You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/fs/jffs2/nodelist.h

473 lines
18 KiB

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright (C) 2001-2003 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: nodelist.h,v 1.127 2005/02/09 09:23:53 pavlov Exp $
*
*/
#ifndef __JFFS2_NODELIST_H__
#define __JFFS2_NODELIST_H__
#include <linux/config.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/jffs2.h>
#include <linux/jffs2_fs_sb.h>
#include <linux/jffs2_fs_i.h>
#ifdef __ECOS
#include "os-ecos.h"
#else
#include <linux/mtd/compatmac.h> /* For min/max in older kernels */
#include "os-linux.h"
#endif
#ifndef CONFIG_JFFS2_FS_DEBUG
#define CONFIG_JFFS2_FS_DEBUG 1
#endif
#if CONFIG_JFFS2_FS_DEBUG > 0
#define D1(x) x
#else
#define D1(x)
#endif
#if CONFIG_JFFS2_FS_DEBUG > 1
#define D2(x) x
#else
#define D2(x)
#endif
#define JFFS2_NATIVE_ENDIAN
/* Note we handle mode bits conversion from JFFS2 (i.e. Linux) to/from
whatever OS we're actually running on here too. */
#if defined(JFFS2_NATIVE_ENDIAN)
#define cpu_to_je16(x) ((jint16_t){x})
#define cpu_to_je32(x) ((jint32_t){x})
#define cpu_to_jemode(x) ((jmode_t){os_to_jffs2_mode(x)})
#define je16_to_cpu(x) ((x).v16)
#define je32_to_cpu(x) ((x).v32)
#define jemode_to_cpu(x) (jffs2_to_os_mode((x).m))
#elif defined(JFFS2_BIG_ENDIAN)
#define cpu_to_je16(x) ((jint16_t){cpu_to_be16(x)})
#define cpu_to_je32(x) ((jint32_t){cpu_to_be32(x)})
#define cpu_to_jemode(x) ((jmode_t){cpu_to_be32(os_to_jffs2_mode(x))})
#define je16_to_cpu(x) (be16_to_cpu(x.v16))
#define je32_to_cpu(x) (be32_to_cpu(x.v32))
#define jemode_to_cpu(x) (be32_to_cpu(jffs2_to_os_mode((x).m)))
#elif defined(JFFS2_LITTLE_ENDIAN)
#define cpu_to_je16(x) ((jint16_t){cpu_to_le16(x)})
#define cpu_to_je32(x) ((jint32_t){cpu_to_le32(x)})
#define cpu_to_jemode(x) ((jmode_t){cpu_to_le32(os_to_jffs2_mode(x))})
#define je16_to_cpu(x) (le16_to_cpu(x.v16))
#define je32_to_cpu(x) (le32_to_cpu(x.v32))
#define jemode_to_cpu(x) (le32_to_cpu(jffs2_to_os_mode((x).m)))
#else
#error wibble
#endif
/*
This is all we need to keep in-core for each raw node during normal
operation. As and when we do read_inode on a particular inode, we can
scan the nodes which are listed for it and build up a proper map of
which nodes are currently valid. JFFSv1 always used to keep that whole
map in core for each inode.
*/
struct jffs2_raw_node_ref
{
struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref
for this inode. If this is the last, it points to the inode_cache
for this inode instead. The inode_cache will have NULL in the first
word so you know when you've got there :) */
struct jffs2_raw_node_ref *next_phys;
uint32_t flash_offset;
uint32_t __totlen; /* This may die; use ref_totlen(c, jeb, ) below */
};
/* flash_offset & 3 always has to be zero, because nodes are
always aligned at 4 bytes. So we have a couple of extra bits
to play with, which indicate the node's status; see below: */
#define REF_UNCHECKED 0 /* We haven't yet checked the CRC or built its inode */
#define REF_OBSOLETE 1 /* Obsolete, can be completely ignored */
#define REF_PRISTINE 2 /* Completely clean. GC without looking */
#define REF_NORMAL 3 /* Possibly overlapped. Read the page and write again on GC */
#define ref_flags(ref) ((ref)->flash_offset & 3)
#define ref_offset(ref) ((ref)->flash_offset & ~3)
#define ref_obsolete(ref) (((ref)->flash_offset & 3) == REF_OBSOLETE)
#define mark_ref_normal(ref) do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0)
/* For each inode in the filesystem, we need to keep a record of
nlink, because it would be a PITA to scan the whole directory tree
at read_inode() time to calculate it, and to keep sufficient information
in the raw_node_ref (basically both parent and child inode number for
dirent nodes) would take more space than this does. We also keep
a pointer to the first physical node which is part of this inode, too.
*/
struct jffs2_inode_cache {
struct jffs2_full_dirent *scan_dents; /* Used during scan to hold
temporary lists of dirents, and later must be set to
NULL to mark the end of the raw_node_ref->next_in_ino
chain. */
struct jffs2_inode_cache *next;
struct jffs2_raw_node_ref *nodes;
uint32_t ino;
int nlink;
int state;
};
/* Inode states for 'state' above. We need the 'GC' state to prevent
someone from doing a read_inode() while we're moving a 'REF_PRISTINE'
node without going through all the iget() nonsense */
#define INO_STATE_UNCHECKED 0 /* CRC checks not yet done */
#define INO_STATE_CHECKING 1 /* CRC checks in progress */
#define INO_STATE_PRESENT 2 /* In core */
#define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */
#define INO_STATE_GC 4 /* GCing a 'pristine' node */
#define INO_STATE_READING 5 /* In read_inode() */
#define INOCACHE_HASHSIZE 128
/*
Larger representation of a raw node, kept in-core only when the
struct inode for this particular ino is instantiated.
*/
struct jffs2_full_dnode
{
struct jffs2_raw_node_ref *raw;
uint32_t ofs; /* The offset to which the data of this node belongs */
uint32_t size;
uint32_t frags; /* Number of fragments which currently refer
to this node. When this reaches zero,
the node is obsolete. */
};
/*
Even larger representation of a raw node, kept in-core only while
we're actually building up the original map of which nodes go where,
in read_inode()
*/
struct jffs2_tmp_dnode_info
{
struct jffs2_tmp_dnode_info *next;
struct jffs2_full_dnode *fn;
uint32_t version;
};
struct jffs2_full_dirent
{
struct jffs2_raw_node_ref *raw;
struct jffs2_full_dirent *next;
uint32_t version;
uint32_t ino; /* == zero for unlink */
unsigned int nhash;
unsigned char type;
unsigned char name[0];
};
/*
Fragments - used to build a map of which raw node to obtain
data from for each part of the ino
*/
struct jffs2_node_frag
{
struct rb_node rb;
struct jffs2_full_dnode *node; /* NULL for holes */
uint32_t size;
uint32_t ofs; /* The offset to which this fragment belongs */
};
struct jffs2_eraseblock
{
struct list_head list;
int bad_count;
uint32_t offset; /* of this block in the MTD */
uint32_t unchecked_size;
uint32_t used_size;
uint32_t dirty_size;
uint32_t wasted_size;
uint32_t free_size; /* Note that sector_size - free_size
is the address of the first free space */
struct jffs2_raw_node_ref *first_node;
struct jffs2_raw_node_ref *last_node;
struct jffs2_raw_node_ref *gc_node; /* Next node to be garbage collected */
};
#define ACCT_SANITY_CHECK(c, jeb) do { \
struct jffs2_eraseblock *___j = jeb; \
if ((___j) && ___j->used_size + ___j->dirty_size + ___j->free_size + ___j->wasted_size + ___j->unchecked_size != c->sector_size) { \
printk(KERN_NOTICE "Eeep. Space accounting for block at 0x%08x is screwed\n", ___j->offset); \
printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + wasted %08x + unchecked %08x != total %08x\n", \
___j->free_size, ___j->dirty_size, ___j->used_size, ___j->wasted_size, ___j->unchecked_size, c->sector_size); \
BUG(); \
} \
if (c->used_size + c->dirty_size + c->free_size + c->erasing_size + c->bad_size + c->wasted_size + c->unchecked_size != c->flash_size) { \
printk(KERN_NOTICE "Eeep. Space accounting superblock info is screwed\n"); \
printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + erasing %08x + bad %08x + wasted %08x + unchecked %08x != total %08x\n", \
c->free_size, c->dirty_size, c->used_size, c->erasing_size, c->bad_size, c->wasted_size, c->unchecked_size, c->flash_size); \
BUG(); \
} \
} while(0)
static inline void paranoia_failed_dump(struct jffs2_eraseblock *jeb)
{
struct jffs2_raw_node_ref *ref;
int i=0;
printk(KERN_NOTICE);
for (ref = jeb->first_node; ref; ref = ref->next_phys) {
printk("%08x->", ref_offset(ref));
if (++i == 8) {
i = 0;
printk("\n" KERN_NOTICE);
}
}
printk("\n");
}
#define ACCT_PARANOIA_CHECK(jeb) do { \
uint32_t my_used_size = 0; \
uint32_t my_unchecked_size = 0; \
struct jffs2_raw_node_ref *ref2 = jeb->first_node; \
while (ref2) { \
if (unlikely(ref2->flash_offset < jeb->offset || \
ref2->flash_offset > jeb->offset + c->sector_size)) { \
printk(KERN_NOTICE "Node %08x shouldn't be in block at %08x!\n", \
ref_offset(ref2), jeb->offset); \
paranoia_failed_dump(jeb); \
BUG(); \
} \
if (ref_flags(ref2) == REF_UNCHECKED) \
my_unchecked_size += ref_totlen(c, jeb, ref2); \
else if (!ref_obsolete(ref2)) \
my_used_size += ref_totlen(c, jeb, ref2); \
if (unlikely((!ref2->next_phys) != (ref2 == jeb->last_node))) { \
if (!ref2->next_phys) \
printk("ref for node at %p (phys %08x) has next_phys->%p (----), last_node->%p (phys %08x)\n", \
ref2, ref_offset(ref2), ref2->next_phys, \
jeb->last_node, ref_offset(jeb->last_node)); \
else \
printk("ref for node at %p (phys %08x) has next_phys->%p (%08x), last_node->%p (phys %08x)\n", \
ref2, ref_offset(ref2), ref2->next_phys, ref_offset(ref2->next_phys), \
jeb->last_node, ref_offset(jeb->last_node)); \
paranoia_failed_dump(jeb); \
BUG(); \
} \
ref2 = ref2->next_phys; \
} \
if (my_used_size != jeb->used_size) { \
printk(KERN_NOTICE "Calculated used size %08x != stored used size %08x\n", my_used_size, jeb->used_size); \
BUG(); \
} \
if (my_unchecked_size != jeb->unchecked_size) { \
printk(KERN_NOTICE "Calculated unchecked size %08x != stored unchecked size %08x\n", my_unchecked_size, jeb->unchecked_size); \
BUG(); \
} \
} while(0)
/* Calculate totlen from surrounding nodes or eraseblock */
static inline uint32_t __ref_totlen(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb,
struct jffs2_raw_node_ref *ref)
{
uint32_t ref_end;
if (ref->next_phys)
ref_end = ref_offset(ref->next_phys);
else {
if (!jeb)
jeb = &c->blocks[ref->flash_offset / c->sector_size];
/* Last node in block. Use free_space */
BUG_ON(ref != jeb->last_node);
ref_end = jeb->offset + c->sector_size - jeb->free_size;
}
return ref_end - ref_offset(ref);
}
static inline uint32_t ref_totlen(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb,
struct jffs2_raw_node_ref *ref)
{
uint32_t ret;
D1(if (jeb && jeb != &c->blocks[ref->flash_offset / c->sector_size]) {
printk(KERN_CRIT "ref_totlen called with wrong block -- at 0x%08x instead of 0x%08x; ref 0x%08x\n",
jeb->offset, c->blocks[ref->flash_offset / c->sector_size].offset, ref_offset(ref));
BUG();
})
#if 1
ret = ref->__totlen;
#else
/* This doesn't actually work yet */
ret = __ref_totlen(c, jeb, ref);
if (ret != ref->__totlen) {
printk(KERN_CRIT "Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n",
ref, ref_offset(ref), ref_offset(ref)+ref->__totlen,
ret, ref->__totlen);
if (!jeb)
jeb = &c->blocks[ref->flash_offset / c->sector_size];
paranoia_failed_dump(jeb);
BUG();
}
#endif
return ret;
}
#define ALLOC_NORMAL 0 /* Normal allocation */
#define ALLOC_DELETION 1 /* Deletion node. Best to allow it */
#define ALLOC_GC 2 /* Space requested for GC. Give it or die */
#define ALLOC_NORETRY 3 /* For jffs2_write_dnode: On failure, return -EAGAIN instead of retrying */
/* How much dirty space before it goes on the very_dirty_list */
#define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2))
/* check if dirty space is more than 255 Byte */
#define ISDIRTY(size) ((size) > sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
#define PAD(x) (((x)+3)&~3)
static inline struct jffs2_inode_cache *jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref *raw)
{
while(raw->next_in_ino) {
raw = raw->next_in_ino;
}
return ((struct jffs2_inode_cache *)raw);
}
static inline struct jffs2_node_frag *frag_first(struct rb_root *root)
{
struct rb_node *node = root->rb_node;
if (!node)
return NULL;
while(node->rb_left)
node = node->rb_left;
return rb_entry(node, struct jffs2_node_frag, rb);
}
#define rb_parent(rb) ((rb)->rb_parent)
#define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb)
#define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb)
#define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb)
#define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb)
#define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb)
#define frag_erase(frag, list) rb_erase(&frag->rb, list);
/* nodelist.c */
D2(void jffs2_print_frag_list(struct jffs2_inode_info *f));
void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list);
int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
struct jffs2_tmp_dnode_info **tnp, struct jffs2_full_dirent **fdp,
uint32_t *highest_version, uint32_t *latest_mctime,
uint32_t *mctime_ver);
void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state);
struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino);
void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new);
void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old);
void jffs2_free_ino_caches(struct jffs2_sb_info *c);
void jffs2_free_raw_node_refs(struct jffs2_sb_info *c);
struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset);
void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete);
void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base);
struct rb_node *rb_next(struct rb_node *);
struct rb_node *rb_prev(struct rb_node *);
void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root);
/* nodemgmt.c */
int jffs2_thread_should_wake(struct jffs2_sb_info *c);
int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio);
int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len);
int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new);
void jffs2_complete_reservation(struct jffs2_sb_info *c);
void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw);
void jffs2_dump_block_lists(struct jffs2_sb_info *c);
/* write.c */
int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri);
struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const unsigned char *data, uint32_t datalen, uint32_t flash_ofs, int alloc_mode);
struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_dirent *rd, const unsigned char *name, uint32_t namelen, uint32_t flash_ofs, int alloc_mode);
int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
struct jffs2_raw_inode *ri, unsigned char *buf,
uint32_t offset, uint32_t writelen, uint32_t *retlen);
int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const char *name, int namelen);
int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name, int namelen, struct jffs2_inode_info *dead_f);
int jffs2_do_link (struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino, uint8_t type, const char *name, int namelen);
/* readinode.c */
void jffs2_truncate_fraglist (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size);
int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn);
int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
uint32_t ino, struct jffs2_raw_inode *latest_node);
int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic);
void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
/* malloc.c */
int jffs2_create_slab_caches(void);
void jffs2_destroy_slab_caches(void);
struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize);
void jffs2_free_full_dirent(struct jffs2_full_dirent *);
struct jffs2_full_dnode *jffs2_alloc_full_dnode(void);
void jffs2_free_full_dnode(struct jffs2_full_dnode *);
struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void);
void jffs2_free_raw_dirent(struct jffs2_raw_dirent *);
struct jffs2_raw_inode *jffs2_alloc_raw_inode(void);
void jffs2_free_raw_inode(struct jffs2_raw_inode *);
struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void);
void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *);
struct jffs2_raw_node_ref *jffs2_alloc_raw_node_ref(void);
void jffs2_free_raw_node_ref(struct jffs2_raw_node_ref *);
struct jffs2_node_frag *jffs2_alloc_node_frag(void);
void jffs2_free_node_frag(struct jffs2_node_frag *);
struct jffs2_inode_cache *jffs2_alloc_inode_cache(void);
void jffs2_free_inode_cache(struct jffs2_inode_cache *);
/* gc.c */
int jffs2_garbage_collect_pass(struct jffs2_sb_info *c);
/* read.c */
int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
struct jffs2_full_dnode *fd, unsigned char *buf,
int ofs, int len);
int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
unsigned char *buf, uint32_t offset, uint32_t len);
char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
/* scan.c */
int jffs2_scan_medium(struct jffs2_sb_info *c);
void jffs2_rotate_lists(struct jffs2_sb_info *c);
/* build.c */
int jffs2_do_mount_fs(struct jffs2_sb_info *c);
/* erase.c */
void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count);
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
/* wbuf.c */
int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino);
int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c);
int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
#endif
#endif /* __JFFS2_NODELIST_H__ */