.attr,
&dev_attr_life_time_estimation_a.attr,
&dev_attr_life_time_estimation_b.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_health_descriptor_group = {
.name = "health_descriptor",
.attrs = ufs_sysfs_health_descriptor,
};
static const struct attribute_group *ufs_sysfs_groups[] = {
&ufs_sysfs_health_descriptor_group,
NULL,
};
static void ufshcd_add_desc_sysfs_nodes(struct device *dev)
{
int ret;
ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups);
if (ret)
dev_err(dev,
"%s: sysfs groups creation failed (err = %d)\n",
__func__, ret);
}
static void ufshcd_remove_desc_sysfs_nodes(struct device *dev)
{
sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups);
}
#if defined(CONFIG_SCSI_UFS_QCOM)
#include "ufs-qcom.h"
static ssize_t ufshcd_hw_reset_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = container_of(dev, struct Scsi_Host, shost_dev);
struct ufs_hba *hba = shost_priv(shost);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int curr_len;
int i = 0;
curr_len = snprintf(buf, PAGE_SIZE, "rst_cnt:%d.\n", host->hw_reset_count);
if (host->hw_reset_count == 0)
return curr_len;
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "last_time:%lu.\n", host->last_hw_reset);
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "saved:0x%x, saved_uic:0x%x.\n",
host->hw_reset_saved_err, host->hw_reset_saved_uic_err);
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "outstanding task:0x%lx, req:0x%lx.\n",
host->hw_reset_outstanding_tasks, host->hw_reset_outstanding_reqs);
#ifdef CONFIG_DEBUG_FS
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "ufs_stats\n err_stats :");
for (i = 0; i < UFS_ERR_MAX; i++)
curr_len += snprintf(buf + curr_len, PAGE_SIZE, " %02d:%d", i,
host->hw_reset_ufs_stats.err_stats[i]);
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "\n");
#endif
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "ufs_stats\n pa_stats :\n");
for (i = 0; i < UIC_ERR_REG_HIST_LENGTH; i++) {
int p = (i + host->hw_reset_ufs_stats.pa_err.pos - 1) % UIC_ERR_REG_HIST_LENGTH;
if (host->hw_reset_ufs_stats.pa_err.reg[p] == 0)
continue;
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "%02d:0x%x at %lld us\n", i,
host->hw_reset_ufs_stats.pa_err.reg[p],
ktime_to_us(host->hw_reset_ufs_stats.pa_err.tstamp[p]));
}
curr_len += snprintf(buf + curr_len, PAGE_SIZE, " dl_stats :\n");
for (i = 0; i < UIC_ERR_REG_HIST_LENGTH; i++) {
int p = (i + host->hw_reset_ufs_stats.dl_err.pos - 1) % UIC_ERR_REG_HIST_LENGTH;
if (host->hw_reset_ufs_stats.dl_err.reg[p] == 0)
continue;
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "%02d:0x%x at %lld us\n", i,
host->hw_reset_ufs_stats.dl_err.reg[p],
ktime_to_us(host->hw_reset_ufs_stats.dl_err.tstamp[p]));
}
curr_len += snprintf(buf + curr_len, PAGE_SIZE, " nl_stats :\n");
for (i = 0; i < UIC_ERR_REG_HIST_LENGTH; i++) {
int p = (i + host->hw_reset_ufs_stats.nl_err.pos - 1) % UIC_ERR_REG_HIST_LENGTH;
if (host->hw_reset_ufs_stats.nl_err.reg[p] == 0)
continue;
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "%02d:0x%x at %lld us\n", i,
host->hw_reset_ufs_stats.nl_err.reg[p],
ktime_to_us(host->hw_reset_ufs_stats.nl_err.tstamp[p]));
}
curr_len += snprintf(buf + curr_len, PAGE_SIZE, " tl_stats :\n");
for (i = 0; i < UIC_ERR_REG_HIST_LENGTH; i++) {
int p = (i + host->hw_reset_ufs_stats.tl_err.pos - 1) % UIC_ERR_REG_HIST_LENGTH;
if (host->hw_reset_ufs_stats.tl_err.reg[p] == 0)
continue;
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "%02d:0x%x at %lld us\n", i,
host->hw_reset_ufs_stats.tl_err.reg[p],
ktime_to_us(host->hw_reset_ufs_stats.tl_err.tstamp[p]));
}
curr_len += snprintf(buf + curr_len, PAGE_SIZE, " dme_stats :\n");
for (i = 0; i < UIC_ERR_REG_HIST_LENGTH; i++) {
int p = (i + host->hw_reset_ufs_stats.dme_err.pos - 1) % UIC_ERR_REG_HIST_LENGTH;
if (host->hw_reset_ufs_stats.dme_err.reg[p] == 0)
continue;
curr_len += snprintf(buf + curr_len, PAGE_SIZE, "%02d:0x%x at %lld us\n", i,
host->hw_reset_ufs_stats.dme_err.reg[p],
ktime_to_us(host->hw_reset_ufs_stats.dme_err.tstamp[p]));
}
return curr_len;
}
static void ufshcd_add_hw_reset_info_sysfs_nodes(struct ufs_hba *hba)
{
struct device *dev = &(hba->host->shost_dev);
hba->hw_reset_info_attr.show = ufshcd_hw_reset_info_show;
hba->hw_reset_info_attr.store = NULL;
sysfs_attr_init(&hba->hw_reset_info_attr.attr);
hba->hw_reset_info_attr.attr.name = "hw_rst_info";
hba->hw_reset_info_attr.attr.mode = 0444;
if (device_create_file(dev, &hba->hw_reset_info_attr))
dev_err(hba->dev, "Failed to create sysfs for hw_reset_info\n");
}
#endif
#if defined(SEC_UFS_ERROR_COUNT)
#define SEC_UFS_DATA_ATTR(name, fmt, args...) \
static ssize_t SEC_UFS_##name##_show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct Scsi_Host *Shost = container_of(dev, struct Scsi_Host, shost_dev); \
struct ufs_hba *hba = shost_priv(Shost); \
struct SEC_UFS_counting *err_info = &(hba->SEC_err_info); \
return sprintf(buf, fmt, args); \
} \
static DEVICE_ATTR(name, 0444, SEC_UFS_##name##_show, NULL)
SEC_UFS_DATA_ATTR(SEC_UFS_op_cnt, "\"HWRESET\":\"%u\",\"LINKFAIL\":\"%u\",\"H8ENTERFAIL\":\"%u\""
",\"H8EXITFAIL\":\"%u\"\n",
err_info->op_count.HW_RESET_count, err_info->op_count.link_startup_count,
err_info->op_count.Hibern8_enter_count, err_info->op_count.Hibern8_exit_count);
SEC_UFS_DATA_ATTR(SEC_UFS_uic_cmd_cnt, "\"TESTMODE\":\"%d\",\"DME_GET\":\"%d\",\"DME_SET\":\"%d\""
",\"DME_PGET\":\"%d\",\"DME_PSET\":\"%d\",\"PWRON\":\"%d\",\"PWROFF\":\"%d\""
",\"DME_EN\":\"%d\",\"DME_RST\":\"%d\",\"EPRST\":\"%d\",\"LINKSTARTUP\":\"%d\""
",\"H8ENTER\":\"%d\",\"H8EXIT\":\"%d\"\n",
err_info->UIC_cmd_count.DME_TEST_MODE_err, // TEST_MODE
err_info->UIC_cmd_count.DME_GET_err, // DME_GET
err_info->UIC_cmd_count.DME_SET_err, // DME_SET
err_info->UIC_cmd_count.DME_PEER_GET_err, // DME_PEER_GET
err_info->UIC_cmd_count.DME_PEER_SET_err, // DME_PEER_SET
err_info->UIC_cmd_count.DME_POWERON_err, // DME_POWERON
err_info->UIC_cmd_count.DME_POWEROFF_err, // DME_POWEROFF
err_info->UIC_cmd_count.DME_ENABLE_err, // DME_ENABLE
err_info->UIC_cmd_count.DME_RESET_err, // DME_RESET
err_info->UIC_cmd_count.DME_END_PT_RST_err, // DME_END_PT_RST
err_info->UIC_cmd_count.DME_LINK_STARTUP_err, // DME_LINK_STARTUP
err_info->UIC_cmd_count.DME_HIBER_ENTER_err, // DME_HIBERN8_ENTER
err_info->UIC_cmd_count.DME_HIBER_EXIT_err); // DME_HIBERN8_EXIT
SEC_UFS_DATA_ATTR(SEC_UFS_uic_err_cnt, "\"PAERR\":\"%d\",\"DLPAINITERROR\":\"%d\",\"DLNAC\":\"%d\""
",\"DLTCREPLAY\":\"%d\",\"NLERR\":\"%d\",\"TLERR\":\"%d\",\"DMEERR\":\"%d\"\n",
err_info->UIC_err_count.PA_ERR_cnt, // PA_ERR
err_info->UIC_err_count.DL_PA_INIT_ERROR_cnt, // DL_PA_INIT_ERROR
err_info->UIC_err_count.DL_NAC_RECEIVED_ERROR_cnt, // DL_NAC_RECEIVED
err_info->UIC_err_count.DL_TC_REPLAY_ERROR_cnt, // DL_TCx_REPLAY_ERROR
err_info->UIC_err_count.NL_ERROR_cnt, // NL_ERROR
err_info->UIC_err_count.TL_ERROR_cnt, // TL_ERROR
err_info->UIC_err_count.DME_ERROR_cnt); // DME_ERROR
SEC_UFS_DATA_ATTR(SEC_UFS_fatal_cnt, "\"DFE\":\"%d\",\"CFE\":\"%d\",\"SBFE\":\"%d\""
",\"CEFE\":\"%d\",\"LLE\":\"%d\"\n",
err_info->Fatal_err_count.DFE, // Device_Fatal
err_info->Fatal_err_count.CFE, // Controller_Fatal
err_info->Fatal_err_count.SBFE, // System_Bus_Fatal
err_info->Fatal_err_count.CEFE, // Crypto_Engine_Fatal
err_info->Fatal_err_count.LLE); // Link_Lost
SEC_UFS_DATA_ATTR(SEC_UFS_utp_cnt, "\"UTMRQTASK\":\"%d\",\"UTMRATASK\":\"%d\",\"UTRR\":\"%d\""
",\"UTRW\":\"%d\",\"UTRSYNCCACHE\":\"%d\",\"UTRUNMAP\":\"%d\",\"UTRETC\":\"%d\"\n",
err_info->UTP_count.UTMR_query_task_count, // QUERY_TASK
err_info->UTP_count.UTMR_abort_task_count, // ABORT_TASK
err_info->UTP_count.UTR_read_err, // READ_10
err_info->UTP_count.UTR_write_err, // WRITE_10
err_info->UTP_count.UTR_sync_cache_err, // SYNC_CACHE
err_info->UTP_count.UTR_unmap_err, // UNMAP
err_info->UTP_count.UTR_etc_err); // etc
SEC_UFS_DATA_ATTR(SEC_UFS_query_cnt, "\"NOPERR\":\"%d\",\"R_DESC\":\"%d\",\"W_DESC\":\"%d\""
",\"R_ATTR\":\"%d\",\"W_ATTR\":\"%d\",\"R_FLAG\":\"%d\",\"S_FLAG\":\"%d\""
",\"C_FLAG\":\"%d\",\"T_FLAG\":\"%d\"\n",
err_info->query_count.NOP_err,
err_info->query_count.R_Desc_err, // R_Desc
err_info->query_count.W_Desc_err, // W_Desc
err_info->query_count.R_Attr_err, // R_Attr
err_info->query_count.W_Attr_err, // W_Attr
err_info->query_count.R_Flag_err, // R_Flag
err_info->query_count.Set_Flag_err, // Set_Flag
err_info->query_count.Clear_Flag_err, // Clear_Flag
err_info->query_count.Toggle_Flag_err); // Toggle_Flag
SEC_UFS_DATA_ATTR(SEC_UFS_err_sum, "\"OPERR\":\"%d\",\"UICCMD\":\"%d\",\"UICERR\":\"%d\""
",\"FATALERR\":\"%d\",\"UTPERR\":\"%d\",\"QUERYERR\":\"%d\"\n",
err_info->op_count.op_err,
err_info->UIC_cmd_count.UIC_cmd_err,
err_info->UIC_err_count.UIC_err,
err_info->Fatal_err_count.Fatal_err,
err_info->UTP_count.UTP_err,
err_info->query_count.Query_err);
#endif
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
static ssize_t SEC_UFS_TW_info_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct Scsi_Host *Shost = container_of(dev, struct Scsi_Host, shost_dev);
struct ufs_hba *hba = shost_priv(Shost);
struct SEC_UFS_TW_info tw_info;
struct SEC_UFS_TW_info *tw_info_old = &(hba->SEC_tw_info_old);
struct SEC_UFS_TW_info *tw_info_new = &(hba->SEC_tw_info);
long hours = 0;
get_monotonic_boottime(&(tw_info_new->timestamp));
hours = (tw_info_new->timestamp.tv_sec - tw_info_old->timestamp.tv_sec) / 60; /* min */
hours = (hours + 30) / 60; /* round up to hours */
SEC_UFS_TW_info_get_diff(&tw_info, tw_info_new, tw_info_old);
return sprintf(buf, "\"TWCTRLCNT\":\"%llu\","
"\"TWCTRLERRCNT\":\"%llu\","
"\"TWDAILYMB\":\"%llu\","
"\"TWTOTALMB\":\"%llu\","
"\"H8CNT\":\"%llu\",\"H8MS\":\"%llu\","
"\"H8CNT100MS\":\"%llu\",\"H8MS100MS\":\"%llu\","
"\"H8MAXMS\":\"%llu\","
"\"TWhours\":\"%ld\"\n",
(tw_info.tw_enable_count + tw_info.tw_disable_count),
tw_info_new->tw_setflag_error_count, /* total error count */
(tw_info.tw_amount_W_kb >> 10), /* TW write daily : MB */
(tw_info_new->tw_amount_W_kb >> 10), /* TW write total : MB */
tw_info.hibern8_enter_count, tw_info.hibern8_amount_ms,
tw_info.hibern8_enter_count_100ms,
tw_info.hibern8_amount_ms_100ms,
tw_info.hibern8_max_ms,
hours);
}
static DEVICE_ATTR(SEC_UFS_TW_info, 0444, SEC_UFS_TW_info_show, NULL);
#endif
UFS_DEV_ATTR(capabilities, "%08x\n", hba->capabilities);
UFS_DEV_ATTR(gear, "%01x\n", hba->pwr_info.gear_rx);
UFS_DEV_ATTR(man_id, "%04x\n", hba->dev_info.w_manufacturer_id);
UFS_DEV_ATTR(man_date, "%04X\n", hba->dev_info.w_manufacturer_date);
UFS_DEV_ATTR(sense_err_count, "\"MEDIUM\":\"%d\",\"HWERR\":\"%d\"\n",
hba->host->medium_err_cnt, hba->host->hw_err_cnt);
UFS_DEV_ATTR(sense_err_logging, "\"LBA0\":\"%lx\",\"LBA1\":\"%lx\",\"LBA2\":\"%lx\""
",\"LBA3\":\"%lx\",\"LBA4\":\"%lx\",\"LBA5\":\"%lx\""
",\"LBA6\":\"%lx\",\"LBA7\":\"%lx\",\"LBA8\":\"%lx\",\"LBA9\":\"%lx\""
",\"REGIONMAP\":\"%016llx\"\n",
hba->host->issue_LBA_list[0], hba->host->issue_LBA_list[1]
, hba->host->issue_LBA_list[2], hba->host->issue_LBA_list[3]
, hba->host->issue_LBA_list[4], hba->host->issue_LBA_list[5]
, hba->host->issue_LBA_list[6], hba->host->issue_LBA_list[7]
, hba->host->issue_LBA_list[8], hba->host->issue_LBA_list[9]
, hba->host->issue_region_map);
static ssize_t ufs_unique_number_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *host = container_of(dev, struct Scsi_Host, shost_dev);
struct ufs_hba *hba = shost_priv(host);
return sprintf(buf, "%s\n", hba->unique_number);
}
static DEVICE_ATTR(unique_number, 0440, ufs_unique_number_show, NULL);
static ssize_t ufs_lc_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *host = container_of(dev, struct Scsi_Host, shost_dev);
struct ufs_hba *hba = shost_priv(host);
return sprintf(buf, "%u\n", hba->lc_info);
}
static ssize_t ufs_lc_info_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *host = container_of(dev, struct Scsi_Host, shost_dev);
struct ufs_hba *hba = shost_priv(host);
unsigned int value;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
hba->lc_info = value;
return count;
}
static DEVICE_ATTR(lc, 0664, ufs_lc_info_show, ufs_lc_info_store);
static ssize_t ufs_lt_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *host = container_of(dev, struct Scsi_Host, shost_dev);
struct ufs_hba *hba = shost_priv(host);
int err = 0;
u8 health_buf[QUERY_DESC_HEALTH_DEF_SIZE];
pm_runtime_get_sync(hba->dev);
err = ufshcd_read_desc(hba, QUERY_DESC_IDN_HEALTH, 0, health_buf,
QUERY_DESC_HEALTH_DEF_SIZE);
pm_runtime_put(hba->dev);
if (err) {
hba->dev_info.i_lt = 0x0;
dev_err(hba->dev, "%s: HEALTH desc read fail, err = %d\n",
__func__, err);
} else {
hba->dev_info.i_lt = health_buf[HEALTH_DESC_PARAM_LIFE_TIME_EST_A];
dev_info(hba->dev, "LT: 0x%01x%01x\n",
health_buf[HEALTH_DESC_PARAM_LIFE_TIME_EST_A],
health_buf[HEALTH_DESC_PARAM_LIFE_TIME_EST_B]);
}
return sprintf(buf, "%u\n", hba->dev_info.i_lt);
}
static DEVICE_ATTR(lt, 0444, ufs_lt_info_show, NULL);
static struct attribute *ufs_attributes[] = {
&dev_attr_capabilities.attr,
&dev_attr_gear.attr,
&dev_attr_man_id.attr,
&dev_attr_unique_number.attr,
&dev_attr_man_date.attr,
&dev_attr_lc.attr,
&dev_attr_lt.attr,
&dev_attr_sense_err_count.attr,
&dev_attr_sense_err_logging.attr,
#if defined(SEC_UFS_ERROR_COUNT)
&dev_attr_SEC_UFS_op_cnt.attr,
&dev_attr_SEC_UFS_uic_cmd_cnt.attr,
&dev_attr_SEC_UFS_uic_err_cnt.attr,
&dev_attr_SEC_UFS_fatal_cnt.attr,
&dev_attr_SEC_UFS_utp_cnt.attr,
&dev_attr_SEC_UFS_query_cnt.attr,
&dev_attr_SEC_UFS_err_sum.attr,
#endif
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
&dev_attr_SEC_UFS_TW_info.attr,
#endif
NULL
};
static struct attribute_group ufs_attribute_group = {
.attrs = ufs_attributes,
};
static void ufshcd_add_info_sysfs_node(struct ufs_hba *hba)
{
int err = -ENOMEM;
struct device *dev = &(hba->host->shost_dev);
err = sysfs_create_group(&dev->kobj, &ufs_attribute_group);
if (err)
dev_err(hba->dev, "cannot create sysfs group err: %d\n", err);
}
static inline void ufshcd_add_sysfs_nodes(struct ufs_hba *hba)
{
ufshcd_add_rpm_lvl_sysfs_nodes(hba);
ufshcd_add_spm_lvl_sysfs_nodes(hba);
ufshcd_add_desc_sysfs_nodes(hba->dev);
ufshcd_add_info_sysfs_node(hba);
#if defined(CONFIG_SCSI_UFS_QCOM)
ufshcd_add_hw_reset_info_sysfs_nodes(hba);
#endif
}
static inline void ufshcd_remove_sysfs_nodes(struct ufs_hba *hba)
{
device_remove_file(hba->dev, &hba->rpm_lvl_attr);
device_remove_file(hba->dev, &hba->spm_lvl_attr);
ufshcd_remove_desc_sysfs_nodes(hba->dev);
}
static void __ufshcd_shutdown_clkscaling(struct ufs_hba *hba)
{
bool suspend = false;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_scaling.is_allowed) {
hba->clk_scaling.is_allowed = false;
suspend = true;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
/**
* Scaling may be scheduled before, hence make sure it
* doesn't race with shutdown
*/
if (ufshcd_is_clkscaling_supported(hba)) {
cancel_work_sync(&hba->clk_scaling.suspend_work);
cancel_work_sync(&hba->clk_scaling.resume_work);
if (suspend)
ufshcd_suspend_clkscaling(hba);
}
/* Unregister so that devfreq_monitor can't race with shutdown */
if (hba->devfreq) {
devfreq_remove_device(hba->devfreq);
hba->devfreq = NULL;
}
}
static void ufshcd_shutdown_clkscaling(struct ufs_hba *hba)
{
if (!ufshcd_is_clkscaling_supported(hba))
return;
__ufshcd_shutdown_clkscaling(hba);
device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
}
/**
* ufshcd_shutdown - shutdown routine
* @hba: per adapter instance
*
* This function would power off both UFS device and UFS link.
*
* Returns 0 always to allow force shutdown even in case of errors.
*/
int ufshcd_shutdown(struct ufs_hba *hba)
{
int ret = 0;
#if defined(SEC_UFS_ERROR_COUNT)
struct SEC_UFS_counting *err_info = &(hba->SEC_err_info);
struct SEC_UFS_op_count *op_cnt = &(err_info->op_count);
struct SEC_UFS_UIC_err_count *uic_err_cnt = &(err_info->UIC_err_count);
struct SEC_UFS_UTP_count *utp_err = &(err_info->UTP_count);
struct SEC_UFS_QUERY_count *query_cnt = &(err_info->query_count);
#endif
if (!hba->is_powered)
goto out;
if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
goto out;
pm_runtime_get_sync(hba->dev);
ufshcd_hold_all(hba);
ufshcd_mark_shutdown_ongoing(hba);
ufshcd_shutdown_clkscaling(hba);
/**
* (1) Acquire the lock to stop any more requests
* (2) Wait for all issued requests to complete
*/
ufshcd_get_write_lock(hba);
ufshcd_scsi_block_requests(hba);
ret = ufshcd_wait_for_doorbell_clr(hba, U64_MAX);
if (ret)
dev_err(hba->dev, "%s: waiting for DB clear: failed: %d\n",
__func__, ret);
/* Requests may have errored out above, let it be handled */
flush_work(&hba->eh_work);
/* reqs issued from contexts other than shutdown will fail from now */
ufshcd_scsi_unblock_requests(hba);
ufshcd_release_all(hba);
ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
out:
if (ret)
dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
/* allow force shutdown even in case of errors */
#if defined(SEC_UFS_ERROR_COUNT)
dev_err(hba->dev, "Count: %d UIC: %d UTP:%d QUERY: %d\n",
op_cnt->HW_RESET_count,
uic_err_cnt->UIC_err,
utp_err->UTP_err,
query_cnt->Query_err);
#endif
dev_err(hba->dev, "Sense Key: medium: %d, hw: %d\n",
hba->host->medium_err_cnt, hba->host->hw_err_cnt);
return 0;
}
EXPORT_SYMBOL(ufshcd_shutdown);
/*
* Values permitted 0, 1, 2.
* 0 -> Disable IO latency histograms (default)
* 1 -> Enable IO latency histograms
* 2 -> Zero out IO latency histograms
*/
static ssize_t
latency_hist_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
long value;
if (kstrtol(buf, 0, &value))
return -EINVAL;
if (value == BLK_IO_LAT_HIST_ZERO)
blk_zero_latency_hist(&hba->io_lat_s);
else if (value == BLK_IO_LAT_HIST_ENABLE ||
value == BLK_IO_LAT_HIST_DISABLE)
hba->latency_hist_enabled = value;
return count;
}
ssize_t
latency_hist_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return blk_latency_hist_show(&hba->io_lat_s, buf);
}
static DEVICE_ATTR(latency_hist, S_IRUGO | S_IWUSR,
latency_hist_show, latency_hist_store);
static void
ufshcd_init_latency_hist(struct ufs_hba *hba)
{
if (device_create_file(hba->dev, &dev_attr_latency_hist))
dev_err(hba->dev, "Failed to create latency_hist sysfs entry\n");
}
static void
ufshcd_exit_latency_hist(struct ufs_hba *hba)
{
device_create_file(hba->dev, &dev_attr_latency_hist);
}
/**
* ufshcd_remove - de-allocate SCSI host and host memory space
* data structure memory
* @hba - per adapter instance
*/
void ufshcd_remove(struct ufs_hba *hba)
{
ufshcd_remove_sysfs_nodes(hba);
scsi_remove_host(hba->host);
/* disable interrupts */
ufshcd_disable_intr(hba, hba->intr_mask);
ufshcd_hba_stop(hba, true);
cancel_work_sync(&hba->pm_qos.put_work);
cancel_work_sync(&hba->pm_qos.get_work);
pm_qos_remove_request(&hba->pm_qos.req);
ufshcd_exit_clk_gating(hba);
ufshcd_exit_hibern8_on_idle(hba);
ufshcd_exit_latency_hist(hba);
if (ufshcd_is_clkscaling_supported(hba)) {
device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
if (hba->devfreq)
devfreq_remove_device(hba->devfreq);
}
ufshcd_hba_exit(hba);
ufsdbg_remove_debugfs(hba);
}
EXPORT_SYMBOL_GPL(ufshcd_remove);
/**
* ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
* @hba: pointer to Host Bus Adapter (HBA)
*/
void ufshcd_dealloc_host(struct ufs_hba *hba)
{
scsi_host_put(hba->host);
}
EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
/**
* ufshcd_set_dma_mask - Set dma mask based on the controller
* addressing capability
* @hba: per adapter instance
*
* Returns 0 for success, non-zero for failure
*/
static int ufshcd_set_dma_mask(struct ufs_hba *hba)
{
if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
return 0;
}
return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
}
/**
* ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
* @dev: pointer to device handle
* @hba_handle: driver private handle
* Returns 0 on success, non-zero value on failure
*/
int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
int err = 0;
if (!dev) {
dev_err(dev,
"Invalid memory reference for dev is NULL\n");
err = -ENODEV;
goto out_error;
}
host = scsi_host_alloc(&ufshcd_driver_template,
sizeof(struct ufs_hba));
if (!host) {
dev_err(dev, "scsi_host_alloc failed\n");
err = -ENOMEM;
goto out_error;
}
hba = shost_priv(host);
hba->host = host;
hba->dev = dev;
*hba_handle = hba;
hba->sg_entry_size = sizeof(struct ufshcd_sg_entry);
INIT_LIST_HEAD(&hba->clk_list_head);
out_error:
return err;
}
EXPORT_SYMBOL(ufshcd_alloc_host);
#if defined(SEC_UFS_ERROR_COUNT)
/**
* ufs_sec_send_errinfo - Send UFS Error Information to AP
* Format : U0H0L0X0Q0R0W0F0
* U : UTP cmd ERRor count
* H : HWRESET count
* L : Link startup failure count
* X : Link Lost Error count
* Q : UTMR QUERY_TASK error count
* R : READ error count
* W : WRITE error count
* F : Device Fatal Error count
**/
static void ufs_sec_send_errinfo(void *data)
{
static struct ufs_hba *hba;
struct SEC_UFS_counting *err_info;
char buf[23];
if (data) {
hba = (struct ufs_hba *)data;
return;
}
if (!hba) {
pr_err("%s: hba is not initialized\n", __func__);
return;
}
if (&(hba->SEC_err_info)) {
err_info = &(hba->SEC_err_info);
sprintf(buf, "U%1dH%1dL%1dX%1dQ%1dR%1dW%1dF%1dSM%1dSH%1d",
(err_info->UTP_count.UTP_err > 9) /* UTP Error */
? 9 : err_info->UTP_count.UTP_err,
(err_info->op_count.HW_RESET_count > 9) /* HW Reset */
? 9 : err_info->op_count.HW_RESET_count,
(err_info->op_count.link_startup_count > 9) /* Link Startup Fail */
? 9 : err_info->op_count.link_startup_count,
(err_info->Fatal_err_count.LLE > 9) /* Link Lost */
? 9 : err_info->Fatal_err_count.LLE,
(err_info->UTP_count.UTMR_query_task_count > 9) /* Query task */
? 9 : err_info->UTP_count.UTMR_query_task_count,
(err_info->UTP_count.UTR_read_err > 9) /* UTRR */
? 9 : err_info->UTP_count.UTR_read_err,
(err_info->UTP_count.UTR_write_err > 9) /* UTRW */
? 9 : err_info->UTP_count.UTR_write_err,
(err_info->Fatal_err_count.DFE > 9) /* Device Fatal Error */
? 9 : err_info->Fatal_err_count.DFE,
(hba->host->medium_err_cnt > 9)
? 9 : hba->host->medium_err_cnt,
(hba->host->hw_err_cnt > 9)
? 9 : hba->host->hw_err_cnt);
pr_err("%s: Send UFS information to AP : %s\n", __func__, buf);
#if defined(CONFIG_SEC_USER_RESET_DEBUG)
sec_debug_store_additional_dbg(DBG_1_UFS_ERR, 0, "%s", buf);
#endif
}
}
#else
static void ufs_sec_send_errinfo(void *data)
{
char buf[23];
sprintf(buf, "UFSErrCount is disable");
pr_err("%s: Send UFS information to AP : %s\n", __func__, buf);
#if defined(CONFIG_SEC_USER_RESET_DEBUG)
sec_debug_store_additional_dbg(DBG_1_UFS_ERR, 0, "%s", buf);
#endif
}
#endif
/**
* ufshcd_init - Driver initialization routine
* @hba: per-adapter instance
* @mmio_base: base register address
* @irq: Interrupt line of device
* Returns 0 on success, non-zero value on failure
*/
int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
{
int err;
struct Scsi_Host *host = hba->host;
struct device *dev = hba->dev;
if (!mmio_base) {
dev_err(hba->dev,
"Invalid memory reference for mmio_base is NULL\n");
err = -ENODEV;
goto out_error;
}
hba->mmio_base = mmio_base;
hba->irq = irq;
/* Set descriptor lengths to specification defaults */
ufshcd_def_desc_sizes(hba);
err = ufshcd_hba_init(hba);
if (err)
goto out_error;
/* Read capabilities registers */
ufshcd_hba_capabilities(hba);
/* Get UFS version supported by the controller */
hba->ufs_version = ufshcd_get_ufs_version(hba);
/* print error message if ufs_version is not valid */
if ((hba->ufs_version != UFSHCI_VERSION_10) &&
(hba->ufs_version != UFSHCI_VERSION_11) &&
(hba->ufs_version != UFSHCI_VERSION_20) &&
(hba->ufs_version != UFSHCI_VERSION_21) &&
(hba->ufs_version != UFSHCI_VERSION_30))
dev_warn(hba->dev, "invalid UFS version 0x%x\n",
hba->ufs_version);
/* Get Interrupt bit mask per version */
hba->intr_mask = ufshcd_get_intr_mask(hba);
/* Enable debug prints */
hba->ufshcd_dbg_print = DEFAULT_UFSHCD_DBG_PRINT_EN;
err = ufshcd_set_dma_mask(hba);
if (err) {
dev_err(hba->dev, "set dma mask failed\n");
goto out_disable;
}
/* Allocate memory for host memory space */
err = ufshcd_memory_alloc(hba);
if (err) {
dev_err(hba->dev, "Memory allocation failed\n");
goto out_disable;
}
/* Configure LRB */
ufshcd_host_memory_configure(hba);
host->can_queue = hba->nutrs;
host->cmd_per_lun = hba->nutrs;
host->max_id = UFSHCD_MAX_ID;
host->max_lun = UFS_MAX_LUNS;
host->max_channel = UFSHCD_MAX_CHANNEL;
host->unique_id = host->host_no;
host->max_cmd_len = MAX_CDB_SIZE;
host->set_dbd_for_caching = 1;
host->by_ufs = 1;
hba->max_pwr_info.is_valid = false;
/* Initailize wait queue for task management */
init_waitqueue_head(&hba->tm_wq);
init_waitqueue_head(&hba->tm_tag_wq);
/* Initialize work queues */
INIT_WORK(&hba->eh_work, ufshcd_err_handler);
INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
INIT_WORK(&hba->card_detect_work, ufshcd_card_detect_handler);
INIT_WORK(&hba->rls_work, ufshcd_rls_handler);
INIT_WORK(&hba->fatal_mode_work, ufshcd_fatal_mode_handler);
INIT_WORK(&hba->hibern8_on_idle_enable_work,
ufshcd_hibern8_on_idle_switch_work);
/* Initialize UIC command mutex */
mutex_init(&hba->uic_cmd_mutex);
/* Initialize mutex for device management commands */
mutex_init(&hba->dev_cmd.lock);
mutex_init(&hba->hibern8_on_idle.enable_mutex);
#if IS_ENABLED(CONFIG_BLK_TURBO_WRITE)
/* Initialize TW ctrl mutex */
mutex_init(&hba->tw_ctrl_mutex);
#endif
init_rwsem(&hba->lock);
/* Initialize device management tag acquire wait queue */
init_waitqueue_head(&hba->dev_cmd.tag_wq);
ufshcd_init_clk_gating(hba);
ufshcd_init_hibern8_on_idle(hba);
/*
* In order to avoid any spurious interrupt immediately after
* registering UFS controller interrupt handler, clear any pending UFS
* interrupt status and disable all the UFS interrupts.
*/
ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
REG_INTERRUPT_STATUS);
ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
/*
* Make sure that UFS interrupts are disabled and any pending interrupt
* status is cleared before registering UFS interrupt handler.
*/
mb();
mutex_init(&hba->pm_qos.lock);
INIT_WORK(&hba->pm_qos.get_work, ufshcd_pm_qos_get_worker);
INIT_WORK(&hba->pm_qos.put_work, ufshcd_pm_qos_put_worker);
hba->pm_qos.req.type = PM_QOS_REQ_AFFINE_IRQ;
hba->pm_qos.req.irq = irq;
pm_qos_add_request(&hba->pm_qos.req, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
/* IRQ registration */
err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED,
dev_name(dev), hba);
if (err) {
dev_err(hba->dev, "request irq failed\n");
goto exit_gating;
} else {
hba->is_irq_enabled = true;
}
err = scsi_add_host(host, hba->dev);
if (err) {
dev_err(hba->dev, "scsi_add_host failed\n");
goto exit_gating;
}
/* Reset controller to power on reset (POR) state */
ufshcd_vops_full_reset(hba);
/* reset connected UFS device */
err = ufshcd_reset_device(hba);
if (err)
dev_warn(hba->dev, "%s: device reset failed. err %d\n",
__func__, err);
if (hba->force_g4)
hba->reinit_g4_rate_A = true;
/* Init crypto */
err = ufshcd_hba_init_crypto(hba);
if (err) {
dev_err(hba->dev, "crypto setup failed\n");
goto out_remove_scsi_host;
}
/* reset the SEC error info */
memset(&(hba->SEC_err_info), 0, sizeof(struct SEC_UFS_counting));
/* Host controller enable */
err = ufshcd_hba_enable(hba);
if (err) {
dev_err(hba->dev, "Host controller enable failed\n");
ufshcd_print_host_regs(hba);
ufshcd_print_host_state(hba);
goto out_remove_scsi_host;
}
if (ufshcd_is_clkscaling_supported(hba)) {
char wq_name[sizeof("ufs_clkscaling_00")];
INIT_WORK(&hba->clk_scaling.suspend_work,
ufshcd_clk_scaling_suspend_work);
INIT_WORK(&hba->clk_scaling.resume_work,
ufshcd_clk_scaling_resume_work);
snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
host->host_no);
hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
ufshcd_clkscaling_init_sysfs(hba);
}
/*
* If rpm_lvl and and spm_lvl are not already set to valid levels,
* set the default power management level for UFS runtime and system
* suspend. Default power saving mode selected is keeping UFS link in
* Hibern8 state and UFS device in sleep state.
*/
if (!ufshcd_is_valid_pm_lvl(hba->rpm_lvl))
hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
UFS_SLEEP_PWR_MODE,
UIC_LINK_HIBERN8_STATE);
if (!ufshcd_is_valid_pm_lvl(hba->spm_lvl))
hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
UFS_SLEEP_PWR_MODE,
UIC_LINK_HIBERN8_STATE);
#if defined(CONFIG_SCSI_UFS_TEST_MODE)
dev_info(hba->dev, "UFS test mode enabled\n");
#endif
/* init ufs_sec_debug function */
ufs_sec_send_errinfo(hba);
ufs_debug_func = ufs_sec_send_errinfo;
/* Hold auto suspend until async scan completes */
pm_runtime_get_sync(dev);
ufshcd_init_latency_hist(hba);
/*
* The device-initialize-sequence hasn't been invoked yet.
* Set the device to power-off state
*/
ufshcd_set_ufs_dev_poweroff(hba);
ufshcd_cmd_log_init(hba);
async_schedule(ufshcd_async_scan, hba);
ufsdbg_add_debugfs(hba);
ufshcd_add_sysfs_nodes(hba);
device_enable_async_suspend(dev);
return 0;
out_remove_scsi_host:
scsi_remove_host(hba->host);
exit_gating:
pm_qos_remove_request(&hba->pm_qos.req);
ufshcd_exit_clk_gating(hba);
ufshcd_exit_latency_hist(hba);
out_disable:
hba->is_irq_enabled = false;
ufshcd_hba_exit(hba);
out_error:
return err;
}
EXPORT_SYMBOL_GPL(ufshcd_init);
MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
MODULE_DESCRIPTION("Generic UFS host controller driver Core");
MODULE_LICENSE("GPL");
MODULE_VERSION(UFSHCD_DRIVER_VERSION);