You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/media/dvb/frontends/cx22702.c

537 lines
14 KiB

/*
Conexant 22702 DVB OFDM demodulator driver
based on:
Alps TDMB7 DVB OFDM demodulator driver
Copyright (C) 2001-2002 Convergence Integrated Media GmbH
Holger Waechtler <holger@convergence.de>
Copyright (C) 2004 Steven Toth <stoth@hauppauge.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "dvb_frontend.h"
#include "dvb-pll.h"
#include "cx22702.h"
struct cx22702_state {
struct i2c_adapter* i2c;
struct dvb_frontend_ops ops;
/* configuration settings */
const struct cx22702_config* config;
struct dvb_frontend frontend;
/* previous uncorrected block counter */
u8 prevUCBlocks;
};
static int debug = 0;
#define dprintk if (debug) printk
/* Register values to initialise the demod */
static u8 init_tab [] = {
0x00, 0x00, /* Stop aquisition */
0x0B, 0x06,
0x09, 0x01,
0x0D, 0x41,
0x16, 0x32,
0x20, 0x0A,
0x21, 0x17,
0x24, 0x3e,
0x26, 0xff,
0x27, 0x10,
0x28, 0x00,
0x29, 0x00,
0x2a, 0x10,
0x2b, 0x00,
0x2c, 0x10,
0x2d, 0x00,
0x48, 0xd4,
0x49, 0x56,
0x6b, 0x1e,
0xc8, 0x02,
0xf9, 0x00,
0xfa, 0x00,
0xfb, 0x00,
0xfc, 0x00,
0xfd, 0x00,
};
static int cx22702_writereg (struct cx22702_state* state, u8 reg, u8 data)
{
int ret;
u8 buf [] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
printk("%s: writereg error (reg == 0x%02x, val == 0x%02x, ret == %i)\n",
__FUNCTION__, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static u8 cx22702_readreg (struct cx22702_state* state, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = {
{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2)
printk("%s: readreg error (ret == %i)\n", __FUNCTION__, ret);
return b1[0];
}
static int cx22702_set_inversion (struct cx22702_state *state, int inversion)
{
u8 val;
switch (inversion) {
case INVERSION_AUTO:
return -EOPNOTSUPP;
case INVERSION_ON:
val = cx22702_readreg (state, 0x0C);
return cx22702_writereg (state, 0x0C, val | 0x01);
case INVERSION_OFF:
val = cx22702_readreg (state, 0x0C);
return cx22702_writereg (state, 0x0C, val & 0xfe);
default:
return -EINVAL;
}
}
/* Retrieve the demod settings */
static int cx22702_get_tps (struct cx22702_state *state, struct dvb_ofdm_parameters *p)
{
u8 val;
/* Make sure the TPS regs are valid */
if (!(cx22702_readreg(state, 0x0A) & 0x20))
return -EAGAIN;
val = cx22702_readreg (state, 0x01);
switch( (val&0x18)>>3) {
case 0: p->constellation = QPSK; break;
case 1: p->constellation = QAM_16; break;
case 2: p->constellation = QAM_64; break;
}
switch( val&0x07 ) {
case 0: p->hierarchy_information = HIERARCHY_NONE; break;
case 1: p->hierarchy_information = HIERARCHY_1; break;
case 2: p->hierarchy_information = HIERARCHY_2; break;
case 3: p->hierarchy_information = HIERARCHY_4; break;
}
val = cx22702_readreg (state, 0x02);
switch( (val&0x38)>>3 ) {
case 0: p->code_rate_HP = FEC_1_2; break;
case 1: p->code_rate_HP = FEC_2_3; break;
case 2: p->code_rate_HP = FEC_3_4; break;
case 3: p->code_rate_HP = FEC_5_6; break;
case 4: p->code_rate_HP = FEC_7_8; break;
}
switch( val&0x07 ) {
case 0: p->code_rate_LP = FEC_1_2; break;
case 1: p->code_rate_LP = FEC_2_3; break;
case 2: p->code_rate_LP = FEC_3_4; break;
case 3: p->code_rate_LP = FEC_5_6; break;
case 4: p->code_rate_LP = FEC_7_8; break;
}
val = cx22702_readreg (state, 0x03);
switch( (val&0x0c)>>2 ) {
case 0: p->guard_interval = GUARD_INTERVAL_1_32; break;
case 1: p->guard_interval = GUARD_INTERVAL_1_16; break;
case 2: p->guard_interval = GUARD_INTERVAL_1_8; break;
case 3: p->guard_interval = GUARD_INTERVAL_1_4; break;
}
switch( val&0x03 ) {
case 0: p->transmission_mode = TRANSMISSION_MODE_2K; break;
case 1: p->transmission_mode = TRANSMISSION_MODE_8K; break;
}
return 0;
}
static int cx22702_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct cx22702_state* state = fe->demodulator_priv;
dprintk ("%s(%d)\n", __FUNCTION__, enable);
if (enable)
return cx22702_writereg (state, 0x0D, cx22702_readreg(state, 0x0D) & 0xfe);
else
return cx22702_writereg (state, 0x0D, cx22702_readreg(state, 0x0D) | 1);
}
/* Talk to the demod, set the FEC, GUARD, QAM settings etc */
static int cx22702_set_tps (struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
u8 val;
struct cx22702_state* state = fe->demodulator_priv;
if (fe->ops->tuner_ops.set_params) {
fe->ops->tuner_ops.set_params(fe, p);
if (fe->ops->i2c_gate_ctrl) fe->ops->i2c_gate_ctrl(fe, 0);
}
/* set inversion */
cx22702_set_inversion (state, p->inversion);
/* set bandwidth */
switch(p->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
cx22702_writereg(state, 0x0C, (cx22702_readreg(state, 0x0C) & 0xcf) | 0x20 );
break;
case BANDWIDTH_7_MHZ:
cx22702_writereg(state, 0x0C, (cx22702_readreg(state, 0x0C) & 0xcf) | 0x10 );
break;
case BANDWIDTH_8_MHZ:
cx22702_writereg(state, 0x0C, cx22702_readreg(state, 0x0C) &0xcf );
break;
default:
dprintk ("%s: invalid bandwidth\n",__FUNCTION__);
return -EINVAL;
}
p->u.ofdm.code_rate_LP = FEC_AUTO; //temp hack as manual not working
/* use auto configuration? */
if((p->u.ofdm.hierarchy_information==HIERARCHY_AUTO) ||
(p->u.ofdm.constellation==QAM_AUTO) ||
(p->u.ofdm.code_rate_HP==FEC_AUTO) ||
(p->u.ofdm.code_rate_LP==FEC_AUTO) ||
(p->u.ofdm.guard_interval==GUARD_INTERVAL_AUTO) ||
(p->u.ofdm.transmission_mode==TRANSMISSION_MODE_AUTO) ) {
/* TPS Source - use hardware driven values */
cx22702_writereg(state, 0x06, 0x10);
cx22702_writereg(state, 0x07, 0x9);
cx22702_writereg(state, 0x08, 0xC1);
cx22702_writereg(state, 0x0B, cx22702_readreg(state, 0x0B) & 0xfc );
cx22702_writereg(state, 0x0C, (cx22702_readreg(state, 0x0C) & 0xBF) | 0x40 );
cx22702_writereg(state, 0x00, 0x01); /* Begin aquisition */
dprintk("%s: Autodetecting\n",__FUNCTION__);
return 0;
}
/* manually programmed values */
val=0;
switch(p->u.ofdm.constellation) {
case QPSK: val = (val&0xe7); break;
case QAM_16: val = (val&0xe7)|0x08; break;
case QAM_64: val = (val&0xe7)|0x10; break;
default:
dprintk ("%s: invalid constellation\n",__FUNCTION__);
return -EINVAL;
}
switch(p->u.ofdm.hierarchy_information) {
case HIERARCHY_NONE: val = (val&0xf8); break;
case HIERARCHY_1: val = (val&0xf8)|1; break;
case HIERARCHY_2: val = (val&0xf8)|2; break;
case HIERARCHY_4: val = (val&0xf8)|3; break;
default:
dprintk ("%s: invalid hierarchy\n",__FUNCTION__);
return -EINVAL;
}
cx22702_writereg (state, 0x06, val);
val=0;
switch(p->u.ofdm.code_rate_HP) {
case FEC_NONE:
case FEC_1_2: val = (val&0xc7); break;
case FEC_2_3: val = (val&0xc7)|0x08; break;
case FEC_3_4: val = (val&0xc7)|0x10; break;
case FEC_5_6: val = (val&0xc7)|0x18; break;
case FEC_7_8: val = (val&0xc7)|0x20; break;
default:
dprintk ("%s: invalid code_rate_HP\n",__FUNCTION__);
return -EINVAL;
}
switch(p->u.ofdm.code_rate_LP) {
case FEC_NONE:
case FEC_1_2: val = (val&0xf8); break;
case FEC_2_3: val = (val&0xf8)|1; break;
case FEC_3_4: val = (val&0xf8)|2; break;
case FEC_5_6: val = (val&0xf8)|3; break;
case FEC_7_8: val = (val&0xf8)|4; break;
default:
dprintk ("%s: invalid code_rate_LP\n",__FUNCTION__);
return -EINVAL;
}
cx22702_writereg (state, 0x07, val);
val=0;
switch(p->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: val = (val&0xf3); break;
case GUARD_INTERVAL_1_16: val = (val&0xf3)|0x04; break;
case GUARD_INTERVAL_1_8: val = (val&0xf3)|0x08; break;
case GUARD_INTERVAL_1_4: val = (val&0xf3)|0x0c; break;
default:
dprintk ("%s: invalid guard_interval\n",__FUNCTION__);
return -EINVAL;
}
switch(p->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: val = (val&0xfc); break;
case TRANSMISSION_MODE_8K: val = (val&0xfc)|1; break;
default:
dprintk ("%s: invalid transmission_mode\n",__FUNCTION__);
return -EINVAL;
}
cx22702_writereg(state, 0x08, val);
cx22702_writereg(state, 0x0B, (cx22702_readreg(state, 0x0B) & 0xfc) | 0x02 );
cx22702_writereg(state, 0x0C, (cx22702_readreg(state, 0x0C) & 0xBF) | 0x40 );
/* Begin channel aquisition */
cx22702_writereg(state, 0x00, 0x01);
return 0;
}
/* Reset the demod hardware and reset all of the configuration registers
to a default state. */
static int cx22702_init (struct dvb_frontend* fe)
{
int i;
struct cx22702_state* state = fe->demodulator_priv;
cx22702_writereg (state, 0x00, 0x02);
msleep(10);
for (i=0; i<sizeof(init_tab); i+=2)
cx22702_writereg (state, init_tab[i], init_tab[i+1]);
cx22702_writereg (state, 0xf8, (state->config->output_mode << 1) & 0x02);
cx22702_i2c_gate_ctrl(fe, 0);
return 0;
}
static int cx22702_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
struct cx22702_state* state = fe->demodulator_priv;
u8 reg0A;
u8 reg23;
*status = 0;
reg0A = cx22702_readreg (state, 0x0A);
reg23 = cx22702_readreg (state, 0x23);
dprintk ("%s: status demod=0x%02x agc=0x%02x\n"
,__FUNCTION__,reg0A,reg23);
if(reg0A & 0x10) {
*status |= FE_HAS_LOCK;
*status |= FE_HAS_VITERBI;
*status |= FE_HAS_SYNC;
}
if(reg0A & 0x20)
*status |= FE_HAS_CARRIER;
if(reg23 < 0xf0)
*status |= FE_HAS_SIGNAL;
return 0;
}
static int cx22702_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct cx22702_state* state = fe->demodulator_priv;
if(cx22702_readreg (state, 0xE4) & 0x02) {
/* Realtime statistics */
*ber = (cx22702_readreg (state, 0xDE) & 0x7F) << 7
| (cx22702_readreg (state, 0xDF)&0x7F);
} else {
/* Averagtine statistics */
*ber = (cx22702_readreg (state, 0xDE) & 0x7F) << 7
| cx22702_readreg (state, 0xDF);
}
return 0;
}
static int cx22702_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
struct cx22702_state* state = fe->demodulator_priv;
*signal_strength = cx22702_readreg (state, 0x23);
return 0;
}
static int cx22702_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct cx22702_state* state = fe->demodulator_priv;
u16 rs_ber=0;
if(cx22702_readreg (state, 0xE4) & 0x02) {
/* Realtime statistics */
rs_ber = (cx22702_readreg (state, 0xDE) & 0x7F) << 7
| (cx22702_readreg (state, 0xDF)& 0x7F);
} else {
/* Averagine statistics */
rs_ber = (cx22702_readreg (state, 0xDE) & 0x7F) << 8
| cx22702_readreg (state, 0xDF);
}
*snr = ~rs_ber;
return 0;
}
static int cx22702_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct cx22702_state* state = fe->demodulator_priv;
u8 _ucblocks;
/* RS Uncorrectable Packet Count then reset */
_ucblocks = cx22702_readreg (state, 0xE3);
if (state->prevUCBlocks < _ucblocks)
*ucblocks = (_ucblocks - state->prevUCBlocks);
else
*ucblocks = state->prevUCBlocks - _ucblocks;
state->prevUCBlocks = _ucblocks;
return 0;
}
static int cx22702_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
struct cx22702_state* state = fe->demodulator_priv;
u8 reg0C = cx22702_readreg (state, 0x0C);
p->inversion = reg0C & 0x1 ? INVERSION_ON : INVERSION_OFF;
return cx22702_get_tps (state, &p->u.ofdm);
}
static int cx22702_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void cx22702_release(struct dvb_frontend* fe)
{
struct cx22702_state* state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops cx22702_ops;
struct dvb_frontend* cx22702_attach(const struct cx22702_config* config,
struct i2c_adapter* i2c)
{
struct cx22702_state* state = NULL;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct cx22702_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &cx22702_ops, sizeof(struct dvb_frontend_ops));
state->prevUCBlocks = 0;
/* check if the demod is there */
if (cx22702_readreg(state, 0x1f) != 0x3)
goto error;
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops cx22702_ops = {
.info = {
.name = "Conexant CX22702 DVB-T",
.type = FE_OFDM,
.frequency_min = 177000000,
.frequency_max = 858000000,
.frequency_stepsize = 166666,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER
},
.release = cx22702_release,
.init = cx22702_init,
.i2c_gate_ctrl = cx22702_i2c_gate_ctrl,
.set_frontend = cx22702_set_tps,
.get_frontend = cx22702_get_frontend,
.get_tune_settings = cx22702_get_tune_settings,
.read_status = cx22702_read_status,
.read_ber = cx22702_read_ber,
.read_signal_strength = cx22702_read_signal_strength,
.read_snr = cx22702_read_snr,
.read_ucblocks = cx22702_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Enable verbose debug messages");
MODULE_DESCRIPTION("Conexant CX22702 DVB-T Demodulator driver");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(cx22702_attach);