You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
761 lines
18 KiB
761 lines
18 KiB
/*
|
|
* linux/arch/arm/mm/mm-armv.c
|
|
*
|
|
* Copyright (C) 1998-2002 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Page table sludge for ARM v3 and v4 processor architectures.
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/nodemask.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/page.h>
|
|
#include <asm/io.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include <asm/mach/map.h>
|
|
|
|
#define CPOLICY_UNCACHED 0
|
|
#define CPOLICY_BUFFERED 1
|
|
#define CPOLICY_WRITETHROUGH 2
|
|
#define CPOLICY_WRITEBACK 3
|
|
#define CPOLICY_WRITEALLOC 4
|
|
|
|
static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
|
|
static unsigned int ecc_mask __initdata = 0;
|
|
pgprot_t pgprot_kernel;
|
|
|
|
EXPORT_SYMBOL(pgprot_kernel);
|
|
|
|
struct cachepolicy {
|
|
const char policy[16];
|
|
unsigned int cr_mask;
|
|
unsigned int pmd;
|
|
unsigned int pte;
|
|
};
|
|
|
|
static struct cachepolicy cache_policies[] __initdata = {
|
|
{
|
|
.policy = "uncached",
|
|
.cr_mask = CR_W|CR_C,
|
|
.pmd = PMD_SECT_UNCACHED,
|
|
.pte = 0,
|
|
}, {
|
|
.policy = "buffered",
|
|
.cr_mask = CR_C,
|
|
.pmd = PMD_SECT_BUFFERED,
|
|
.pte = PTE_BUFFERABLE,
|
|
}, {
|
|
.policy = "writethrough",
|
|
.cr_mask = 0,
|
|
.pmd = PMD_SECT_WT,
|
|
.pte = PTE_CACHEABLE,
|
|
}, {
|
|
.policy = "writeback",
|
|
.cr_mask = 0,
|
|
.pmd = PMD_SECT_WB,
|
|
.pte = PTE_BUFFERABLE|PTE_CACHEABLE,
|
|
}, {
|
|
.policy = "writealloc",
|
|
.cr_mask = 0,
|
|
.pmd = PMD_SECT_WBWA,
|
|
.pte = PTE_BUFFERABLE|PTE_CACHEABLE,
|
|
}
|
|
};
|
|
|
|
/*
|
|
* These are useful for identifing cache coherency
|
|
* problems by allowing the cache or the cache and
|
|
* writebuffer to be turned off. (Note: the write
|
|
* buffer should not be on and the cache off).
|
|
*/
|
|
static void __init early_cachepolicy(char **p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
|
|
int len = strlen(cache_policies[i].policy);
|
|
|
|
if (memcmp(*p, cache_policies[i].policy, len) == 0) {
|
|
cachepolicy = i;
|
|
cr_alignment &= ~cache_policies[i].cr_mask;
|
|
cr_no_alignment &= ~cache_policies[i].cr_mask;
|
|
*p += len;
|
|
break;
|
|
}
|
|
}
|
|
if (i == ARRAY_SIZE(cache_policies))
|
|
printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
|
|
flush_cache_all();
|
|
set_cr(cr_alignment);
|
|
}
|
|
|
|
static void __init early_nocache(char **__unused)
|
|
{
|
|
char *p = "buffered";
|
|
printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
|
|
early_cachepolicy(&p);
|
|
}
|
|
|
|
static void __init early_nowrite(char **__unused)
|
|
{
|
|
char *p = "uncached";
|
|
printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
|
|
early_cachepolicy(&p);
|
|
}
|
|
|
|
static void __init early_ecc(char **p)
|
|
{
|
|
if (memcmp(*p, "on", 2) == 0) {
|
|
ecc_mask = PMD_PROTECTION;
|
|
*p += 2;
|
|
} else if (memcmp(*p, "off", 3) == 0) {
|
|
ecc_mask = 0;
|
|
*p += 3;
|
|
}
|
|
}
|
|
|
|
__early_param("nocache", early_nocache);
|
|
__early_param("nowb", early_nowrite);
|
|
__early_param("cachepolicy=", early_cachepolicy);
|
|
__early_param("ecc=", early_ecc);
|
|
|
|
static int __init noalign_setup(char *__unused)
|
|
{
|
|
cr_alignment &= ~CR_A;
|
|
cr_no_alignment &= ~CR_A;
|
|
set_cr(cr_alignment);
|
|
return 1;
|
|
}
|
|
|
|
__setup("noalign", noalign_setup);
|
|
|
|
#define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
|
|
|
|
/*
|
|
* need to get a 16k page for level 1
|
|
*/
|
|
pgd_t *get_pgd_slow(struct mm_struct *mm)
|
|
{
|
|
pgd_t *new_pgd, *init_pgd;
|
|
pmd_t *new_pmd, *init_pmd;
|
|
pte_t *new_pte, *init_pte;
|
|
|
|
new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
|
|
if (!new_pgd)
|
|
goto no_pgd;
|
|
|
|
memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
|
|
|
|
init_pgd = pgd_offset_k(0);
|
|
|
|
if (!vectors_high()) {
|
|
/*
|
|
* This lock is here just to satisfy pmd_alloc and pte_lock
|
|
*/
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
/*
|
|
* On ARM, first page must always be allocated since it
|
|
* contains the machine vectors.
|
|
*/
|
|
new_pmd = pmd_alloc(mm, new_pgd, 0);
|
|
if (!new_pmd)
|
|
goto no_pmd;
|
|
|
|
new_pte = pte_alloc_map(mm, new_pmd, 0);
|
|
if (!new_pte)
|
|
goto no_pte;
|
|
|
|
init_pmd = pmd_offset(init_pgd, 0);
|
|
init_pte = pte_offset_map_nested(init_pmd, 0);
|
|
set_pte(new_pte, *init_pte);
|
|
pte_unmap_nested(init_pte);
|
|
pte_unmap(new_pte);
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
}
|
|
|
|
/*
|
|
* Copy over the kernel and IO PGD entries
|
|
*/
|
|
memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
|
|
(PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
|
|
|
|
clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
|
|
|
|
return new_pgd;
|
|
|
|
no_pte:
|
|
spin_unlock(&mm->page_table_lock);
|
|
pmd_free(new_pmd);
|
|
free_pages((unsigned long)new_pgd, 2);
|
|
return NULL;
|
|
|
|
no_pmd:
|
|
spin_unlock(&mm->page_table_lock);
|
|
free_pages((unsigned long)new_pgd, 2);
|
|
return NULL;
|
|
|
|
no_pgd:
|
|
return NULL;
|
|
}
|
|
|
|
void free_pgd_slow(pgd_t *pgd)
|
|
{
|
|
pmd_t *pmd;
|
|
struct page *pte;
|
|
|
|
if (!pgd)
|
|
return;
|
|
|
|
/* pgd is always present and good */
|
|
pmd = (pmd_t *)pgd;
|
|
if (pmd_none(*pmd))
|
|
goto free;
|
|
if (pmd_bad(*pmd)) {
|
|
pmd_ERROR(*pmd);
|
|
pmd_clear(pmd);
|
|
goto free;
|
|
}
|
|
|
|
pte = pmd_page(*pmd);
|
|
pmd_clear(pmd);
|
|
dec_page_state(nr_page_table_pages);
|
|
pte_free(pte);
|
|
pmd_free(pmd);
|
|
free:
|
|
free_pages((unsigned long) pgd, 2);
|
|
}
|
|
|
|
/*
|
|
* Create a SECTION PGD between VIRT and PHYS in domain
|
|
* DOMAIN with protection PROT. This operates on half-
|
|
* pgdir entry increments.
|
|
*/
|
|
static inline void
|
|
alloc_init_section(unsigned long virt, unsigned long phys, int prot)
|
|
{
|
|
pmd_t *pmdp;
|
|
|
|
pmdp = pmd_offset(pgd_offset_k(virt), virt);
|
|
if (virt & (1 << 20))
|
|
pmdp++;
|
|
|
|
*pmdp = __pmd(phys | prot);
|
|
flush_pmd_entry(pmdp);
|
|
}
|
|
|
|
/*
|
|
* Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
|
|
*/
|
|
static inline void
|
|
alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i += 1) {
|
|
alloc_init_section(virt, phys & SUPERSECTION_MASK,
|
|
prot | PMD_SECT_SUPER);
|
|
|
|
virt += (PGDIR_SIZE / 2);
|
|
phys += (PGDIR_SIZE / 2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a PAGE mapping between VIRT and PHYS in domain
|
|
* DOMAIN with protection PROT. Note that due to the
|
|
* way we map the PTEs, we must allocate two PTE_SIZE'd
|
|
* blocks - one for the Linux pte table, and one for
|
|
* the hardware pte table.
|
|
*/
|
|
static inline void
|
|
alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
|
|
{
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
pmdp = pmd_offset(pgd_offset_k(virt), virt);
|
|
|
|
if (pmd_none(*pmdp)) {
|
|
unsigned long pmdval;
|
|
ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
|
|
sizeof(pte_t));
|
|
|
|
pmdval = __pa(ptep) | prot_l1;
|
|
pmdp[0] = __pmd(pmdval);
|
|
pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
|
|
flush_pmd_entry(pmdp);
|
|
}
|
|
ptep = pte_offset_kernel(pmdp, virt);
|
|
|
|
set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
|
|
}
|
|
|
|
/*
|
|
* Clear any PGD mapping. On a two-level page table system,
|
|
* the clearance is done by the middle-level functions (pmd)
|
|
* rather than the top-level (pgd) functions.
|
|
*/
|
|
static inline void clear_mapping(unsigned long virt)
|
|
{
|
|
pmd_clear(pmd_offset(pgd_offset_k(virt), virt));
|
|
}
|
|
|
|
struct mem_types {
|
|
unsigned int prot_pte;
|
|
unsigned int prot_l1;
|
|
unsigned int prot_sect;
|
|
unsigned int domain;
|
|
};
|
|
|
|
static struct mem_types mem_types[] __initdata = {
|
|
[MT_DEVICE] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_WRITE,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
|
|
PMD_SECT_AP_WRITE,
|
|
.domain = DOMAIN_IO,
|
|
},
|
|
[MT_CACHECLEAN] = {
|
|
.prot_sect = PMD_TYPE_SECT,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_MINICLEAN] = {
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_LOW_VECTORS] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.domain = DOMAIN_USER,
|
|
},
|
|
[MT_HIGH_VECTORS] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_USER | L_PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.domain = DOMAIN_USER,
|
|
},
|
|
[MT_MEMORY] = {
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_ROM] = {
|
|
.prot_sect = PMD_TYPE_SECT,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_WRITE,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
|
|
PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
|
|
PMD_SECT_TEX(1),
|
|
.domain = DOMAIN_IO,
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Adjust the PMD section entries according to the CPU in use.
|
|
*/
|
|
static void __init build_mem_type_table(void)
|
|
{
|
|
struct cachepolicy *cp;
|
|
unsigned int cr = get_cr();
|
|
int cpu_arch = cpu_architecture();
|
|
int i;
|
|
|
|
#if defined(CONFIG_CPU_DCACHE_DISABLE)
|
|
if (cachepolicy > CPOLICY_BUFFERED)
|
|
cachepolicy = CPOLICY_BUFFERED;
|
|
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
|
|
if (cachepolicy > CPOLICY_WRITETHROUGH)
|
|
cachepolicy = CPOLICY_WRITETHROUGH;
|
|
#endif
|
|
if (cpu_arch < CPU_ARCH_ARMv5) {
|
|
if (cachepolicy >= CPOLICY_WRITEALLOC)
|
|
cachepolicy = CPOLICY_WRITEBACK;
|
|
ecc_mask = 0;
|
|
}
|
|
|
|
if (cpu_arch <= CPU_ARCH_ARMv5) {
|
|
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
|
|
if (mem_types[i].prot_l1)
|
|
mem_types[i].prot_l1 |= PMD_BIT4;
|
|
if (mem_types[i].prot_sect)
|
|
mem_types[i].prot_sect |= PMD_BIT4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ARMv6 and above have extended page tables.
|
|
*/
|
|
if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
|
|
/*
|
|
* bit 4 becomes XN which we must clear for the
|
|
* kernel memory mapping.
|
|
*/
|
|
mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
|
|
mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
|
|
/*
|
|
* Mark cache clean areas and XIP ROM read only
|
|
* from SVC mode and no access from userspace.
|
|
*/
|
|
mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
|
|
mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
|
|
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
|
|
}
|
|
|
|
cp = &cache_policies[cachepolicy];
|
|
|
|
if (cpu_arch >= CPU_ARCH_ARMv5) {
|
|
mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
|
|
mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
|
|
} else {
|
|
mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
|
|
mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
|
|
mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
|
|
}
|
|
|
|
mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
|
|
mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
|
|
mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
|
|
mem_types[MT_ROM].prot_sect |= cp->pmd;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned long v = pgprot_val(protection_map[i]);
|
|
v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;
|
|
protection_map[i] = __pgprot(v);
|
|
}
|
|
|
|
pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
|
|
L_PTE_DIRTY | L_PTE_WRITE |
|
|
L_PTE_EXEC | cp->pte);
|
|
|
|
switch (cp->pmd) {
|
|
case PMD_SECT_WT:
|
|
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
|
|
break;
|
|
case PMD_SECT_WB:
|
|
case PMD_SECT_WBWA:
|
|
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
|
|
break;
|
|
}
|
|
printk("Memory policy: ECC %sabled, Data cache %s\n",
|
|
ecc_mask ? "en" : "dis", cp->policy);
|
|
}
|
|
|
|
#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
|
|
|
|
/*
|
|
* Create the page directory entries and any necessary
|
|
* page tables for the mapping specified by `md'. We
|
|
* are able to cope here with varying sizes and address
|
|
* offsets, and we take full advantage of sections and
|
|
* supersections.
|
|
*/
|
|
static void __init create_mapping(struct map_desc *md)
|
|
{
|
|
unsigned long virt, length;
|
|
int prot_sect, prot_l1, domain;
|
|
pgprot_t prot_pte;
|
|
long off;
|
|
|
|
if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
|
|
printk(KERN_WARNING "BUG: not creating mapping for "
|
|
"0x%08lx at 0x%08lx in user region\n",
|
|
md->physical, md->virtual);
|
|
return;
|
|
}
|
|
|
|
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
|
|
md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
|
|
printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
|
|
"overlaps vmalloc space\n",
|
|
md->physical, md->virtual);
|
|
}
|
|
|
|
domain = mem_types[md->type].domain;
|
|
prot_pte = __pgprot(mem_types[md->type].prot_pte);
|
|
prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
|
|
prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
|
|
|
|
virt = md->virtual;
|
|
off = md->physical - virt;
|
|
length = md->length;
|
|
|
|
if (mem_types[md->type].prot_l1 == 0 &&
|
|
(virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
|
|
printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
|
|
"be mapped using pages, ignoring.\n",
|
|
md->physical, md->virtual);
|
|
return;
|
|
}
|
|
|
|
while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
|
|
alloc_init_page(virt, virt + off, prot_l1, prot_pte);
|
|
|
|
virt += PAGE_SIZE;
|
|
length -= PAGE_SIZE;
|
|
}
|
|
|
|
/* N.B. ARMv6 supersections are only defined to work with domain 0.
|
|
* Since domain assignments can in fact be arbitrary, the
|
|
* 'domain == 0' check below is required to insure that ARMv6
|
|
* supersections are only allocated for domain 0 regardless
|
|
* of the actual domain assignments in use.
|
|
*/
|
|
if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
|
|
/* Align to supersection boundary */
|
|
while ((virt & ~SUPERSECTION_MASK || (virt + off) &
|
|
~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
|
|
alloc_init_section(virt, virt + off, prot_sect);
|
|
|
|
virt += (PGDIR_SIZE / 2);
|
|
length -= (PGDIR_SIZE / 2);
|
|
}
|
|
|
|
while (length >= SUPERSECTION_SIZE) {
|
|
alloc_init_supersection(virt, virt + off, prot_sect);
|
|
|
|
virt += SUPERSECTION_SIZE;
|
|
length -= SUPERSECTION_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A section mapping covers half a "pgdir" entry.
|
|
*/
|
|
while (length >= (PGDIR_SIZE / 2)) {
|
|
alloc_init_section(virt, virt + off, prot_sect);
|
|
|
|
virt += (PGDIR_SIZE / 2);
|
|
length -= (PGDIR_SIZE / 2);
|
|
}
|
|
|
|
while (length >= PAGE_SIZE) {
|
|
alloc_init_page(virt, virt + off, prot_l1, prot_pte);
|
|
|
|
virt += PAGE_SIZE;
|
|
length -= PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In order to soft-boot, we need to insert a 1:1 mapping in place of
|
|
* the user-mode pages. This will then ensure that we have predictable
|
|
* results when turning the mmu off
|
|
*/
|
|
void setup_mm_for_reboot(char mode)
|
|
{
|
|
unsigned long pmdval;
|
|
pgd_t *pgd;
|
|
pmd_t *pmd;
|
|
int i;
|
|
int cpu_arch = cpu_architecture();
|
|
|
|
if (current->mm && current->mm->pgd)
|
|
pgd = current->mm->pgd;
|
|
else
|
|
pgd = init_mm.pgd;
|
|
|
|
for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
|
|
pmdval = (i << PGDIR_SHIFT) |
|
|
PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
|
|
PMD_TYPE_SECT;
|
|
if (cpu_arch <= CPU_ARCH_ARMv5)
|
|
pmdval |= PMD_BIT4;
|
|
pmd = pmd_offset(pgd + i, i << PGDIR_SHIFT);
|
|
pmd[0] = __pmd(pmdval);
|
|
pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
|
|
flush_pmd_entry(pmd);
|
|
}
|
|
}
|
|
|
|
extern void _stext, _etext;
|
|
|
|
/*
|
|
* Setup initial mappings. We use the page we allocated for zero page to hold
|
|
* the mappings, which will get overwritten by the vectors in traps_init().
|
|
* The mappings must be in virtual address order.
|
|
*/
|
|
void __init memtable_init(struct meminfo *mi)
|
|
{
|
|
struct map_desc *init_maps, *p, *q;
|
|
unsigned long address = 0;
|
|
int i;
|
|
|
|
build_mem_type_table();
|
|
|
|
init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
p->physical = CONFIG_XIP_PHYS_ADDR & PMD_MASK;
|
|
p->virtual = (unsigned long)&_stext & PMD_MASK;
|
|
p->length = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK;
|
|
p->type = MT_ROM;
|
|
p ++;
|
|
#endif
|
|
|
|
for (i = 0; i < mi->nr_banks; i++) {
|
|
if (mi->bank[i].size == 0)
|
|
continue;
|
|
|
|
p->physical = mi->bank[i].start;
|
|
p->virtual = __phys_to_virt(p->physical);
|
|
p->length = mi->bank[i].size;
|
|
p->type = MT_MEMORY;
|
|
p ++;
|
|
}
|
|
|
|
#ifdef FLUSH_BASE
|
|
p->physical = FLUSH_BASE_PHYS;
|
|
p->virtual = FLUSH_BASE;
|
|
p->length = PGDIR_SIZE;
|
|
p->type = MT_CACHECLEAN;
|
|
p ++;
|
|
#endif
|
|
|
|
#ifdef FLUSH_BASE_MINICACHE
|
|
p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE;
|
|
p->virtual = FLUSH_BASE_MINICACHE;
|
|
p->length = PGDIR_SIZE;
|
|
p->type = MT_MINICLEAN;
|
|
p ++;
|
|
#endif
|
|
|
|
/*
|
|
* Go through the initial mappings, but clear out any
|
|
* pgdir entries that are not in the description.
|
|
*/
|
|
q = init_maps;
|
|
do {
|
|
if (address < q->virtual || q == p) {
|
|
clear_mapping(address);
|
|
address += PGDIR_SIZE;
|
|
} else {
|
|
create_mapping(q);
|
|
|
|
address = q->virtual + q->length;
|
|
address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
|
|
|
|
q ++;
|
|
}
|
|
} while (address != 0);
|
|
|
|
/*
|
|
* Create a mapping for the machine vectors at the high-vectors
|
|
* location (0xffff0000). If we aren't using high-vectors, also
|
|
* create a mapping at the low-vectors virtual address.
|
|
*/
|
|
init_maps->physical = virt_to_phys(init_maps);
|
|
init_maps->virtual = 0xffff0000;
|
|
init_maps->length = PAGE_SIZE;
|
|
init_maps->type = MT_HIGH_VECTORS;
|
|
create_mapping(init_maps);
|
|
|
|
if (!vectors_high()) {
|
|
init_maps->virtual = 0;
|
|
init_maps->type = MT_LOW_VECTORS;
|
|
create_mapping(init_maps);
|
|
}
|
|
|
|
flush_cache_all();
|
|
flush_tlb_all();
|
|
}
|
|
|
|
/*
|
|
* Create the architecture specific mappings
|
|
*/
|
|
void __init iotable_init(struct map_desc *io_desc, int nr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr; i++)
|
|
create_mapping(io_desc + i);
|
|
}
|
|
|
|
static inline void
|
|
free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct page *start_pg, *end_pg;
|
|
unsigned long pg, pgend;
|
|
|
|
/*
|
|
* Convert start_pfn/end_pfn to a struct page pointer.
|
|
*/
|
|
start_pg = pfn_to_page(start_pfn);
|
|
end_pg = pfn_to_page(end_pfn);
|
|
|
|
/*
|
|
* Convert to physical addresses, and
|
|
* round start upwards and end downwards.
|
|
*/
|
|
pg = PAGE_ALIGN(__pa(start_pg));
|
|
pgend = __pa(end_pg) & PAGE_MASK;
|
|
|
|
/*
|
|
* If there are free pages between these,
|
|
* free the section of the memmap array.
|
|
*/
|
|
if (pg < pgend)
|
|
free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
|
|
}
|
|
|
|
static inline void free_unused_memmap_node(int node, struct meminfo *mi)
|
|
{
|
|
unsigned long bank_start, prev_bank_end = 0;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* [FIXME] This relies on each bank being in address order. This
|
|
* may not be the case, especially if the user has provided the
|
|
* information on the command line.
|
|
*/
|
|
for (i = 0; i < mi->nr_banks; i++) {
|
|
if (mi->bank[i].size == 0 || mi->bank[i].node != node)
|
|
continue;
|
|
|
|
bank_start = mi->bank[i].start >> PAGE_SHIFT;
|
|
if (bank_start < prev_bank_end) {
|
|
printk(KERN_ERR "MEM: unordered memory banks. "
|
|
"Not freeing memmap.\n");
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we had a previous bank, and there is a space
|
|
* between the current bank and the previous, free it.
|
|
*/
|
|
if (prev_bank_end && prev_bank_end != bank_start)
|
|
free_memmap(node, prev_bank_end, bank_start);
|
|
|
|
prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
|
|
mi->bank[i].size) >> PAGE_SHIFT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The mem_map array can get very big. Free
|
|
* the unused area of the memory map.
|
|
*/
|
|
void __init create_memmap_holes(struct meminfo *mi)
|
|
{
|
|
int node;
|
|
|
|
for_each_online_node(node)
|
|
free_unused_memmap_node(node, mi);
|
|
}
|
|
|