You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3970 lines
102 KiB
3970 lines
102 KiB
/*
|
|
* Copyright (C) 2008 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list_sort.h>
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "disk-io.h"
|
|
#include "locking.h"
|
|
#include "print-tree.h"
|
|
#include "backref.h"
|
|
#include "compat.h"
|
|
#include "tree-log.h"
|
|
#include "hash.h"
|
|
|
|
/* magic values for the inode_only field in btrfs_log_inode:
|
|
*
|
|
* LOG_INODE_ALL means to log everything
|
|
* LOG_INODE_EXISTS means to log just enough to recreate the inode
|
|
* during log replay
|
|
*/
|
|
#define LOG_INODE_ALL 0
|
|
#define LOG_INODE_EXISTS 1
|
|
|
|
/*
|
|
* directory trouble cases
|
|
*
|
|
* 1) on rename or unlink, if the inode being unlinked isn't in the fsync
|
|
* log, we must force a full commit before doing an fsync of the directory
|
|
* where the unlink was done.
|
|
* ---> record transid of last unlink/rename per directory
|
|
*
|
|
* mkdir foo/some_dir
|
|
* normal commit
|
|
* rename foo/some_dir foo2/some_dir
|
|
* mkdir foo/some_dir
|
|
* fsync foo/some_dir/some_file
|
|
*
|
|
* The fsync above will unlink the original some_dir without recording
|
|
* it in its new location (foo2). After a crash, some_dir will be gone
|
|
* unless the fsync of some_file forces a full commit
|
|
*
|
|
* 2) we must log any new names for any file or dir that is in the fsync
|
|
* log. ---> check inode while renaming/linking.
|
|
*
|
|
* 2a) we must log any new names for any file or dir during rename
|
|
* when the directory they are being removed from was logged.
|
|
* ---> check inode and old parent dir during rename
|
|
*
|
|
* 2a is actually the more important variant. With the extra logging
|
|
* a crash might unlink the old name without recreating the new one
|
|
*
|
|
* 3) after a crash, we must go through any directories with a link count
|
|
* of zero and redo the rm -rf
|
|
*
|
|
* mkdir f1/foo
|
|
* normal commit
|
|
* rm -rf f1/foo
|
|
* fsync(f1)
|
|
*
|
|
* The directory f1 was fully removed from the FS, but fsync was never
|
|
* called on f1, only its parent dir. After a crash the rm -rf must
|
|
* be replayed. This must be able to recurse down the entire
|
|
* directory tree. The inode link count fixup code takes care of the
|
|
* ugly details.
|
|
*/
|
|
|
|
/*
|
|
* stages for the tree walking. The first
|
|
* stage (0) is to only pin down the blocks we find
|
|
* the second stage (1) is to make sure that all the inodes
|
|
* we find in the log are created in the subvolume.
|
|
*
|
|
* The last stage is to deal with directories and links and extents
|
|
* and all the other fun semantics
|
|
*/
|
|
#define LOG_WALK_PIN_ONLY 0
|
|
#define LOG_WALK_REPLAY_INODES 1
|
|
#define LOG_WALK_REPLAY_ALL 2
|
|
|
|
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
int inode_only);
|
|
static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, u64 objectid);
|
|
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_root *log,
|
|
struct btrfs_path *path,
|
|
u64 dirid, int del_all);
|
|
|
|
/*
|
|
* tree logging is a special write ahead log used to make sure that
|
|
* fsyncs and O_SYNCs can happen without doing full tree commits.
|
|
*
|
|
* Full tree commits are expensive because they require commonly
|
|
* modified blocks to be recowed, creating many dirty pages in the
|
|
* extent tree an 4x-6x higher write load than ext3.
|
|
*
|
|
* Instead of doing a tree commit on every fsync, we use the
|
|
* key ranges and transaction ids to find items for a given file or directory
|
|
* that have changed in this transaction. Those items are copied into
|
|
* a special tree (one per subvolume root), that tree is written to disk
|
|
* and then the fsync is considered complete.
|
|
*
|
|
* After a crash, items are copied out of the log-tree back into the
|
|
* subvolume tree. Any file data extents found are recorded in the extent
|
|
* allocation tree, and the log-tree freed.
|
|
*
|
|
* The log tree is read three times, once to pin down all the extents it is
|
|
* using in ram and once, once to create all the inodes logged in the tree
|
|
* and once to do all the other items.
|
|
*/
|
|
|
|
/*
|
|
* start a sub transaction and setup the log tree
|
|
* this increments the log tree writer count to make the people
|
|
* syncing the tree wait for us to finish
|
|
*/
|
|
static int start_log_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
int err = 0;
|
|
|
|
mutex_lock(&root->log_mutex);
|
|
if (root->log_root) {
|
|
if (!root->log_start_pid) {
|
|
root->log_start_pid = current->pid;
|
|
root->log_multiple_pids = false;
|
|
} else if (root->log_start_pid != current->pid) {
|
|
root->log_multiple_pids = true;
|
|
}
|
|
|
|
atomic_inc(&root->log_batch);
|
|
atomic_inc(&root->log_writers);
|
|
mutex_unlock(&root->log_mutex);
|
|
return 0;
|
|
}
|
|
root->log_multiple_pids = false;
|
|
root->log_start_pid = current->pid;
|
|
mutex_lock(&root->fs_info->tree_log_mutex);
|
|
if (!root->fs_info->log_root_tree) {
|
|
ret = btrfs_init_log_root_tree(trans, root->fs_info);
|
|
if (ret)
|
|
err = ret;
|
|
}
|
|
if (err == 0 && !root->log_root) {
|
|
ret = btrfs_add_log_tree(trans, root);
|
|
if (ret)
|
|
err = ret;
|
|
}
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
atomic_inc(&root->log_batch);
|
|
atomic_inc(&root->log_writers);
|
|
mutex_unlock(&root->log_mutex);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* returns 0 if there was a log transaction running and we were able
|
|
* to join, or returns -ENOENT if there were not transactions
|
|
* in progress
|
|
*/
|
|
static int join_running_log_trans(struct btrfs_root *root)
|
|
{
|
|
int ret = -ENOENT;
|
|
|
|
smp_mb();
|
|
if (!root->log_root)
|
|
return -ENOENT;
|
|
|
|
mutex_lock(&root->log_mutex);
|
|
if (root->log_root) {
|
|
ret = 0;
|
|
atomic_inc(&root->log_writers);
|
|
}
|
|
mutex_unlock(&root->log_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This either makes the current running log transaction wait
|
|
* until you call btrfs_end_log_trans() or it makes any future
|
|
* log transactions wait until you call btrfs_end_log_trans()
|
|
*/
|
|
int btrfs_pin_log_trans(struct btrfs_root *root)
|
|
{
|
|
int ret = -ENOENT;
|
|
|
|
mutex_lock(&root->log_mutex);
|
|
atomic_inc(&root->log_writers);
|
|
mutex_unlock(&root->log_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* indicate we're done making changes to the log tree
|
|
* and wake up anyone waiting to do a sync
|
|
*/
|
|
void btrfs_end_log_trans(struct btrfs_root *root)
|
|
{
|
|
if (atomic_dec_and_test(&root->log_writers)) {
|
|
smp_mb();
|
|
if (waitqueue_active(&root->log_writer_wait))
|
|
wake_up(&root->log_writer_wait);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* the walk control struct is used to pass state down the chain when
|
|
* processing the log tree. The stage field tells us which part
|
|
* of the log tree processing we are currently doing. The others
|
|
* are state fields used for that specific part
|
|
*/
|
|
struct walk_control {
|
|
/* should we free the extent on disk when done? This is used
|
|
* at transaction commit time while freeing a log tree
|
|
*/
|
|
int free;
|
|
|
|
/* should we write out the extent buffer? This is used
|
|
* while flushing the log tree to disk during a sync
|
|
*/
|
|
int write;
|
|
|
|
/* should we wait for the extent buffer io to finish? Also used
|
|
* while flushing the log tree to disk for a sync
|
|
*/
|
|
int wait;
|
|
|
|
/* pin only walk, we record which extents on disk belong to the
|
|
* log trees
|
|
*/
|
|
int pin;
|
|
|
|
/* what stage of the replay code we're currently in */
|
|
int stage;
|
|
|
|
/* the root we are currently replaying */
|
|
struct btrfs_root *replay_dest;
|
|
|
|
/* the trans handle for the current replay */
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
/* the function that gets used to process blocks we find in the
|
|
* tree. Note the extent_buffer might not be up to date when it is
|
|
* passed in, and it must be checked or read if you need the data
|
|
* inside it
|
|
*/
|
|
int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
|
|
struct walk_control *wc, u64 gen);
|
|
};
|
|
|
|
/*
|
|
* process_func used to pin down extents, write them or wait on them
|
|
*/
|
|
static int process_one_buffer(struct btrfs_root *log,
|
|
struct extent_buffer *eb,
|
|
struct walk_control *wc, u64 gen)
|
|
{
|
|
if (wc->pin)
|
|
btrfs_pin_extent_for_log_replay(wc->trans,
|
|
log->fs_info->extent_root,
|
|
eb->start, eb->len);
|
|
|
|
if (btrfs_buffer_uptodate(eb, gen, 0)) {
|
|
if (wc->write)
|
|
btrfs_write_tree_block(eb);
|
|
if (wc->wait)
|
|
btrfs_wait_tree_block_writeback(eb);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Item overwrite used by replay and tree logging. eb, slot and key all refer
|
|
* to the src data we are copying out.
|
|
*
|
|
* root is the tree we are copying into, and path is a scratch
|
|
* path for use in this function (it should be released on entry and
|
|
* will be released on exit).
|
|
*
|
|
* If the key is already in the destination tree the existing item is
|
|
* overwritten. If the existing item isn't big enough, it is extended.
|
|
* If it is too large, it is truncated.
|
|
*
|
|
* If the key isn't in the destination yet, a new item is inserted.
|
|
*/
|
|
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *eb, int slot,
|
|
struct btrfs_key *key)
|
|
{
|
|
int ret;
|
|
u32 item_size;
|
|
u64 saved_i_size = 0;
|
|
int save_old_i_size = 0;
|
|
unsigned long src_ptr;
|
|
unsigned long dst_ptr;
|
|
int overwrite_root = 0;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
|
|
overwrite_root = 1;
|
|
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
src_ptr = btrfs_item_ptr_offset(eb, slot);
|
|
|
|
/* look for the key in the destination tree */
|
|
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
|
|
if (ret == 0) {
|
|
char *src_copy;
|
|
char *dst_copy;
|
|
u32 dst_size = btrfs_item_size_nr(path->nodes[0],
|
|
path->slots[0]);
|
|
if (dst_size != item_size)
|
|
goto insert;
|
|
|
|
if (item_size == 0) {
|
|
btrfs_release_path(path);
|
|
return 0;
|
|
}
|
|
dst_copy = kmalloc(item_size, GFP_NOFS);
|
|
src_copy = kmalloc(item_size, GFP_NOFS);
|
|
if (!dst_copy || !src_copy) {
|
|
btrfs_release_path(path);
|
|
kfree(dst_copy);
|
|
kfree(src_copy);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
read_extent_buffer(eb, src_copy, src_ptr, item_size);
|
|
|
|
dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
|
|
read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
|
|
item_size);
|
|
ret = memcmp(dst_copy, src_copy, item_size);
|
|
|
|
kfree(dst_copy);
|
|
kfree(src_copy);
|
|
/*
|
|
* they have the same contents, just return, this saves
|
|
* us from cowing blocks in the destination tree and doing
|
|
* extra writes that may not have been done by a previous
|
|
* sync
|
|
*/
|
|
if (ret == 0) {
|
|
btrfs_release_path(path);
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
insert:
|
|
btrfs_release_path(path);
|
|
/* try to insert the key into the destination tree */
|
|
ret = btrfs_insert_empty_item(trans, root, path,
|
|
key, item_size);
|
|
|
|
/* make sure any existing item is the correct size */
|
|
if (ret == -EEXIST) {
|
|
u32 found_size;
|
|
found_size = btrfs_item_size_nr(path->nodes[0],
|
|
path->slots[0]);
|
|
if (found_size > item_size)
|
|
btrfs_truncate_item(trans, root, path, item_size, 1);
|
|
else if (found_size < item_size)
|
|
btrfs_extend_item(trans, root, path,
|
|
item_size - found_size);
|
|
} else if (ret) {
|
|
return ret;
|
|
}
|
|
dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]);
|
|
|
|
/* don't overwrite an existing inode if the generation number
|
|
* was logged as zero. This is done when the tree logging code
|
|
* is just logging an inode to make sure it exists after recovery.
|
|
*
|
|
* Also, don't overwrite i_size on directories during replay.
|
|
* log replay inserts and removes directory items based on the
|
|
* state of the tree found in the subvolume, and i_size is modified
|
|
* as it goes
|
|
*/
|
|
if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
|
|
struct btrfs_inode_item *src_item;
|
|
struct btrfs_inode_item *dst_item;
|
|
|
|
src_item = (struct btrfs_inode_item *)src_ptr;
|
|
dst_item = (struct btrfs_inode_item *)dst_ptr;
|
|
|
|
if (btrfs_inode_generation(eb, src_item) == 0)
|
|
goto no_copy;
|
|
|
|
if (overwrite_root &&
|
|
S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
|
|
S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
|
|
save_old_i_size = 1;
|
|
saved_i_size = btrfs_inode_size(path->nodes[0],
|
|
dst_item);
|
|
}
|
|
}
|
|
|
|
copy_extent_buffer(path->nodes[0], eb, dst_ptr,
|
|
src_ptr, item_size);
|
|
|
|
if (save_old_i_size) {
|
|
struct btrfs_inode_item *dst_item;
|
|
dst_item = (struct btrfs_inode_item *)dst_ptr;
|
|
btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
|
|
}
|
|
|
|
/* make sure the generation is filled in */
|
|
if (key->type == BTRFS_INODE_ITEM_KEY) {
|
|
struct btrfs_inode_item *dst_item;
|
|
dst_item = (struct btrfs_inode_item *)dst_ptr;
|
|
if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
|
|
btrfs_set_inode_generation(path->nodes[0], dst_item,
|
|
trans->transid);
|
|
}
|
|
}
|
|
no_copy:
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_release_path(path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* simple helper to read an inode off the disk from a given root
|
|
* This can only be called for subvolume roots and not for the log
|
|
*/
|
|
static noinline struct inode *read_one_inode(struct btrfs_root *root,
|
|
u64 objectid)
|
|
{
|
|
struct btrfs_key key;
|
|
struct inode *inode;
|
|
|
|
key.objectid = objectid;
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
key.offset = 0;
|
|
inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
|
|
if (IS_ERR(inode)) {
|
|
inode = NULL;
|
|
} else if (is_bad_inode(inode)) {
|
|
iput(inode);
|
|
inode = NULL;
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
/* replays a single extent in 'eb' at 'slot' with 'key' into the
|
|
* subvolume 'root'. path is released on entry and should be released
|
|
* on exit.
|
|
*
|
|
* extents in the log tree have not been allocated out of the extent
|
|
* tree yet. So, this completes the allocation, taking a reference
|
|
* as required if the extent already exists or creating a new extent
|
|
* if it isn't in the extent allocation tree yet.
|
|
*
|
|
* The extent is inserted into the file, dropping any existing extents
|
|
* from the file that overlap the new one.
|
|
*/
|
|
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *eb, int slot,
|
|
struct btrfs_key *key)
|
|
{
|
|
int found_type;
|
|
u64 mask = root->sectorsize - 1;
|
|
u64 extent_end;
|
|
u64 start = key->offset;
|
|
u64 saved_nbytes;
|
|
struct btrfs_file_extent_item *item;
|
|
struct inode *inode = NULL;
|
|
unsigned long size;
|
|
int ret = 0;
|
|
|
|
item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
|
|
found_type = btrfs_file_extent_type(eb, item);
|
|
|
|
if (found_type == BTRFS_FILE_EXTENT_REG ||
|
|
found_type == BTRFS_FILE_EXTENT_PREALLOC)
|
|
extent_end = start + btrfs_file_extent_num_bytes(eb, item);
|
|
else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
size = btrfs_file_extent_inline_len(eb, item);
|
|
extent_end = (start + size + mask) & ~mask;
|
|
} else {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
inode = read_one_inode(root, key->objectid);
|
|
if (!inode) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* first check to see if we already have this extent in the
|
|
* file. This must be done before the btrfs_drop_extents run
|
|
* so we don't try to drop this extent.
|
|
*/
|
|
ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
|
|
start, 0);
|
|
|
|
if (ret == 0 &&
|
|
(found_type == BTRFS_FILE_EXTENT_REG ||
|
|
found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
|
|
struct btrfs_file_extent_item cmp1;
|
|
struct btrfs_file_extent_item cmp2;
|
|
struct btrfs_file_extent_item *existing;
|
|
struct extent_buffer *leaf;
|
|
|
|
leaf = path->nodes[0];
|
|
existing = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
|
|
read_extent_buffer(eb, &cmp1, (unsigned long)item,
|
|
sizeof(cmp1));
|
|
read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
|
|
sizeof(cmp2));
|
|
|
|
/*
|
|
* we already have a pointer to this exact extent,
|
|
* we don't have to do anything
|
|
*/
|
|
if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
|
|
btrfs_release_path(path);
|
|
goto out;
|
|
}
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
saved_nbytes = inode_get_bytes(inode);
|
|
/* drop any overlapping extents */
|
|
ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
|
|
BUG_ON(ret);
|
|
|
|
if (found_type == BTRFS_FILE_EXTENT_REG ||
|
|
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
u64 offset;
|
|
unsigned long dest_offset;
|
|
struct btrfs_key ins;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, key,
|
|
sizeof(*item));
|
|
BUG_ON(ret);
|
|
dest_offset = btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]);
|
|
copy_extent_buffer(path->nodes[0], eb, dest_offset,
|
|
(unsigned long)item, sizeof(*item));
|
|
|
|
ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
|
|
ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
offset = key->offset - btrfs_file_extent_offset(eb, item);
|
|
|
|
if (ins.objectid > 0) {
|
|
u64 csum_start;
|
|
u64 csum_end;
|
|
LIST_HEAD(ordered_sums);
|
|
/*
|
|
* is this extent already allocated in the extent
|
|
* allocation tree? If so, just add a reference
|
|
*/
|
|
ret = btrfs_lookup_extent(root, ins.objectid,
|
|
ins.offset);
|
|
if (ret == 0) {
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
ins.objectid, ins.offset,
|
|
0, root->root_key.objectid,
|
|
key->objectid, offset, 0);
|
|
BUG_ON(ret);
|
|
} else {
|
|
/*
|
|
* insert the extent pointer in the extent
|
|
* allocation tree
|
|
*/
|
|
ret = btrfs_alloc_logged_file_extent(trans,
|
|
root, root->root_key.objectid,
|
|
key->objectid, offset, &ins);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
if (btrfs_file_extent_compression(eb, item)) {
|
|
csum_start = ins.objectid;
|
|
csum_end = csum_start + ins.offset;
|
|
} else {
|
|
csum_start = ins.objectid +
|
|
btrfs_file_extent_offset(eb, item);
|
|
csum_end = csum_start +
|
|
btrfs_file_extent_num_bytes(eb, item);
|
|
}
|
|
|
|
ret = btrfs_lookup_csums_range(root->log_root,
|
|
csum_start, csum_end - 1,
|
|
&ordered_sums, 0);
|
|
BUG_ON(ret);
|
|
while (!list_empty(&ordered_sums)) {
|
|
struct btrfs_ordered_sum *sums;
|
|
sums = list_entry(ordered_sums.next,
|
|
struct btrfs_ordered_sum,
|
|
list);
|
|
ret = btrfs_csum_file_blocks(trans,
|
|
root->fs_info->csum_root,
|
|
sums);
|
|
BUG_ON(ret);
|
|
list_del(&sums->list);
|
|
kfree(sums);
|
|
}
|
|
} else {
|
|
btrfs_release_path(path);
|
|
}
|
|
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
/* inline extents are easy, we just overwrite them */
|
|
ret = overwrite_item(trans, root, path, eb, slot, key);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
inode_set_bytes(inode, saved_nbytes);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
out:
|
|
if (inode)
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when cleaning up conflicts between the directory names in the
|
|
* subvolume, directory names in the log and directory names in the
|
|
* inode back references, we may have to unlink inodes from directories.
|
|
*
|
|
* This is a helper function to do the unlink of a specific directory
|
|
* item
|
|
*/
|
|
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct inode *dir,
|
|
struct btrfs_dir_item *di)
|
|
{
|
|
struct inode *inode;
|
|
char *name;
|
|
int name_len;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key location;
|
|
int ret;
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &location);
|
|
name_len = btrfs_dir_name_len(leaf, di);
|
|
name = kmalloc(name_len, GFP_NOFS);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
|
|
read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
|
|
btrfs_release_path(path);
|
|
|
|
inode = read_one_inode(root, location.objectid);
|
|
if (!inode) {
|
|
kfree(name);
|
|
return -EIO;
|
|
}
|
|
|
|
ret = link_to_fixup_dir(trans, root, path, location.objectid);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
|
|
BUG_ON(ret);
|
|
kfree(name);
|
|
|
|
iput(inode);
|
|
|
|
btrfs_run_delayed_items(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function to see if a given name and sequence number found
|
|
* in an inode back reference are already in a directory and correctly
|
|
* point to this inode
|
|
*/
|
|
static noinline int inode_in_dir(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 dirid, u64 objectid, u64 index,
|
|
const char *name, int name_len)
|
|
{
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key location;
|
|
int match = 0;
|
|
|
|
di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
|
|
index, name, name_len, 0);
|
|
if (di && !IS_ERR(di)) {
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
|
|
if (location.objectid != objectid)
|
|
goto out;
|
|
} else
|
|
goto out;
|
|
btrfs_release_path(path);
|
|
|
|
di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
|
|
if (di && !IS_ERR(di)) {
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
|
|
if (location.objectid != objectid)
|
|
goto out;
|
|
} else
|
|
goto out;
|
|
match = 1;
|
|
out:
|
|
btrfs_release_path(path);
|
|
return match;
|
|
}
|
|
|
|
/*
|
|
* helper function to check a log tree for a named back reference in
|
|
* an inode. This is used to decide if a back reference that is
|
|
* found in the subvolume conflicts with what we find in the log.
|
|
*
|
|
* inode backreferences may have multiple refs in a single item,
|
|
* during replay we process one reference at a time, and we don't
|
|
* want to delete valid links to a file from the subvolume if that
|
|
* link is also in the log.
|
|
*/
|
|
static noinline int backref_in_log(struct btrfs_root *log,
|
|
struct btrfs_key *key,
|
|
u64 ref_objectid,
|
|
char *name, int namelen)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_inode_ref *ref;
|
|
unsigned long ptr;
|
|
unsigned long ptr_end;
|
|
unsigned long name_ptr;
|
|
int found_name_len;
|
|
int item_size;
|
|
int ret;
|
|
int match = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
|
|
|
|
if (key->type == BTRFS_INODE_EXTREF_KEY) {
|
|
if (btrfs_find_name_in_ext_backref(path, ref_objectid,
|
|
name, namelen, NULL))
|
|
match = 1;
|
|
|
|
goto out;
|
|
}
|
|
|
|
item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
|
|
ptr_end = ptr + item_size;
|
|
while (ptr < ptr_end) {
|
|
ref = (struct btrfs_inode_ref *)ptr;
|
|
found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
|
|
if (found_name_len == namelen) {
|
|
name_ptr = (unsigned long)(ref + 1);
|
|
ret = memcmp_extent_buffer(path->nodes[0], name,
|
|
name_ptr, namelen);
|
|
if (ret == 0) {
|
|
match = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
ptr = (unsigned long)(ref + 1) + found_name_len;
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return match;
|
|
}
|
|
|
|
static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_root *log_root,
|
|
struct inode *dir, struct inode *inode,
|
|
struct extent_buffer *eb,
|
|
u64 inode_objectid, u64 parent_objectid,
|
|
u64 ref_index, char *name, int namelen,
|
|
int *search_done)
|
|
{
|
|
int ret;
|
|
char *victim_name;
|
|
int victim_name_len;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key search_key;
|
|
struct btrfs_inode_extref *extref;
|
|
|
|
again:
|
|
/* Search old style refs */
|
|
search_key.objectid = inode_objectid;
|
|
search_key.type = BTRFS_INODE_REF_KEY;
|
|
search_key.offset = parent_objectid;
|
|
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
|
|
if (ret == 0) {
|
|
struct btrfs_inode_ref *victim_ref;
|
|
unsigned long ptr;
|
|
unsigned long ptr_end;
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
/* are we trying to overwrite a back ref for the root directory
|
|
* if so, just jump out, we're done
|
|
*/
|
|
if (search_key.objectid == search_key.offset)
|
|
return 1;
|
|
|
|
/* check all the names in this back reference to see
|
|
* if they are in the log. if so, we allow them to stay
|
|
* otherwise they must be unlinked as a conflict
|
|
*/
|
|
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
|
|
while (ptr < ptr_end) {
|
|
victim_ref = (struct btrfs_inode_ref *)ptr;
|
|
victim_name_len = btrfs_inode_ref_name_len(leaf,
|
|
victim_ref);
|
|
victim_name = kmalloc(victim_name_len, GFP_NOFS);
|
|
BUG_ON(!victim_name);
|
|
|
|
read_extent_buffer(leaf, victim_name,
|
|
(unsigned long)(victim_ref + 1),
|
|
victim_name_len);
|
|
|
|
if (!backref_in_log(log_root, &search_key,
|
|
parent_objectid,
|
|
victim_name,
|
|
victim_name_len)) {
|
|
btrfs_inc_nlink(inode);
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_unlink_inode(trans, root, dir,
|
|
inode, victim_name,
|
|
victim_name_len);
|
|
BUG_ON(ret);
|
|
btrfs_run_delayed_items(trans, root);
|
|
kfree(victim_name);
|
|
*search_done = 1;
|
|
goto again;
|
|
}
|
|
kfree(victim_name);
|
|
|
|
ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
|
|
}
|
|
BUG_ON(ret);
|
|
|
|
/*
|
|
* NOTE: we have searched root tree and checked the
|
|
* coresponding ref, it does not need to check again.
|
|
*/
|
|
*search_done = 1;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/* Same search but for extended refs */
|
|
extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
|
|
inode_objectid, parent_objectid, 0,
|
|
0);
|
|
if (!IS_ERR_OR_NULL(extref)) {
|
|
u32 item_size;
|
|
u32 cur_offset = 0;
|
|
unsigned long base;
|
|
struct inode *victim_parent;
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
base = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
|
|
while (cur_offset < item_size) {
|
|
extref = (struct btrfs_inode_extref *)base + cur_offset;
|
|
|
|
victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
|
|
|
|
if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
|
|
goto next;
|
|
|
|
victim_name = kmalloc(victim_name_len, GFP_NOFS);
|
|
read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
|
|
victim_name_len);
|
|
|
|
search_key.objectid = inode_objectid;
|
|
search_key.type = BTRFS_INODE_EXTREF_KEY;
|
|
search_key.offset = btrfs_extref_hash(parent_objectid,
|
|
victim_name,
|
|
victim_name_len);
|
|
ret = 0;
|
|
if (!backref_in_log(log_root, &search_key,
|
|
parent_objectid, victim_name,
|
|
victim_name_len)) {
|
|
ret = -ENOENT;
|
|
victim_parent = read_one_inode(root,
|
|
parent_objectid);
|
|
if (victim_parent) {
|
|
btrfs_inc_nlink(inode);
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_unlink_inode(trans, root,
|
|
victim_parent,
|
|
inode,
|
|
victim_name,
|
|
victim_name_len);
|
|
btrfs_run_delayed_items(trans, root);
|
|
}
|
|
BUG_ON(ret);
|
|
iput(victim_parent);
|
|
kfree(victim_name);
|
|
*search_done = 1;
|
|
goto again;
|
|
}
|
|
kfree(victim_name);
|
|
BUG_ON(ret);
|
|
next:
|
|
cur_offset += victim_name_len + sizeof(*extref);
|
|
}
|
|
*search_done = 1;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/* look for a conflicting sequence number */
|
|
di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
|
|
ref_index, name, namelen, 0);
|
|
if (di && !IS_ERR(di)) {
|
|
ret = drop_one_dir_item(trans, root, path, dir, di);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/* look for a conflicing name */
|
|
di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
|
|
name, namelen, 0);
|
|
if (di && !IS_ERR(di)) {
|
|
ret = drop_one_dir_item(trans, root, path, dir, di);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
|
|
u32 *namelen, char **name, u64 *index,
|
|
u64 *parent_objectid)
|
|
{
|
|
struct btrfs_inode_extref *extref;
|
|
|
|
extref = (struct btrfs_inode_extref *)ref_ptr;
|
|
|
|
*namelen = btrfs_inode_extref_name_len(eb, extref);
|
|
*name = kmalloc(*namelen, GFP_NOFS);
|
|
if (*name == NULL)
|
|
return -ENOMEM;
|
|
|
|
read_extent_buffer(eb, *name, (unsigned long)&extref->name,
|
|
*namelen);
|
|
|
|
*index = btrfs_inode_extref_index(eb, extref);
|
|
if (parent_objectid)
|
|
*parent_objectid = btrfs_inode_extref_parent(eb, extref);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
|
|
u32 *namelen, char **name, u64 *index)
|
|
{
|
|
struct btrfs_inode_ref *ref;
|
|
|
|
ref = (struct btrfs_inode_ref *)ref_ptr;
|
|
|
|
*namelen = btrfs_inode_ref_name_len(eb, ref);
|
|
*name = kmalloc(*namelen, GFP_NOFS);
|
|
if (*name == NULL)
|
|
return -ENOMEM;
|
|
|
|
read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
|
|
|
|
*index = btrfs_inode_ref_index(eb, ref);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* replay one inode back reference item found in the log tree.
|
|
* eb, slot and key refer to the buffer and key found in the log tree.
|
|
* root is the destination we are replaying into, and path is for temp
|
|
* use by this function. (it should be released on return).
|
|
*/
|
|
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_root *log,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *eb, int slot,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct inode *dir;
|
|
struct inode *inode;
|
|
unsigned long ref_ptr;
|
|
unsigned long ref_end;
|
|
char *name;
|
|
int namelen;
|
|
int ret;
|
|
int search_done = 0;
|
|
int log_ref_ver = 0;
|
|
u64 parent_objectid;
|
|
u64 inode_objectid;
|
|
u64 ref_index = 0;
|
|
int ref_struct_size;
|
|
|
|
ref_ptr = btrfs_item_ptr_offset(eb, slot);
|
|
ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
|
|
|
|
if (key->type == BTRFS_INODE_EXTREF_KEY) {
|
|
struct btrfs_inode_extref *r;
|
|
|
|
ref_struct_size = sizeof(struct btrfs_inode_extref);
|
|
log_ref_ver = 1;
|
|
r = (struct btrfs_inode_extref *)ref_ptr;
|
|
parent_objectid = btrfs_inode_extref_parent(eb, r);
|
|
} else {
|
|
ref_struct_size = sizeof(struct btrfs_inode_ref);
|
|
parent_objectid = key->offset;
|
|
}
|
|
inode_objectid = key->objectid;
|
|
|
|
/*
|
|
* it is possible that we didn't log all the parent directories
|
|
* for a given inode. If we don't find the dir, just don't
|
|
* copy the back ref in. The link count fixup code will take
|
|
* care of the rest
|
|
*/
|
|
dir = read_one_inode(root, parent_objectid);
|
|
if (!dir)
|
|
return -ENOENT;
|
|
|
|
inode = read_one_inode(root, inode_objectid);
|
|
if (!inode) {
|
|
iput(dir);
|
|
return -EIO;
|
|
}
|
|
|
|
while (ref_ptr < ref_end) {
|
|
if (log_ref_ver) {
|
|
ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
|
|
&ref_index, &parent_objectid);
|
|
/*
|
|
* parent object can change from one array
|
|
* item to another.
|
|
*/
|
|
if (!dir)
|
|
dir = read_one_inode(root, parent_objectid);
|
|
if (!dir)
|
|
return -ENOENT;
|
|
} else {
|
|
ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
|
|
&ref_index);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* if we already have a perfect match, we're done */
|
|
if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
|
|
ref_index, name, namelen)) {
|
|
/*
|
|
* look for a conflicting back reference in the
|
|
* metadata. if we find one we have to unlink that name
|
|
* of the file before we add our new link. Later on, we
|
|
* overwrite any existing back reference, and we don't
|
|
* want to create dangling pointers in the directory.
|
|
*/
|
|
|
|
if (!search_done) {
|
|
ret = __add_inode_ref(trans, root, path, log,
|
|
dir, inode, eb,
|
|
inode_objectid,
|
|
parent_objectid,
|
|
ref_index, name, namelen,
|
|
&search_done);
|
|
if (ret == 1)
|
|
goto out;
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
/* insert our name */
|
|
ret = btrfs_add_link(trans, dir, inode, name, namelen,
|
|
0, ref_index);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_update_inode(trans, root, inode);
|
|
}
|
|
|
|
ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
|
|
kfree(name);
|
|
if (log_ref_ver) {
|
|
iput(dir);
|
|
dir = NULL;
|
|
}
|
|
}
|
|
|
|
/* finally write the back reference in the inode */
|
|
ret = overwrite_item(trans, root, path, eb, slot, key);
|
|
BUG_ON(ret);
|
|
|
|
out:
|
|
btrfs_release_path(path);
|
|
iput(dir);
|
|
iput(inode);
|
|
return 0;
|
|
}
|
|
|
|
static int insert_orphan_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 offset)
|
|
{
|
|
int ret;
|
|
ret = btrfs_find_orphan_item(root, offset);
|
|
if (ret > 0)
|
|
ret = btrfs_insert_orphan_item(trans, root, offset);
|
|
return ret;
|
|
}
|
|
|
|
static int count_inode_extrefs(struct btrfs_root *root,
|
|
struct inode *inode, struct btrfs_path *path)
|
|
{
|
|
int ret = 0;
|
|
int name_len;
|
|
unsigned int nlink = 0;
|
|
u32 item_size;
|
|
u32 cur_offset = 0;
|
|
u64 inode_objectid = btrfs_ino(inode);
|
|
u64 offset = 0;
|
|
unsigned long ptr;
|
|
struct btrfs_inode_extref *extref;
|
|
struct extent_buffer *leaf;
|
|
|
|
while (1) {
|
|
ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
|
|
&extref, &offset);
|
|
if (ret)
|
|
break;
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
|
|
while (cur_offset < item_size) {
|
|
extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
|
|
name_len = btrfs_inode_extref_name_len(leaf, extref);
|
|
|
|
nlink++;
|
|
|
|
cur_offset += name_len + sizeof(*extref);
|
|
}
|
|
|
|
offset++;
|
|
btrfs_release_path(path);
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
return nlink;
|
|
}
|
|
|
|
static int count_inode_refs(struct btrfs_root *root,
|
|
struct inode *inode, struct btrfs_path *path)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
unsigned int nlink = 0;
|
|
unsigned long ptr;
|
|
unsigned long ptr_end;
|
|
int name_len;
|
|
u64 ino = btrfs_ino(inode);
|
|
|
|
key.objectid = ino;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid != ino ||
|
|
key.type != BTRFS_INODE_REF_KEY)
|
|
break;
|
|
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
|
|
ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
|
|
path->slots[0]);
|
|
while (ptr < ptr_end) {
|
|
struct btrfs_inode_ref *ref;
|
|
|
|
ref = (struct btrfs_inode_ref *)ptr;
|
|
name_len = btrfs_inode_ref_name_len(path->nodes[0],
|
|
ref);
|
|
ptr = (unsigned long)(ref + 1) + name_len;
|
|
nlink++;
|
|
}
|
|
|
|
if (key.offset == 0)
|
|
break;
|
|
key.offset--;
|
|
btrfs_release_path(path);
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
return nlink;
|
|
}
|
|
|
|
/*
|
|
* There are a few corners where the link count of the file can't
|
|
* be properly maintained during replay. So, instead of adding
|
|
* lots of complexity to the log code, we just scan the backrefs
|
|
* for any file that has been through replay.
|
|
*
|
|
* The scan will update the link count on the inode to reflect the
|
|
* number of back refs found. If it goes down to zero, the iput
|
|
* will free the inode.
|
|
*/
|
|
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
u64 nlink = 0;
|
|
u64 ino = btrfs_ino(inode);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = count_inode_refs(root, inode, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
nlink = ret;
|
|
|
|
ret = count_inode_extrefs(root, inode, path);
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
nlink += ret;
|
|
|
|
ret = 0;
|
|
|
|
if (nlink != inode->i_nlink) {
|
|
set_nlink(inode, nlink);
|
|
btrfs_update_inode(trans, root, inode);
|
|
}
|
|
BTRFS_I(inode)->index_cnt = (u64)-1;
|
|
|
|
if (inode->i_nlink == 0) {
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
ret = replay_dir_deletes(trans, root, NULL, path,
|
|
ino, 1);
|
|
BUG_ON(ret);
|
|
}
|
|
ret = insert_orphan_item(trans, root, ino);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct inode *inode;
|
|
|
|
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
|
|
key.type = BTRFS_ORPHAN_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
while (1) {
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
if (ret == 1) {
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
|
|
key.type != BTRFS_ORPHAN_ITEM_KEY)
|
|
break;
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
if (ret)
|
|
goto out;
|
|
|
|
btrfs_release_path(path);
|
|
inode = read_one_inode(root, key.offset);
|
|
if (!inode)
|
|
return -EIO;
|
|
|
|
ret = fixup_inode_link_count(trans, root, inode);
|
|
BUG_ON(ret);
|
|
|
|
iput(inode);
|
|
|
|
/*
|
|
* fixup on a directory may create new entries,
|
|
* make sure we always look for the highset possible
|
|
* offset
|
|
*/
|
|
key.offset = (u64)-1;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* record a given inode in the fixup dir so we can check its link
|
|
* count when replay is done. The link count is incremented here
|
|
* so the inode won't go away until we check it
|
|
*/
|
|
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 objectid)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret = 0;
|
|
struct inode *inode;
|
|
|
|
inode = read_one_inode(root, objectid);
|
|
if (!inode)
|
|
return -EIO;
|
|
|
|
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
|
|
btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
|
|
key.offset = objectid;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
|
|
|
|
btrfs_release_path(path);
|
|
if (ret == 0) {
|
|
btrfs_inc_nlink(inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
} else if (ret == -EEXIST) {
|
|
ret = 0;
|
|
} else {
|
|
BUG();
|
|
}
|
|
iput(inode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when replaying the log for a directory, we only insert names
|
|
* for inodes that actually exist. This means an fsync on a directory
|
|
* does not implicitly fsync all the new files in it
|
|
*/
|
|
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 dirid, u64 index,
|
|
char *name, int name_len, u8 type,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct inode *inode;
|
|
struct inode *dir;
|
|
int ret;
|
|
|
|
inode = read_one_inode(root, location->objectid);
|
|
if (!inode)
|
|
return -ENOENT;
|
|
|
|
dir = read_one_inode(root, dirid);
|
|
if (!dir) {
|
|
iput(inode);
|
|
return -EIO;
|
|
}
|
|
ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
|
|
|
|
/* FIXME, put inode into FIXUP list */
|
|
|
|
iput(inode);
|
|
iput(dir);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* take a single entry in a log directory item and replay it into
|
|
* the subvolume.
|
|
*
|
|
* if a conflicting item exists in the subdirectory already,
|
|
* the inode it points to is unlinked and put into the link count
|
|
* fix up tree.
|
|
*
|
|
* If a name from the log points to a file or directory that does
|
|
* not exist in the FS, it is skipped. fsyncs on directories
|
|
* do not force down inodes inside that directory, just changes to the
|
|
* names or unlinks in a directory.
|
|
*/
|
|
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *eb,
|
|
struct btrfs_dir_item *di,
|
|
struct btrfs_key *key)
|
|
{
|
|
char *name;
|
|
int name_len;
|
|
struct btrfs_dir_item *dst_di;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_key log_key;
|
|
struct inode *dir;
|
|
u8 log_type;
|
|
int exists;
|
|
int ret;
|
|
|
|
dir = read_one_inode(root, key->objectid);
|
|
if (!dir)
|
|
return -EIO;
|
|
|
|
name_len = btrfs_dir_name_len(eb, di);
|
|
name = kmalloc(name_len, GFP_NOFS);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
|
|
log_type = btrfs_dir_type(eb, di);
|
|
read_extent_buffer(eb, name, (unsigned long)(di + 1),
|
|
name_len);
|
|
|
|
btrfs_dir_item_key_to_cpu(eb, di, &log_key);
|
|
exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
|
|
if (exists == 0)
|
|
exists = 1;
|
|
else
|
|
exists = 0;
|
|
btrfs_release_path(path);
|
|
|
|
if (key->type == BTRFS_DIR_ITEM_KEY) {
|
|
dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
|
|
name, name_len, 1);
|
|
} else if (key->type == BTRFS_DIR_INDEX_KEY) {
|
|
dst_di = btrfs_lookup_dir_index_item(trans, root, path,
|
|
key->objectid,
|
|
key->offset, name,
|
|
name_len, 1);
|
|
} else {
|
|
BUG();
|
|
}
|
|
if (IS_ERR_OR_NULL(dst_di)) {
|
|
/* we need a sequence number to insert, so we only
|
|
* do inserts for the BTRFS_DIR_INDEX_KEY types
|
|
*/
|
|
if (key->type != BTRFS_DIR_INDEX_KEY)
|
|
goto out;
|
|
goto insert;
|
|
}
|
|
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
|
|
/* the existing item matches the logged item */
|
|
if (found_key.objectid == log_key.objectid &&
|
|
found_key.type == log_key.type &&
|
|
found_key.offset == log_key.offset &&
|
|
btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* don't drop the conflicting directory entry if the inode
|
|
* for the new entry doesn't exist
|
|
*/
|
|
if (!exists)
|
|
goto out;
|
|
|
|
ret = drop_one_dir_item(trans, root, path, dir, dst_di);
|
|
BUG_ON(ret);
|
|
|
|
if (key->type == BTRFS_DIR_INDEX_KEY)
|
|
goto insert;
|
|
out:
|
|
btrfs_release_path(path);
|
|
kfree(name);
|
|
iput(dir);
|
|
return 0;
|
|
|
|
insert:
|
|
btrfs_release_path(path);
|
|
ret = insert_one_name(trans, root, path, key->objectid, key->offset,
|
|
name, name_len, log_type, &log_key);
|
|
|
|
BUG_ON(ret && ret != -ENOENT);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* find all the names in a directory item and reconcile them into
|
|
* the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
|
|
* one name in a directory item, but the same code gets used for
|
|
* both directory index types
|
|
*/
|
|
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *eb, int slot,
|
|
struct btrfs_key *key)
|
|
{
|
|
int ret;
|
|
u32 item_size = btrfs_item_size_nr(eb, slot);
|
|
struct btrfs_dir_item *di;
|
|
int name_len;
|
|
unsigned long ptr;
|
|
unsigned long ptr_end;
|
|
|
|
ptr = btrfs_item_ptr_offset(eb, slot);
|
|
ptr_end = ptr + item_size;
|
|
while (ptr < ptr_end) {
|
|
di = (struct btrfs_dir_item *)ptr;
|
|
if (verify_dir_item(root, eb, di))
|
|
return -EIO;
|
|
name_len = btrfs_dir_name_len(eb, di);
|
|
ret = replay_one_name(trans, root, path, eb, di, key);
|
|
BUG_ON(ret);
|
|
ptr = (unsigned long)(di + 1);
|
|
ptr += name_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* directory replay has two parts. There are the standard directory
|
|
* items in the log copied from the subvolume, and range items
|
|
* created in the log while the subvolume was logged.
|
|
*
|
|
* The range items tell us which parts of the key space the log
|
|
* is authoritative for. During replay, if a key in the subvolume
|
|
* directory is in a logged range item, but not actually in the log
|
|
* that means it was deleted from the directory before the fsync
|
|
* and should be removed.
|
|
*/
|
|
static noinline int find_dir_range(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 dirid, int key_type,
|
|
u64 *start_ret, u64 *end_ret)
|
|
{
|
|
struct btrfs_key key;
|
|
u64 found_end;
|
|
struct btrfs_dir_log_item *item;
|
|
int ret;
|
|
int nritems;
|
|
|
|
if (*start_ret == (u64)-1)
|
|
return 1;
|
|
|
|
key.objectid = dirid;
|
|
key.type = key_type;
|
|
key.offset = *start_ret;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
goto out;
|
|
path->slots[0]--;
|
|
}
|
|
if (ret != 0)
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
|
|
if (key.type != key_type || key.objectid != dirid) {
|
|
ret = 1;
|
|
goto next;
|
|
}
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_dir_log_item);
|
|
found_end = btrfs_dir_log_end(path->nodes[0], item);
|
|
|
|
if (*start_ret >= key.offset && *start_ret <= found_end) {
|
|
ret = 0;
|
|
*start_ret = key.offset;
|
|
*end_ret = found_end;
|
|
goto out;
|
|
}
|
|
ret = 1;
|
|
next:
|
|
/* check the next slot in the tree to see if it is a valid item */
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
path->slots[0]++;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
|
|
if (key.type != key_type || key.objectid != dirid) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_dir_log_item);
|
|
found_end = btrfs_dir_log_end(path->nodes[0], item);
|
|
*start_ret = key.offset;
|
|
*end_ret = found_end;
|
|
ret = 0;
|
|
out:
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this looks for a given directory item in the log. If the directory
|
|
* item is not in the log, the item is removed and the inode it points
|
|
* to is unlinked
|
|
*/
|
|
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_root *log,
|
|
struct btrfs_path *path,
|
|
struct btrfs_path *log_path,
|
|
struct inode *dir,
|
|
struct btrfs_key *dir_key)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
u32 item_size;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_dir_item *log_di;
|
|
int name_len;
|
|
unsigned long ptr;
|
|
unsigned long ptr_end;
|
|
char *name;
|
|
struct inode *inode;
|
|
struct btrfs_key location;
|
|
|
|
again:
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
ptr = btrfs_item_ptr_offset(eb, slot);
|
|
ptr_end = ptr + item_size;
|
|
while (ptr < ptr_end) {
|
|
di = (struct btrfs_dir_item *)ptr;
|
|
if (verify_dir_item(root, eb, di)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
name_len = btrfs_dir_name_len(eb, di);
|
|
name = kmalloc(name_len, GFP_NOFS);
|
|
if (!name) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
read_extent_buffer(eb, name, (unsigned long)(di + 1),
|
|
name_len);
|
|
log_di = NULL;
|
|
if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
|
|
log_di = btrfs_lookup_dir_item(trans, log, log_path,
|
|
dir_key->objectid,
|
|
name, name_len, 0);
|
|
} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
|
|
log_di = btrfs_lookup_dir_index_item(trans, log,
|
|
log_path,
|
|
dir_key->objectid,
|
|
dir_key->offset,
|
|
name, name_len, 0);
|
|
}
|
|
if (IS_ERR_OR_NULL(log_di)) {
|
|
btrfs_dir_item_key_to_cpu(eb, di, &location);
|
|
btrfs_release_path(path);
|
|
btrfs_release_path(log_path);
|
|
inode = read_one_inode(root, location.objectid);
|
|
if (!inode) {
|
|
kfree(name);
|
|
return -EIO;
|
|
}
|
|
|
|
ret = link_to_fixup_dir(trans, root,
|
|
path, location.objectid);
|
|
BUG_ON(ret);
|
|
btrfs_inc_nlink(inode);
|
|
ret = btrfs_unlink_inode(trans, root, dir, inode,
|
|
name, name_len);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_run_delayed_items(trans, root);
|
|
|
|
kfree(name);
|
|
iput(inode);
|
|
|
|
/* there might still be more names under this key
|
|
* check and repeat if required
|
|
*/
|
|
ret = btrfs_search_slot(NULL, root, dir_key, path,
|
|
0, 0);
|
|
if (ret == 0)
|
|
goto again;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
btrfs_release_path(log_path);
|
|
kfree(name);
|
|
|
|
ptr = (unsigned long)(di + 1);
|
|
ptr += name_len;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
btrfs_release_path(path);
|
|
btrfs_release_path(log_path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* deletion replay happens before we copy any new directory items
|
|
* out of the log or out of backreferences from inodes. It
|
|
* scans the log to find ranges of keys that log is authoritative for,
|
|
* and then scans the directory to find items in those ranges that are
|
|
* not present in the log.
|
|
*
|
|
* Anything we don't find in the log is unlinked and removed from the
|
|
* directory.
|
|
*/
|
|
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_root *log,
|
|
struct btrfs_path *path,
|
|
u64 dirid, int del_all)
|
|
{
|
|
u64 range_start;
|
|
u64 range_end;
|
|
int key_type = BTRFS_DIR_LOG_ITEM_KEY;
|
|
int ret = 0;
|
|
struct btrfs_key dir_key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *log_path;
|
|
struct inode *dir;
|
|
|
|
dir_key.objectid = dirid;
|
|
dir_key.type = BTRFS_DIR_ITEM_KEY;
|
|
log_path = btrfs_alloc_path();
|
|
if (!log_path)
|
|
return -ENOMEM;
|
|
|
|
dir = read_one_inode(root, dirid);
|
|
/* it isn't an error if the inode isn't there, that can happen
|
|
* because we replay the deletes before we copy in the inode item
|
|
* from the log
|
|
*/
|
|
if (!dir) {
|
|
btrfs_free_path(log_path);
|
|
return 0;
|
|
}
|
|
again:
|
|
range_start = 0;
|
|
range_end = 0;
|
|
while (1) {
|
|
if (del_all)
|
|
range_end = (u64)-1;
|
|
else {
|
|
ret = find_dir_range(log, path, dirid, key_type,
|
|
&range_start, &range_end);
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
|
|
dir_key.offset = range_start;
|
|
while (1) {
|
|
int nritems;
|
|
ret = btrfs_search_slot(NULL, root, &dir_key, path,
|
|
0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret)
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
if (found_key.objectid != dirid ||
|
|
found_key.type != dir_key.type)
|
|
goto next_type;
|
|
|
|
if (found_key.offset > range_end)
|
|
break;
|
|
|
|
ret = check_item_in_log(trans, root, log, path,
|
|
log_path, dir,
|
|
&found_key);
|
|
BUG_ON(ret);
|
|
if (found_key.offset == (u64)-1)
|
|
break;
|
|
dir_key.offset = found_key.offset + 1;
|
|
}
|
|
btrfs_release_path(path);
|
|
if (range_end == (u64)-1)
|
|
break;
|
|
range_start = range_end + 1;
|
|
}
|
|
|
|
next_type:
|
|
ret = 0;
|
|
if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
|
|
key_type = BTRFS_DIR_LOG_INDEX_KEY;
|
|
dir_key.type = BTRFS_DIR_INDEX_KEY;
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
out:
|
|
btrfs_release_path(path);
|
|
btrfs_free_path(log_path);
|
|
iput(dir);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* the process_func used to replay items from the log tree. This
|
|
* gets called in two different stages. The first stage just looks
|
|
* for inodes and makes sure they are all copied into the subvolume.
|
|
*
|
|
* The second stage copies all the other item types from the log into
|
|
* the subvolume. The two stage approach is slower, but gets rid of
|
|
* lots of complexity around inodes referencing other inodes that exist
|
|
* only in the log (references come from either directory items or inode
|
|
* back refs).
|
|
*/
|
|
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
|
|
struct walk_control *wc, u64 gen)
|
|
{
|
|
int nritems;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = wc->replay_dest;
|
|
struct btrfs_key key;
|
|
int level;
|
|
int i;
|
|
int ret;
|
|
|
|
ret = btrfs_read_buffer(eb, gen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
level = btrfs_header_level(eb);
|
|
|
|
if (level != 0)
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
nritems = btrfs_header_nritems(eb);
|
|
for (i = 0; i < nritems; i++) {
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
|
|
/* inode keys are done during the first stage */
|
|
if (key.type == BTRFS_INODE_ITEM_KEY &&
|
|
wc->stage == LOG_WALK_REPLAY_INODES) {
|
|
struct btrfs_inode_item *inode_item;
|
|
u32 mode;
|
|
|
|
inode_item = btrfs_item_ptr(eb, i,
|
|
struct btrfs_inode_item);
|
|
mode = btrfs_inode_mode(eb, inode_item);
|
|
if (S_ISDIR(mode)) {
|
|
ret = replay_dir_deletes(wc->trans,
|
|
root, log, path, key.objectid, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
ret = overwrite_item(wc->trans, root, path,
|
|
eb, i, &key);
|
|
BUG_ON(ret);
|
|
|
|
/* for regular files, make sure corresponding
|
|
* orhpan item exist. extents past the new EOF
|
|
* will be truncated later by orphan cleanup.
|
|
*/
|
|
if (S_ISREG(mode)) {
|
|
ret = insert_orphan_item(wc->trans, root,
|
|
key.objectid);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
ret = link_to_fixup_dir(wc->trans, root,
|
|
path, key.objectid);
|
|
BUG_ON(ret);
|
|
}
|
|
if (wc->stage < LOG_WALK_REPLAY_ALL)
|
|
continue;
|
|
|
|
/* these keys are simply copied */
|
|
if (key.type == BTRFS_XATTR_ITEM_KEY) {
|
|
ret = overwrite_item(wc->trans, root, path,
|
|
eb, i, &key);
|
|
BUG_ON(ret);
|
|
} else if (key.type == BTRFS_INODE_REF_KEY) {
|
|
ret = add_inode_ref(wc->trans, root, log, path,
|
|
eb, i, &key);
|
|
BUG_ON(ret && ret != -ENOENT);
|
|
} else if (key.type == BTRFS_INODE_EXTREF_KEY) {
|
|
ret = add_inode_ref(wc->trans, root, log, path,
|
|
eb, i, &key);
|
|
BUG_ON(ret && ret != -ENOENT);
|
|
} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
|
|
ret = replay_one_extent(wc->trans, root, path,
|
|
eb, i, &key);
|
|
BUG_ON(ret);
|
|
} else if (key.type == BTRFS_DIR_ITEM_KEY ||
|
|
key.type == BTRFS_DIR_INDEX_KEY) {
|
|
ret = replay_one_dir_item(wc->trans, root, path,
|
|
eb, i, &key);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, int *level,
|
|
struct walk_control *wc)
|
|
{
|
|
u64 root_owner;
|
|
u64 bytenr;
|
|
u64 ptr_gen;
|
|
struct extent_buffer *next;
|
|
struct extent_buffer *cur;
|
|
struct extent_buffer *parent;
|
|
u32 blocksize;
|
|
int ret = 0;
|
|
|
|
WARN_ON(*level < 0);
|
|
WARN_ON(*level >= BTRFS_MAX_LEVEL);
|
|
|
|
while (*level > 0) {
|
|
WARN_ON(*level < 0);
|
|
WARN_ON(*level >= BTRFS_MAX_LEVEL);
|
|
cur = path->nodes[*level];
|
|
|
|
if (btrfs_header_level(cur) != *level)
|
|
WARN_ON(1);
|
|
|
|
if (path->slots[*level] >=
|
|
btrfs_header_nritems(cur))
|
|
break;
|
|
|
|
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
|
|
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
|
|
blocksize = btrfs_level_size(root, *level - 1);
|
|
|
|
parent = path->nodes[*level];
|
|
root_owner = btrfs_header_owner(parent);
|
|
|
|
next = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!next)
|
|
return -ENOMEM;
|
|
|
|
if (*level == 1) {
|
|
ret = wc->process_func(root, next, wc, ptr_gen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
path->slots[*level]++;
|
|
if (wc->free) {
|
|
ret = btrfs_read_buffer(next, ptr_gen);
|
|
if (ret) {
|
|
free_extent_buffer(next);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
clean_tree_block(trans, root, next);
|
|
btrfs_wait_tree_block_writeback(next);
|
|
btrfs_tree_unlock(next);
|
|
|
|
WARN_ON(root_owner !=
|
|
BTRFS_TREE_LOG_OBJECTID);
|
|
ret = btrfs_free_and_pin_reserved_extent(root,
|
|
bytenr, blocksize);
|
|
BUG_ON(ret); /* -ENOMEM or logic errors */
|
|
}
|
|
free_extent_buffer(next);
|
|
continue;
|
|
}
|
|
ret = btrfs_read_buffer(next, ptr_gen);
|
|
if (ret) {
|
|
free_extent_buffer(next);
|
|
return ret;
|
|
}
|
|
|
|
WARN_ON(*level <= 0);
|
|
if (path->nodes[*level-1])
|
|
free_extent_buffer(path->nodes[*level-1]);
|
|
path->nodes[*level-1] = next;
|
|
*level = btrfs_header_level(next);
|
|
path->slots[*level] = 0;
|
|
cond_resched();
|
|
}
|
|
WARN_ON(*level < 0);
|
|
WARN_ON(*level >= BTRFS_MAX_LEVEL);
|
|
|
|
path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
|
|
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, int *level,
|
|
struct walk_control *wc)
|
|
{
|
|
u64 root_owner;
|
|
int i;
|
|
int slot;
|
|
int ret;
|
|
|
|
for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
|
|
slot = path->slots[i];
|
|
if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
|
|
path->slots[i]++;
|
|
*level = i;
|
|
WARN_ON(*level == 0);
|
|
return 0;
|
|
} else {
|
|
struct extent_buffer *parent;
|
|
if (path->nodes[*level] == root->node)
|
|
parent = path->nodes[*level];
|
|
else
|
|
parent = path->nodes[*level + 1];
|
|
|
|
root_owner = btrfs_header_owner(parent);
|
|
ret = wc->process_func(root, path->nodes[*level], wc,
|
|
btrfs_header_generation(path->nodes[*level]));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (wc->free) {
|
|
struct extent_buffer *next;
|
|
|
|
next = path->nodes[*level];
|
|
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
clean_tree_block(trans, root, next);
|
|
btrfs_wait_tree_block_writeback(next);
|
|
btrfs_tree_unlock(next);
|
|
|
|
WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
|
|
ret = btrfs_free_and_pin_reserved_extent(root,
|
|
path->nodes[*level]->start,
|
|
path->nodes[*level]->len);
|
|
BUG_ON(ret);
|
|
}
|
|
free_extent_buffer(path->nodes[*level]);
|
|
path->nodes[*level] = NULL;
|
|
*level = i + 1;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* drop the reference count on the tree rooted at 'snap'. This traverses
|
|
* the tree freeing any blocks that have a ref count of zero after being
|
|
* decremented.
|
|
*/
|
|
static int walk_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *log, struct walk_control *wc)
|
|
{
|
|
int ret = 0;
|
|
int wret;
|
|
int level;
|
|
struct btrfs_path *path;
|
|
int i;
|
|
int orig_level;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
level = btrfs_header_level(log->node);
|
|
orig_level = level;
|
|
path->nodes[level] = log->node;
|
|
extent_buffer_get(log->node);
|
|
path->slots[level] = 0;
|
|
|
|
while (1) {
|
|
wret = walk_down_log_tree(trans, log, path, &level, wc);
|
|
if (wret > 0)
|
|
break;
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
goto out;
|
|
}
|
|
|
|
wret = walk_up_log_tree(trans, log, path, &level, wc);
|
|
if (wret > 0)
|
|
break;
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* was the root node processed? if not, catch it here */
|
|
if (path->nodes[orig_level]) {
|
|
ret = wc->process_func(log, path->nodes[orig_level], wc,
|
|
btrfs_header_generation(path->nodes[orig_level]));
|
|
if (ret)
|
|
goto out;
|
|
if (wc->free) {
|
|
struct extent_buffer *next;
|
|
|
|
next = path->nodes[orig_level];
|
|
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
clean_tree_block(trans, log, next);
|
|
btrfs_wait_tree_block_writeback(next);
|
|
btrfs_tree_unlock(next);
|
|
|
|
WARN_ON(log->root_key.objectid !=
|
|
BTRFS_TREE_LOG_OBJECTID);
|
|
ret = btrfs_free_and_pin_reserved_extent(log, next->start,
|
|
next->len);
|
|
BUG_ON(ret); /* -ENOMEM or logic errors */
|
|
}
|
|
}
|
|
|
|
out:
|
|
for (i = 0; i <= orig_level; i++) {
|
|
if (path->nodes[i]) {
|
|
free_extent_buffer(path->nodes[i]);
|
|
path->nodes[i] = NULL;
|
|
}
|
|
}
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function to update the item for a given subvolumes log root
|
|
* in the tree of log roots
|
|
*/
|
|
static int update_log_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *log)
|
|
{
|
|
int ret;
|
|
|
|
if (log->log_transid == 1) {
|
|
/* insert root item on the first sync */
|
|
ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
|
|
&log->root_key, &log->root_item);
|
|
} else {
|
|
ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
|
|
&log->root_key, &log->root_item);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int wait_log_commit(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, unsigned long transid)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
int index = transid % 2;
|
|
|
|
/*
|
|
* we only allow two pending log transactions at a time,
|
|
* so we know that if ours is more than 2 older than the
|
|
* current transaction, we're done
|
|
*/
|
|
do {
|
|
prepare_to_wait(&root->log_commit_wait[index],
|
|
&wait, TASK_UNINTERRUPTIBLE);
|
|
mutex_unlock(&root->log_mutex);
|
|
|
|
if (root->fs_info->last_trans_log_full_commit !=
|
|
trans->transid && root->log_transid < transid + 2 &&
|
|
atomic_read(&root->log_commit[index]))
|
|
schedule();
|
|
|
|
finish_wait(&root->log_commit_wait[index], &wait);
|
|
mutex_lock(&root->log_mutex);
|
|
} while (root->fs_info->last_trans_log_full_commit !=
|
|
trans->transid && root->log_transid < transid + 2 &&
|
|
atomic_read(&root->log_commit[index]));
|
|
return 0;
|
|
}
|
|
|
|
static void wait_for_writer(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
while (root->fs_info->last_trans_log_full_commit !=
|
|
trans->transid && atomic_read(&root->log_writers)) {
|
|
prepare_to_wait(&root->log_writer_wait,
|
|
&wait, TASK_UNINTERRUPTIBLE);
|
|
mutex_unlock(&root->log_mutex);
|
|
if (root->fs_info->last_trans_log_full_commit !=
|
|
trans->transid && atomic_read(&root->log_writers))
|
|
schedule();
|
|
mutex_lock(&root->log_mutex);
|
|
finish_wait(&root->log_writer_wait, &wait);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* btrfs_sync_log does sends a given tree log down to the disk and
|
|
* updates the super blocks to record it. When this call is done,
|
|
* you know that any inodes previously logged are safely on disk only
|
|
* if it returns 0.
|
|
*
|
|
* Any other return value means you need to call btrfs_commit_transaction.
|
|
* Some of the edge cases for fsyncing directories that have had unlinks
|
|
* or renames done in the past mean that sometimes the only safe
|
|
* fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
|
|
* that has happened.
|
|
*/
|
|
int btrfs_sync_log(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int index1;
|
|
int index2;
|
|
int mark;
|
|
int ret;
|
|
struct btrfs_root *log = root->log_root;
|
|
struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
|
|
unsigned long log_transid = 0;
|
|
|
|
mutex_lock(&root->log_mutex);
|
|
index1 = root->log_transid % 2;
|
|
if (atomic_read(&root->log_commit[index1])) {
|
|
wait_log_commit(trans, root, root->log_transid);
|
|
mutex_unlock(&root->log_mutex);
|
|
return 0;
|
|
}
|
|
atomic_set(&root->log_commit[index1], 1);
|
|
|
|
/* wait for previous tree log sync to complete */
|
|
if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
|
|
wait_log_commit(trans, root, root->log_transid - 1);
|
|
while (1) {
|
|
int batch = atomic_read(&root->log_batch);
|
|
/* when we're on an ssd, just kick the log commit out */
|
|
if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
|
|
mutex_unlock(&root->log_mutex);
|
|
schedule_timeout_uninterruptible(1);
|
|
mutex_lock(&root->log_mutex);
|
|
}
|
|
wait_for_writer(trans, root);
|
|
if (batch == atomic_read(&root->log_batch))
|
|
break;
|
|
}
|
|
|
|
/* bail out if we need to do a full commit */
|
|
if (root->fs_info->last_trans_log_full_commit == trans->transid) {
|
|
ret = -EAGAIN;
|
|
mutex_unlock(&root->log_mutex);
|
|
goto out;
|
|
}
|
|
|
|
log_transid = root->log_transid;
|
|
if (log_transid % 2 == 0)
|
|
mark = EXTENT_DIRTY;
|
|
else
|
|
mark = EXTENT_NEW;
|
|
|
|
/* we start IO on all the marked extents here, but we don't actually
|
|
* wait for them until later.
|
|
*/
|
|
ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
mutex_unlock(&root->log_mutex);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_set_root_node(&log->root_item, log->node);
|
|
|
|
root->log_transid++;
|
|
log->log_transid = root->log_transid;
|
|
root->log_start_pid = 0;
|
|
smp_mb();
|
|
/*
|
|
* IO has been started, blocks of the log tree have WRITTEN flag set
|
|
* in their headers. new modifications of the log will be written to
|
|
* new positions. so it's safe to allow log writers to go in.
|
|
*/
|
|
mutex_unlock(&root->log_mutex);
|
|
|
|
mutex_lock(&log_root_tree->log_mutex);
|
|
atomic_inc(&log_root_tree->log_batch);
|
|
atomic_inc(&log_root_tree->log_writers);
|
|
mutex_unlock(&log_root_tree->log_mutex);
|
|
|
|
ret = update_log_root(trans, log);
|
|
|
|
mutex_lock(&log_root_tree->log_mutex);
|
|
if (atomic_dec_and_test(&log_root_tree->log_writers)) {
|
|
smp_mb();
|
|
if (waitqueue_active(&log_root_tree->log_writer_wait))
|
|
wake_up(&log_root_tree->log_writer_wait);
|
|
}
|
|
|
|
if (ret) {
|
|
if (ret != -ENOSPC) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
mutex_unlock(&log_root_tree->log_mutex);
|
|
goto out;
|
|
}
|
|
root->fs_info->last_trans_log_full_commit = trans->transid;
|
|
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
|
|
mutex_unlock(&log_root_tree->log_mutex);
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
index2 = log_root_tree->log_transid % 2;
|
|
if (atomic_read(&log_root_tree->log_commit[index2])) {
|
|
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
|
|
wait_log_commit(trans, log_root_tree,
|
|
log_root_tree->log_transid);
|
|
mutex_unlock(&log_root_tree->log_mutex);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
atomic_set(&log_root_tree->log_commit[index2], 1);
|
|
|
|
if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
|
|
wait_log_commit(trans, log_root_tree,
|
|
log_root_tree->log_transid - 1);
|
|
}
|
|
|
|
wait_for_writer(trans, log_root_tree);
|
|
|
|
/*
|
|
* now that we've moved on to the tree of log tree roots,
|
|
* check the full commit flag again
|
|
*/
|
|
if (root->fs_info->last_trans_log_full_commit == trans->transid) {
|
|
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
|
|
mutex_unlock(&log_root_tree->log_mutex);
|
|
ret = -EAGAIN;
|
|
goto out_wake_log_root;
|
|
}
|
|
|
|
ret = btrfs_write_and_wait_marked_extents(log_root_tree,
|
|
&log_root_tree->dirty_log_pages,
|
|
EXTENT_DIRTY | EXTENT_NEW);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
mutex_unlock(&log_root_tree->log_mutex);
|
|
goto out_wake_log_root;
|
|
}
|
|
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
|
|
|
|
btrfs_set_super_log_root(root->fs_info->super_for_commit,
|
|
log_root_tree->node->start);
|
|
btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
|
|
btrfs_header_level(log_root_tree->node));
|
|
|
|
log_root_tree->log_transid++;
|
|
smp_mb();
|
|
|
|
mutex_unlock(&log_root_tree->log_mutex);
|
|
|
|
/*
|
|
* nobody else is going to jump in and write the the ctree
|
|
* super here because the log_commit atomic below is protecting
|
|
* us. We must be called with a transaction handle pinning
|
|
* the running transaction open, so a full commit can't hop
|
|
* in and cause problems either.
|
|
*/
|
|
btrfs_scrub_pause_super(root);
|
|
ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
|
|
btrfs_scrub_continue_super(root);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto out_wake_log_root;
|
|
}
|
|
|
|
mutex_lock(&root->log_mutex);
|
|
if (root->last_log_commit < log_transid)
|
|
root->last_log_commit = log_transid;
|
|
mutex_unlock(&root->log_mutex);
|
|
|
|
out_wake_log_root:
|
|
atomic_set(&log_root_tree->log_commit[index2], 0);
|
|
smp_mb();
|
|
if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
|
|
wake_up(&log_root_tree->log_commit_wait[index2]);
|
|
out:
|
|
atomic_set(&root->log_commit[index1], 0);
|
|
smp_mb();
|
|
if (waitqueue_active(&root->log_commit_wait[index1]))
|
|
wake_up(&root->log_commit_wait[index1]);
|
|
return ret;
|
|
}
|
|
|
|
static void free_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *log)
|
|
{
|
|
int ret;
|
|
u64 start;
|
|
u64 end;
|
|
struct walk_control wc = {
|
|
.free = 1,
|
|
.process_func = process_one_buffer
|
|
};
|
|
|
|
ret = walk_log_tree(trans, log, &wc);
|
|
BUG_ON(ret);
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(&log->dirty_log_pages,
|
|
0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
|
|
NULL);
|
|
if (ret)
|
|
break;
|
|
|
|
clear_extent_bits(&log->dirty_log_pages, start, end,
|
|
EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
|
|
}
|
|
|
|
free_extent_buffer(log->node);
|
|
kfree(log);
|
|
}
|
|
|
|
/*
|
|
* free all the extents used by the tree log. This should be called
|
|
* at commit time of the full transaction
|
|
*/
|
|
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
|
|
{
|
|
if (root->log_root) {
|
|
free_log_tree(trans, root->log_root);
|
|
root->log_root = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (fs_info->log_root_tree) {
|
|
free_log_tree(trans, fs_info->log_root_tree);
|
|
fs_info->log_root_tree = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If both a file and directory are logged, and unlinks or renames are
|
|
* mixed in, we have a few interesting corners:
|
|
*
|
|
* create file X in dir Y
|
|
* link file X to X.link in dir Y
|
|
* fsync file X
|
|
* unlink file X but leave X.link
|
|
* fsync dir Y
|
|
*
|
|
* After a crash we would expect only X.link to exist. But file X
|
|
* didn't get fsync'd again so the log has back refs for X and X.link.
|
|
*
|
|
* We solve this by removing directory entries and inode backrefs from the
|
|
* log when a file that was logged in the current transaction is
|
|
* unlinked. Any later fsync will include the updated log entries, and
|
|
* we'll be able to reconstruct the proper directory items from backrefs.
|
|
*
|
|
* This optimizations allows us to avoid relogging the entire inode
|
|
* or the entire directory.
|
|
*/
|
|
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
const char *name, int name_len,
|
|
struct inode *dir, u64 index)
|
|
{
|
|
struct btrfs_root *log;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
int err = 0;
|
|
int bytes_del = 0;
|
|
u64 dir_ino = btrfs_ino(dir);
|
|
|
|
if (BTRFS_I(dir)->logged_trans < trans->transid)
|
|
return 0;
|
|
|
|
ret = join_running_log_trans(root);
|
|
if (ret)
|
|
return 0;
|
|
|
|
mutex_lock(&BTRFS_I(dir)->log_mutex);
|
|
|
|
log = root->log_root;
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
|
|
name, name_len, -1);
|
|
if (IS_ERR(di)) {
|
|
err = PTR_ERR(di);
|
|
goto fail;
|
|
}
|
|
if (di) {
|
|
ret = btrfs_delete_one_dir_name(trans, log, path, di);
|
|
bytes_del += name_len;
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_release_path(path);
|
|
di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
|
|
index, name, name_len, -1);
|
|
if (IS_ERR(di)) {
|
|
err = PTR_ERR(di);
|
|
goto fail;
|
|
}
|
|
if (di) {
|
|
ret = btrfs_delete_one_dir_name(trans, log, path, di);
|
|
bytes_del += name_len;
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
/* update the directory size in the log to reflect the names
|
|
* we have removed
|
|
*/
|
|
if (bytes_del) {
|
|
struct btrfs_key key;
|
|
|
|
key.objectid = dir_ino;
|
|
key.offset = 0;
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
if (ret == 0) {
|
|
struct btrfs_inode_item *item;
|
|
u64 i_size;
|
|
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_inode_item);
|
|
i_size = btrfs_inode_size(path->nodes[0], item);
|
|
if (i_size > bytes_del)
|
|
i_size -= bytes_del;
|
|
else
|
|
i_size = 0;
|
|
btrfs_set_inode_size(path->nodes[0], item, i_size);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
} else
|
|
ret = 0;
|
|
btrfs_release_path(path);
|
|
}
|
|
fail:
|
|
btrfs_free_path(path);
|
|
out_unlock:
|
|
mutex_unlock(&BTRFS_I(dir)->log_mutex);
|
|
if (ret == -ENOSPC) {
|
|
root->fs_info->last_trans_log_full_commit = trans->transid;
|
|
ret = 0;
|
|
} else if (ret < 0)
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
|
|
btrfs_end_log_trans(root);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* see comments for btrfs_del_dir_entries_in_log */
|
|
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
const char *name, int name_len,
|
|
struct inode *inode, u64 dirid)
|
|
{
|
|
struct btrfs_root *log;
|
|
u64 index;
|
|
int ret;
|
|
|
|
if (BTRFS_I(inode)->logged_trans < trans->transid)
|
|
return 0;
|
|
|
|
ret = join_running_log_trans(root);
|
|
if (ret)
|
|
return 0;
|
|
log = root->log_root;
|
|
mutex_lock(&BTRFS_I(inode)->log_mutex);
|
|
|
|
ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
|
|
dirid, &index);
|
|
mutex_unlock(&BTRFS_I(inode)->log_mutex);
|
|
if (ret == -ENOSPC) {
|
|
root->fs_info->last_trans_log_full_commit = trans->transid;
|
|
ret = 0;
|
|
} else if (ret < 0 && ret != -ENOENT)
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
btrfs_end_log_trans(root);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* creates a range item in the log for 'dirid'. first_offset and
|
|
* last_offset tell us which parts of the key space the log should
|
|
* be considered authoritative for.
|
|
*/
|
|
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *log,
|
|
struct btrfs_path *path,
|
|
int key_type, u64 dirid,
|
|
u64 first_offset, u64 last_offset)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_dir_log_item *item;
|
|
|
|
key.objectid = dirid;
|
|
key.offset = first_offset;
|
|
if (key_type == BTRFS_DIR_ITEM_KEY)
|
|
key.type = BTRFS_DIR_LOG_ITEM_KEY;
|
|
else
|
|
key.type = BTRFS_DIR_LOG_INDEX_KEY;
|
|
ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
|
|
if (ret)
|
|
return ret;
|
|
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_dir_log_item);
|
|
btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_release_path(path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* log all the items included in the current transaction for a given
|
|
* directory. This also creates the range items in the log tree required
|
|
* to replay anything deleted before the fsync
|
|
*/
|
|
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
struct btrfs_path *path,
|
|
struct btrfs_path *dst_path, int key_type,
|
|
u64 min_offset, u64 *last_offset_ret)
|
|
{
|
|
struct btrfs_key min_key;
|
|
struct btrfs_key max_key;
|
|
struct btrfs_root *log = root->log_root;
|
|
struct extent_buffer *src;
|
|
int err = 0;
|
|
int ret;
|
|
int i;
|
|
int nritems;
|
|
u64 first_offset = min_offset;
|
|
u64 last_offset = (u64)-1;
|
|
u64 ino = btrfs_ino(inode);
|
|
|
|
log = root->log_root;
|
|
max_key.objectid = ino;
|
|
max_key.offset = (u64)-1;
|
|
max_key.type = key_type;
|
|
|
|
min_key.objectid = ino;
|
|
min_key.type = key_type;
|
|
min_key.offset = min_offset;
|
|
|
|
path->keep_locks = 1;
|
|
|
|
ret = btrfs_search_forward(root, &min_key, &max_key,
|
|
path, 0, trans->transid);
|
|
|
|
/*
|
|
* we didn't find anything from this transaction, see if there
|
|
* is anything at all
|
|
*/
|
|
if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
|
|
min_key.objectid = ino;
|
|
min_key.type = key_type;
|
|
min_key.offset = (u64)-1;
|
|
btrfs_release_path(path);
|
|
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
|
|
if (ret < 0) {
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
ret = btrfs_previous_item(root, path, ino, key_type);
|
|
|
|
/* if ret == 0 there are items for this type,
|
|
* create a range to tell us the last key of this type.
|
|
* otherwise, there are no items in this directory after
|
|
* *min_offset, and we create a range to indicate that.
|
|
*/
|
|
if (ret == 0) {
|
|
struct btrfs_key tmp;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &tmp,
|
|
path->slots[0]);
|
|
if (key_type == tmp.type)
|
|
first_offset = max(min_offset, tmp.offset) + 1;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/* go backward to find any previous key */
|
|
ret = btrfs_previous_item(root, path, ino, key_type);
|
|
if (ret == 0) {
|
|
struct btrfs_key tmp;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
|
|
if (key_type == tmp.type) {
|
|
first_offset = tmp.offset;
|
|
ret = overwrite_item(trans, log, dst_path,
|
|
path->nodes[0], path->slots[0],
|
|
&tmp);
|
|
if (ret) {
|
|
err = ret;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/* find the first key from this transaction again */
|
|
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
|
|
if (ret != 0) {
|
|
WARN_ON(1);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* we have a block from this transaction, log every item in it
|
|
* from our directory
|
|
*/
|
|
while (1) {
|
|
struct btrfs_key tmp;
|
|
src = path->nodes[0];
|
|
nritems = btrfs_header_nritems(src);
|
|
for (i = path->slots[0]; i < nritems; i++) {
|
|
btrfs_item_key_to_cpu(src, &min_key, i);
|
|
|
|
if (min_key.objectid != ino || min_key.type != key_type)
|
|
goto done;
|
|
ret = overwrite_item(trans, log, dst_path, src, i,
|
|
&min_key);
|
|
if (ret) {
|
|
err = ret;
|
|
goto done;
|
|
}
|
|
}
|
|
path->slots[0] = nritems;
|
|
|
|
/*
|
|
* look ahead to the next item and see if it is also
|
|
* from this directory and from this transaction
|
|
*/
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 1) {
|
|
last_offset = (u64)-1;
|
|
goto done;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
|
|
if (tmp.objectid != ino || tmp.type != key_type) {
|
|
last_offset = (u64)-1;
|
|
goto done;
|
|
}
|
|
if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
|
|
ret = overwrite_item(trans, log, dst_path,
|
|
path->nodes[0], path->slots[0],
|
|
&tmp);
|
|
if (ret)
|
|
err = ret;
|
|
else
|
|
last_offset = tmp.offset;
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
btrfs_release_path(path);
|
|
btrfs_release_path(dst_path);
|
|
|
|
if (err == 0) {
|
|
*last_offset_ret = last_offset;
|
|
/*
|
|
* insert the log range keys to indicate where the log
|
|
* is valid
|
|
*/
|
|
ret = insert_dir_log_key(trans, log, path, key_type,
|
|
ino, first_offset, last_offset);
|
|
if (ret)
|
|
err = ret;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* logging directories is very similar to logging inodes, We find all the items
|
|
* from the current transaction and write them to the log.
|
|
*
|
|
* The recovery code scans the directory in the subvolume, and if it finds a
|
|
* key in the range logged that is not present in the log tree, then it means
|
|
* that dir entry was unlinked during the transaction.
|
|
*
|
|
* In order for that scan to work, we must include one key smaller than
|
|
* the smallest logged by this transaction and one key larger than the largest
|
|
* key logged by this transaction.
|
|
*/
|
|
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
struct btrfs_path *path,
|
|
struct btrfs_path *dst_path)
|
|
{
|
|
u64 min_key;
|
|
u64 max_key;
|
|
int ret;
|
|
int key_type = BTRFS_DIR_ITEM_KEY;
|
|
|
|
again:
|
|
min_key = 0;
|
|
max_key = 0;
|
|
while (1) {
|
|
ret = log_dir_items(trans, root, inode, path,
|
|
dst_path, key_type, min_key,
|
|
&max_key);
|
|
if (ret)
|
|
return ret;
|
|
if (max_key == (u64)-1)
|
|
break;
|
|
min_key = max_key + 1;
|
|
}
|
|
|
|
if (key_type == BTRFS_DIR_ITEM_KEY) {
|
|
key_type = BTRFS_DIR_INDEX_KEY;
|
|
goto again;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* a helper function to drop items from the log before we relog an
|
|
* inode. max_key_type indicates the highest item type to remove.
|
|
* This cannot be run for file data extents because it does not
|
|
* free the extents they point to.
|
|
*/
|
|
static int drop_objectid_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *log,
|
|
struct btrfs_path *path,
|
|
u64 objectid, int max_key_type)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
int start_slot;
|
|
|
|
key.objectid = objectid;
|
|
key.type = max_key_type;
|
|
key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
|
|
BUG_ON(ret == 0);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
|
|
if (found_key.objectid != objectid)
|
|
break;
|
|
|
|
found_key.offset = 0;
|
|
found_key.type = 0;
|
|
ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
|
|
&start_slot);
|
|
|
|
ret = btrfs_del_items(trans, log, path, start_slot,
|
|
path->slots[0] - start_slot + 1);
|
|
/*
|
|
* If start slot isn't 0 then we don't need to re-search, we've
|
|
* found the last guy with the objectid in this tree.
|
|
*/
|
|
if (ret || start_slot != 0)
|
|
break;
|
|
btrfs_release_path(path);
|
|
}
|
|
btrfs_release_path(path);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
static void fill_inode_item(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_inode_item *item,
|
|
struct inode *inode, int log_inode_only)
|
|
{
|
|
btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
|
|
btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
|
|
btrfs_set_inode_mode(leaf, item, inode->i_mode);
|
|
btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
|
|
|
|
btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
|
|
inode->i_atime.tv_sec);
|
|
btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
|
|
inode->i_atime.tv_nsec);
|
|
|
|
btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
|
|
inode->i_mtime.tv_sec);
|
|
btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
|
|
inode->i_mtime.tv_nsec);
|
|
|
|
btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
|
|
inode->i_ctime.tv_sec);
|
|
btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
|
|
inode->i_ctime.tv_nsec);
|
|
|
|
btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
|
|
|
|
btrfs_set_inode_sequence(leaf, item, inode->i_version);
|
|
btrfs_set_inode_transid(leaf, item, trans->transid);
|
|
btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
|
|
btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
|
|
btrfs_set_inode_block_group(leaf, item, 0);
|
|
|
|
if (log_inode_only) {
|
|
/* set the generation to zero so the recover code
|
|
* can tell the difference between an logging
|
|
* just to say 'this inode exists' and a logging
|
|
* to say 'update this inode with these values'
|
|
*/
|
|
btrfs_set_inode_generation(leaf, item, 0);
|
|
btrfs_set_inode_size(leaf, item, 0);
|
|
} else {
|
|
btrfs_set_inode_generation(leaf, item,
|
|
BTRFS_I(inode)->generation);
|
|
btrfs_set_inode_size(leaf, item, inode->i_size);
|
|
}
|
|
|
|
}
|
|
|
|
static noinline int copy_items(struct btrfs_trans_handle *trans,
|
|
struct inode *inode,
|
|
struct btrfs_path *dst_path,
|
|
struct extent_buffer *src,
|
|
int start_slot, int nr, int inode_only)
|
|
{
|
|
unsigned long src_offset;
|
|
unsigned long dst_offset;
|
|
struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
|
|
struct btrfs_file_extent_item *extent;
|
|
struct btrfs_inode_item *inode_item;
|
|
int ret;
|
|
struct btrfs_key *ins_keys;
|
|
u32 *ins_sizes;
|
|
char *ins_data;
|
|
int i;
|
|
struct list_head ordered_sums;
|
|
int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
|
|
|
|
INIT_LIST_HEAD(&ordered_sums);
|
|
|
|
ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
|
|
nr * sizeof(u32), GFP_NOFS);
|
|
if (!ins_data)
|
|
return -ENOMEM;
|
|
|
|
ins_sizes = (u32 *)ins_data;
|
|
ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
|
|
btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
|
|
}
|
|
ret = btrfs_insert_empty_items(trans, log, dst_path,
|
|
ins_keys, ins_sizes, nr);
|
|
if (ret) {
|
|
kfree(ins_data);
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < nr; i++, dst_path->slots[0]++) {
|
|
dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
|
|
dst_path->slots[0]);
|
|
|
|
src_offset = btrfs_item_ptr_offset(src, start_slot + i);
|
|
|
|
if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
|
|
inode_item = btrfs_item_ptr(dst_path->nodes[0],
|
|
dst_path->slots[0],
|
|
struct btrfs_inode_item);
|
|
fill_inode_item(trans, dst_path->nodes[0], inode_item,
|
|
inode, inode_only == LOG_INODE_EXISTS);
|
|
} else {
|
|
copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
|
|
src_offset, ins_sizes[i]);
|
|
}
|
|
|
|
/* take a reference on file data extents so that truncates
|
|
* or deletes of this inode don't have to relog the inode
|
|
* again
|
|
*/
|
|
if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
|
|
!skip_csum) {
|
|
int found_type;
|
|
extent = btrfs_item_ptr(src, start_slot + i,
|
|
struct btrfs_file_extent_item);
|
|
|
|
if (btrfs_file_extent_generation(src, extent) < trans->transid)
|
|
continue;
|
|
|
|
found_type = btrfs_file_extent_type(src, extent);
|
|
if (found_type == BTRFS_FILE_EXTENT_REG) {
|
|
u64 ds, dl, cs, cl;
|
|
ds = btrfs_file_extent_disk_bytenr(src,
|
|
extent);
|
|
/* ds == 0 is a hole */
|
|
if (ds == 0)
|
|
continue;
|
|
|
|
dl = btrfs_file_extent_disk_num_bytes(src,
|
|
extent);
|
|
cs = btrfs_file_extent_offset(src, extent);
|
|
cl = btrfs_file_extent_num_bytes(src,
|
|
extent);
|
|
if (btrfs_file_extent_compression(src,
|
|
extent)) {
|
|
cs = 0;
|
|
cl = dl;
|
|
}
|
|
|
|
ret = btrfs_lookup_csums_range(
|
|
log->fs_info->csum_root,
|
|
ds + cs, ds + cs + cl - 1,
|
|
&ordered_sums, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(dst_path->nodes[0]);
|
|
btrfs_release_path(dst_path);
|
|
kfree(ins_data);
|
|
|
|
/*
|
|
* we have to do this after the loop above to avoid changing the
|
|
* log tree while trying to change the log tree.
|
|
*/
|
|
ret = 0;
|
|
while (!list_empty(&ordered_sums)) {
|
|
struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
|
|
struct btrfs_ordered_sum,
|
|
list);
|
|
if (!ret)
|
|
ret = btrfs_csum_file_blocks(trans, log, sums);
|
|
list_del(&sums->list);
|
|
kfree(sums);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct extent_map *em1, *em2;
|
|
|
|
em1 = list_entry(a, struct extent_map, list);
|
|
em2 = list_entry(b, struct extent_map, list);
|
|
|
|
if (em1->start < em2->start)
|
|
return -1;
|
|
else if (em1->start > em2->start)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
struct log_args {
|
|
struct extent_buffer *src;
|
|
u64 next_offset;
|
|
int start_slot;
|
|
int nr;
|
|
};
|
|
|
|
static int log_one_extent(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, struct btrfs_root *root,
|
|
struct extent_map *em, struct btrfs_path *path,
|
|
struct btrfs_path *dst_path, struct log_args *args)
|
|
{
|
|
struct btrfs_root *log = root->log_root;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 start = em->mod_start;
|
|
u64 search_start = start;
|
|
u64 len = em->mod_len;
|
|
u64 num_bytes;
|
|
int nritems;
|
|
int ret;
|
|
|
|
if (BTRFS_I(inode)->logged_trans == trans->transid) {
|
|
ret = __btrfs_drop_extents(trans, log, inode, dst_path, start,
|
|
start + len, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
while (len) {
|
|
if (args->nr)
|
|
goto next_slot;
|
|
again:
|
|
key.objectid = btrfs_ino(inode);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = search_start;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret) {
|
|
/*
|
|
* A rare case were we can have an em for a section of a
|
|
* larger extent so we need to make sure that this em
|
|
* falls within the extent we've found. If not we just
|
|
* bail and go back to ye-olde way of doing things but
|
|
* it happens often enough in testing that we need to do
|
|
* this dance to make sure.
|
|
*/
|
|
do {
|
|
if (path->slots[0] == 0) {
|
|
btrfs_release_path(path);
|
|
if (search_start == 0)
|
|
return -ENOENT;
|
|
search_start--;
|
|
goto again;
|
|
}
|
|
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid != btrfs_ino(inode) ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
btrfs_release_path(path);
|
|
return -ENOENT;
|
|
}
|
|
} while (key.offset > start);
|
|
|
|
fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
num_bytes = btrfs_file_extent_num_bytes(path->nodes[0],
|
|
fi);
|
|
if (key.offset + num_bytes <= start) {
|
|
btrfs_release_path(path);
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
args->src = path->nodes[0];
|
|
next_slot:
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
fi = btrfs_item_ptr(args->src, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
if (args->nr &&
|
|
args->start_slot + args->nr == path->slots[0]) {
|
|
args->nr++;
|
|
} else if (args->nr) {
|
|
ret = copy_items(trans, inode, dst_path, args->src,
|
|
args->start_slot, args->nr,
|
|
LOG_INODE_ALL);
|
|
if (ret)
|
|
return ret;
|
|
args->nr = 1;
|
|
args->start_slot = path->slots[0];
|
|
} else if (!args->nr) {
|
|
args->nr = 1;
|
|
args->start_slot = path->slots[0];
|
|
}
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
path->slots[0]++;
|
|
num_bytes = btrfs_file_extent_num_bytes(args->src, fi);
|
|
if (len < num_bytes) {
|
|
/* I _think_ this is ok, envision we write to a
|
|
* preallocated space that is adjacent to a previously
|
|
* written preallocated space that gets merged when we
|
|
* mark this preallocated space written. If we do not
|
|
* have the adjacent extent in cache then when we copy
|
|
* this extent it could end up being larger than our EM
|
|
* thinks it is, which is a-ok, so just set len to 0.
|
|
*/
|
|
len = 0;
|
|
} else {
|
|
len -= num_bytes;
|
|
}
|
|
start = key.offset + num_bytes;
|
|
args->next_offset = start;
|
|
search_start = start;
|
|
|
|
if (path->slots[0] < nritems) {
|
|
if (len)
|
|
goto next_slot;
|
|
break;
|
|
}
|
|
|
|
if (args->nr) {
|
|
ret = copy_items(trans, inode, dst_path, args->src,
|
|
args->start_slot, args->nr,
|
|
LOG_INODE_ALL);
|
|
if (ret)
|
|
return ret;
|
|
args->nr = 0;
|
|
btrfs_release_path(path);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode,
|
|
struct btrfs_path *path,
|
|
struct btrfs_path *dst_path)
|
|
{
|
|
struct log_args args;
|
|
struct extent_map *em, *n;
|
|
struct list_head extents;
|
|
struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
|
|
u64 test_gen;
|
|
int ret = 0;
|
|
|
|
INIT_LIST_HEAD(&extents);
|
|
|
|
memset(&args, 0, sizeof(args));
|
|
|
|
write_lock(&tree->lock);
|
|
test_gen = root->fs_info->last_trans_committed;
|
|
|
|
list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
|
|
list_del_init(&em->list);
|
|
if (em->generation <= test_gen)
|
|
continue;
|
|
/* Need a ref to keep it from getting evicted from cache */
|
|
atomic_inc(&em->refs);
|
|
set_bit(EXTENT_FLAG_LOGGING, &em->flags);
|
|
list_add_tail(&em->list, &extents);
|
|
}
|
|
|
|
list_sort(NULL, &extents, extent_cmp);
|
|
|
|
while (!list_empty(&extents)) {
|
|
em = list_entry(extents.next, struct extent_map, list);
|
|
|
|
list_del_init(&em->list);
|
|
clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
|
|
|
|
/*
|
|
* If we had an error we just need to delete everybody from our
|
|
* private list.
|
|
*/
|
|
if (ret) {
|
|
free_extent_map(em);
|
|
continue;
|
|
}
|
|
|
|
write_unlock(&tree->lock);
|
|
|
|
/*
|
|
* If the previous EM and the last extent we left off on aren't
|
|
* sequential then we need to copy the items we have and redo
|
|
* our search
|
|
*/
|
|
if (args.nr && em->mod_start != args.next_offset) {
|
|
ret = copy_items(trans, inode, dst_path, args.src,
|
|
args.start_slot, args.nr,
|
|
LOG_INODE_ALL);
|
|
if (ret) {
|
|
free_extent_map(em);
|
|
write_lock(&tree->lock);
|
|
continue;
|
|
}
|
|
btrfs_release_path(path);
|
|
args.nr = 0;
|
|
}
|
|
|
|
ret = log_one_extent(trans, inode, root, em, path, dst_path, &args);
|
|
free_extent_map(em);
|
|
write_lock(&tree->lock);
|
|
}
|
|
WARN_ON(!list_empty(&extents));
|
|
write_unlock(&tree->lock);
|
|
|
|
if (!ret && args.nr)
|
|
ret = copy_items(trans, inode, dst_path, args.src,
|
|
args.start_slot, args.nr, LOG_INODE_ALL);
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/* log a single inode in the tree log.
|
|
* At least one parent directory for this inode must exist in the tree
|
|
* or be logged already.
|
|
*
|
|
* Any items from this inode changed by the current transaction are copied
|
|
* to the log tree. An extra reference is taken on any extents in this
|
|
* file, allowing us to avoid a whole pile of corner cases around logging
|
|
* blocks that have been removed from the tree.
|
|
*
|
|
* See LOG_INODE_ALL and related defines for a description of what inode_only
|
|
* does.
|
|
*
|
|
* This handles both files and directories.
|
|
*/
|
|
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
int inode_only)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_path *dst_path;
|
|
struct btrfs_key min_key;
|
|
struct btrfs_key max_key;
|
|
struct btrfs_root *log = root->log_root;
|
|
struct extent_buffer *src = NULL;
|
|
int err = 0;
|
|
int ret;
|
|
int nritems;
|
|
int ins_start_slot = 0;
|
|
int ins_nr;
|
|
bool fast_search = false;
|
|
u64 ino = btrfs_ino(inode);
|
|
|
|
log = root->log_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
dst_path = btrfs_alloc_path();
|
|
if (!dst_path) {
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
min_key.objectid = ino;
|
|
min_key.type = BTRFS_INODE_ITEM_KEY;
|
|
min_key.offset = 0;
|
|
|
|
max_key.objectid = ino;
|
|
|
|
|
|
/* today the code can only do partial logging of directories */
|
|
if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
|
|
max_key.type = BTRFS_XATTR_ITEM_KEY;
|
|
else
|
|
max_key.type = (u8)-1;
|
|
max_key.offset = (u64)-1;
|
|
|
|
/* Only run delayed items if we are a dir or a new file */
|
|
if (S_ISDIR(inode->i_mode) ||
|
|
BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
|
|
ret = btrfs_commit_inode_delayed_items(trans, inode);
|
|
if (ret) {
|
|
btrfs_free_path(path);
|
|
btrfs_free_path(dst_path);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&BTRFS_I(inode)->log_mutex);
|
|
|
|
/*
|
|
* a brute force approach to making sure we get the most uptodate
|
|
* copies of everything.
|
|
*/
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
|
|
|
|
if (inode_only == LOG_INODE_EXISTS)
|
|
max_key_type = BTRFS_XATTR_ITEM_KEY;
|
|
ret = drop_objectid_items(trans, log, path, ino, max_key_type);
|
|
} else {
|
|
if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags)) {
|
|
ret = btrfs_truncate_inode_items(trans, log,
|
|
inode, 0, 0);
|
|
} else {
|
|
fast_search = true;
|
|
max_key.type = BTRFS_XATTR_ITEM_KEY;
|
|
ret = drop_objectid_items(trans, log, path, ino,
|
|
BTRFS_XATTR_ITEM_KEY);
|
|
}
|
|
}
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_unlock;
|
|
}
|
|
path->keep_locks = 1;
|
|
|
|
while (1) {
|
|
ins_nr = 0;
|
|
ret = btrfs_search_forward(root, &min_key, &max_key,
|
|
path, 0, trans->transid);
|
|
if (ret != 0)
|
|
break;
|
|
again:
|
|
/* note, ins_nr might be > 0 here, cleanup outside the loop */
|
|
if (min_key.objectid != ino)
|
|
break;
|
|
if (min_key.type > max_key.type)
|
|
break;
|
|
|
|
src = path->nodes[0];
|
|
if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
|
|
ins_nr++;
|
|
goto next_slot;
|
|
} else if (!ins_nr) {
|
|
ins_start_slot = path->slots[0];
|
|
ins_nr = 1;
|
|
goto next_slot;
|
|
}
|
|
|
|
ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
|
|
ins_nr, inode_only);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_unlock;
|
|
}
|
|
ins_nr = 1;
|
|
ins_start_slot = path->slots[0];
|
|
next_slot:
|
|
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
path->slots[0]++;
|
|
if (path->slots[0] < nritems) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &min_key,
|
|
path->slots[0]);
|
|
goto again;
|
|
}
|
|
if (ins_nr) {
|
|
ret = copy_items(trans, inode, dst_path, src,
|
|
ins_start_slot,
|
|
ins_nr, inode_only);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_unlock;
|
|
}
|
|
ins_nr = 0;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
if (min_key.offset < (u64)-1)
|
|
min_key.offset++;
|
|
else if (min_key.type < (u8)-1)
|
|
min_key.type++;
|
|
else if (min_key.objectid < (u64)-1)
|
|
min_key.objectid++;
|
|
else
|
|
break;
|
|
}
|
|
if (ins_nr) {
|
|
ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
|
|
ins_nr, inode_only);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_unlock;
|
|
}
|
|
ins_nr = 0;
|
|
}
|
|
|
|
if (fast_search) {
|
|
btrfs_release_path(path);
|
|
btrfs_release_path(dst_path);
|
|
ret = btrfs_log_changed_extents(trans, root, inode, path,
|
|
dst_path);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_unlock;
|
|
}
|
|
} else {
|
|
struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_map *em, *n;
|
|
|
|
list_for_each_entry_safe(em, n, &tree->modified_extents, list)
|
|
list_del_init(&em->list);
|
|
}
|
|
|
|
if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
|
|
btrfs_release_path(path);
|
|
btrfs_release_path(dst_path);
|
|
ret = log_directory_changes(trans, root, inode, path, dst_path);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
BTRFS_I(inode)->logged_trans = trans->transid;
|
|
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
|
|
out_unlock:
|
|
mutex_unlock(&BTRFS_I(inode)->log_mutex);
|
|
|
|
btrfs_free_path(path);
|
|
btrfs_free_path(dst_path);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* follow the dentry parent pointers up the chain and see if any
|
|
* of the directories in it require a full commit before they can
|
|
* be logged. Returns zero if nothing special needs to be done or 1 if
|
|
* a full commit is required.
|
|
*/
|
|
static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
|
|
struct inode *inode,
|
|
struct dentry *parent,
|
|
struct super_block *sb,
|
|
u64 last_committed)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_root *root;
|
|
struct dentry *old_parent = NULL;
|
|
|
|
/*
|
|
* for regular files, if its inode is already on disk, we don't
|
|
* have to worry about the parents at all. This is because
|
|
* we can use the last_unlink_trans field to record renames
|
|
* and other fun in this file.
|
|
*/
|
|
if (S_ISREG(inode->i_mode) &&
|
|
BTRFS_I(inode)->generation <= last_committed &&
|
|
BTRFS_I(inode)->last_unlink_trans <= last_committed)
|
|
goto out;
|
|
|
|
if (!S_ISDIR(inode->i_mode)) {
|
|
if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
|
|
goto out;
|
|
inode = parent->d_inode;
|
|
}
|
|
|
|
while (1) {
|
|
BTRFS_I(inode)->logged_trans = trans->transid;
|
|
smp_mb();
|
|
|
|
if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
|
|
root = BTRFS_I(inode)->root;
|
|
|
|
/*
|
|
* make sure any commits to the log are forced
|
|
* to be full commits
|
|
*/
|
|
root->fs_info->last_trans_log_full_commit =
|
|
trans->transid;
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
|
|
break;
|
|
|
|
if (IS_ROOT(parent))
|
|
break;
|
|
|
|
parent = dget_parent(parent);
|
|
dput(old_parent);
|
|
old_parent = parent;
|
|
inode = parent->d_inode;
|
|
|
|
}
|
|
dput(old_parent);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function around btrfs_log_inode to make sure newly created
|
|
* parent directories also end up in the log. A minimal inode and backref
|
|
* only logging is done of any parent directories that are older than
|
|
* the last committed transaction
|
|
*/
|
|
int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
struct dentry *parent, int exists_only)
|
|
{
|
|
int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
|
|
struct super_block *sb;
|
|
struct dentry *old_parent = NULL;
|
|
int ret = 0;
|
|
u64 last_committed = root->fs_info->last_trans_committed;
|
|
|
|
sb = inode->i_sb;
|
|
|
|
if (btrfs_test_opt(root, NOTREELOG)) {
|
|
ret = 1;
|
|
goto end_no_trans;
|
|
}
|
|
|
|
if (root->fs_info->last_trans_log_full_commit >
|
|
root->fs_info->last_trans_committed) {
|
|
ret = 1;
|
|
goto end_no_trans;
|
|
}
|
|
|
|
if (root != BTRFS_I(inode)->root ||
|
|
btrfs_root_refs(&root->root_item) == 0) {
|
|
ret = 1;
|
|
goto end_no_trans;
|
|
}
|
|
|
|
ret = check_parent_dirs_for_sync(trans, inode, parent,
|
|
sb, last_committed);
|
|
if (ret)
|
|
goto end_no_trans;
|
|
|
|
if (btrfs_inode_in_log(inode, trans->transid)) {
|
|
ret = BTRFS_NO_LOG_SYNC;
|
|
goto end_no_trans;
|
|
}
|
|
|
|
ret = start_log_trans(trans, root);
|
|
if (ret)
|
|
goto end_trans;
|
|
|
|
ret = btrfs_log_inode(trans, root, inode, inode_only);
|
|
if (ret)
|
|
goto end_trans;
|
|
|
|
/*
|
|
* for regular files, if its inode is already on disk, we don't
|
|
* have to worry about the parents at all. This is because
|
|
* we can use the last_unlink_trans field to record renames
|
|
* and other fun in this file.
|
|
*/
|
|
if (S_ISREG(inode->i_mode) &&
|
|
BTRFS_I(inode)->generation <= last_committed &&
|
|
BTRFS_I(inode)->last_unlink_trans <= last_committed) {
|
|
ret = 0;
|
|
goto end_trans;
|
|
}
|
|
|
|
inode_only = LOG_INODE_EXISTS;
|
|
while (1) {
|
|
if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
|
|
break;
|
|
|
|
inode = parent->d_inode;
|
|
if (root != BTRFS_I(inode)->root)
|
|
break;
|
|
|
|
if (BTRFS_I(inode)->generation >
|
|
root->fs_info->last_trans_committed) {
|
|
ret = btrfs_log_inode(trans, root, inode, inode_only);
|
|
if (ret)
|
|
goto end_trans;
|
|
}
|
|
if (IS_ROOT(parent))
|
|
break;
|
|
|
|
parent = dget_parent(parent);
|
|
dput(old_parent);
|
|
old_parent = parent;
|
|
}
|
|
ret = 0;
|
|
end_trans:
|
|
dput(old_parent);
|
|
if (ret < 0) {
|
|
WARN_ON(ret != -ENOSPC);
|
|
root->fs_info->last_trans_log_full_commit = trans->transid;
|
|
ret = 1;
|
|
}
|
|
btrfs_end_log_trans(root);
|
|
end_no_trans:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* it is not safe to log dentry if the chunk root has added new
|
|
* chunks. This returns 0 if the dentry was logged, and 1 otherwise.
|
|
* If this returns 1, you must commit the transaction to safely get your
|
|
* data on disk.
|
|
*/
|
|
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct dentry *dentry)
|
|
{
|
|
struct dentry *parent = dget_parent(dentry);
|
|
int ret;
|
|
|
|
ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
|
|
dput(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* should be called during mount to recover any replay any log trees
|
|
* from the FS
|
|
*/
|
|
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_key tmp_key;
|
|
struct btrfs_root *log;
|
|
struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
|
|
struct walk_control wc = {
|
|
.process_func = process_one_buffer,
|
|
.stage = 0,
|
|
};
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
fs_info->log_root_recovering = 1;
|
|
|
|
trans = btrfs_start_transaction(fs_info->tree_root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto error;
|
|
}
|
|
|
|
wc.trans = trans;
|
|
wc.pin = 1;
|
|
|
|
ret = walk_log_tree(trans, log_root_tree, &wc);
|
|
if (ret) {
|
|
btrfs_error(fs_info, ret, "Failed to pin buffers while "
|
|
"recovering log root tree.");
|
|
goto error;
|
|
}
|
|
|
|
again:
|
|
key.objectid = BTRFS_TREE_LOG_OBJECTID;
|
|
key.offset = (u64)-1;
|
|
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
|
|
|
|
if (ret < 0) {
|
|
btrfs_error(fs_info, ret,
|
|
"Couldn't find tree log root.");
|
|
goto error;
|
|
}
|
|
if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
btrfs_release_path(path);
|
|
if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
|
|
break;
|
|
|
|
log = btrfs_read_fs_root_no_radix(log_root_tree,
|
|
&found_key);
|
|
if (IS_ERR(log)) {
|
|
ret = PTR_ERR(log);
|
|
btrfs_error(fs_info, ret,
|
|
"Couldn't read tree log root.");
|
|
goto error;
|
|
}
|
|
|
|
tmp_key.objectid = found_key.offset;
|
|
tmp_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
tmp_key.offset = (u64)-1;
|
|
|
|
wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
|
|
if (IS_ERR(wc.replay_dest)) {
|
|
ret = PTR_ERR(wc.replay_dest);
|
|
btrfs_error(fs_info, ret, "Couldn't read target root "
|
|
"for tree log recovery.");
|
|
goto error;
|
|
}
|
|
|
|
wc.replay_dest->log_root = log;
|
|
btrfs_record_root_in_trans(trans, wc.replay_dest);
|
|
ret = walk_log_tree(trans, log, &wc);
|
|
BUG_ON(ret);
|
|
|
|
if (wc.stage == LOG_WALK_REPLAY_ALL) {
|
|
ret = fixup_inode_link_counts(trans, wc.replay_dest,
|
|
path);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
key.offset = found_key.offset - 1;
|
|
wc.replay_dest->log_root = NULL;
|
|
free_extent_buffer(log->node);
|
|
free_extent_buffer(log->commit_root);
|
|
kfree(log);
|
|
|
|
if (found_key.offset == 0)
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/* step one is to pin it all, step two is to replay just inodes */
|
|
if (wc.pin) {
|
|
wc.pin = 0;
|
|
wc.process_func = replay_one_buffer;
|
|
wc.stage = LOG_WALK_REPLAY_INODES;
|
|
goto again;
|
|
}
|
|
/* step three is to replay everything */
|
|
if (wc.stage < LOG_WALK_REPLAY_ALL) {
|
|
wc.stage++;
|
|
goto again;
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
|
|
free_extent_buffer(log_root_tree->node);
|
|
log_root_tree->log_root = NULL;
|
|
fs_info->log_root_recovering = 0;
|
|
|
|
/* step 4: commit the transaction, which also unpins the blocks */
|
|
btrfs_commit_transaction(trans, fs_info->tree_root);
|
|
|
|
kfree(log_root_tree);
|
|
return 0;
|
|
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* there are some corner cases where we want to force a full
|
|
* commit instead of allowing a directory to be logged.
|
|
*
|
|
* They revolve around files there were unlinked from the directory, and
|
|
* this function updates the parent directory so that a full commit is
|
|
* properly done if it is fsync'd later after the unlinks are done.
|
|
*/
|
|
void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
|
|
struct inode *dir, struct inode *inode,
|
|
int for_rename)
|
|
{
|
|
/*
|
|
* when we're logging a file, if it hasn't been renamed
|
|
* or unlinked, and its inode is fully committed on disk,
|
|
* we don't have to worry about walking up the directory chain
|
|
* to log its parents.
|
|
*
|
|
* So, we use the last_unlink_trans field to put this transid
|
|
* into the file. When the file is logged we check it and
|
|
* don't log the parents if the file is fully on disk.
|
|
*/
|
|
if (S_ISREG(inode->i_mode))
|
|
BTRFS_I(inode)->last_unlink_trans = trans->transid;
|
|
|
|
/*
|
|
* if this directory was already logged any new
|
|
* names for this file/dir will get recorded
|
|
*/
|
|
smp_mb();
|
|
if (BTRFS_I(dir)->logged_trans == trans->transid)
|
|
return;
|
|
|
|
/*
|
|
* if the inode we're about to unlink was logged,
|
|
* the log will be properly updated for any new names
|
|
*/
|
|
if (BTRFS_I(inode)->logged_trans == trans->transid)
|
|
return;
|
|
|
|
/*
|
|
* when renaming files across directories, if the directory
|
|
* there we're unlinking from gets fsync'd later on, there's
|
|
* no way to find the destination directory later and fsync it
|
|
* properly. So, we have to be conservative and force commits
|
|
* so the new name gets discovered.
|
|
*/
|
|
if (for_rename)
|
|
goto record;
|
|
|
|
/* we can safely do the unlink without any special recording */
|
|
return;
|
|
|
|
record:
|
|
BTRFS_I(dir)->last_unlink_trans = trans->transid;
|
|
}
|
|
|
|
/*
|
|
* Call this after adding a new name for a file and it will properly
|
|
* update the log to reflect the new name.
|
|
*
|
|
* It will return zero if all goes well, and it will return 1 if a
|
|
* full transaction commit is required.
|
|
*/
|
|
int btrfs_log_new_name(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, struct inode *old_dir,
|
|
struct dentry *parent)
|
|
{
|
|
struct btrfs_root * root = BTRFS_I(inode)->root;
|
|
|
|
/*
|
|
* this will force the logging code to walk the dentry chain
|
|
* up for the file
|
|
*/
|
|
if (S_ISREG(inode->i_mode))
|
|
BTRFS_I(inode)->last_unlink_trans = trans->transid;
|
|
|
|
/*
|
|
* if this inode hasn't been logged and directory we're renaming it
|
|
* from hasn't been logged, we don't need to log it
|
|
*/
|
|
if (BTRFS_I(inode)->logged_trans <=
|
|
root->fs_info->last_trans_committed &&
|
|
(!old_dir || BTRFS_I(old_dir)->logged_trans <=
|
|
root->fs_info->last_trans_committed))
|
|
return 0;
|
|
|
|
return btrfs_log_inode_parent(trans, root, inode, parent, 1);
|
|
}
|
|
|
|
|