You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
951 lines
27 KiB
951 lines
27 KiB
/*
|
|
** -----------------------------------------------------------------------------
|
|
**
|
|
** Perle Specialix driver for Linux
|
|
** Ported from existing RIO Driver for SCO sources.
|
|
*
|
|
* (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
**
|
|
** Module : riointr.c
|
|
** SID : 1.2
|
|
** Last Modified : 11/6/98 10:33:44
|
|
** Retrieved : 11/6/98 10:33:49
|
|
**
|
|
** ident @(#)riointr.c 1.2
|
|
**
|
|
** -----------------------------------------------------------------------------
|
|
*/
|
|
#ifdef SCCS_LABELS
|
|
static char *_riointr_c_sccs_ = "@(#)riointr.c 1.2";
|
|
#endif
|
|
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/tty.h>
|
|
#include <asm/io.h>
|
|
#include <asm/system.h>
|
|
#include <asm/string.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/termios.h>
|
|
#include <linux/serial.h>
|
|
|
|
#include <linux/generic_serial.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include "linux_compat.h"
|
|
#include "rio_linux.h"
|
|
#include "typdef.h"
|
|
#include "pkt.h"
|
|
#include "daemon.h"
|
|
#include "rio.h"
|
|
#include "riospace.h"
|
|
#include "top.h"
|
|
#include "cmdpkt.h"
|
|
#include "map.h"
|
|
#include "riotypes.h"
|
|
#include "rup.h"
|
|
#include "port.h"
|
|
#include "riodrvr.h"
|
|
#include "rioinfo.h"
|
|
#include "func.h"
|
|
#include "errors.h"
|
|
#include "pci.h"
|
|
|
|
#include "parmmap.h"
|
|
#include "unixrup.h"
|
|
#include "board.h"
|
|
#include "host.h"
|
|
#include "error.h"
|
|
#include "phb.h"
|
|
#include "link.h"
|
|
#include "cmdblk.h"
|
|
#include "route.h"
|
|
#include "control.h"
|
|
#include "cirrus.h"
|
|
#include "rioioctl.h"
|
|
|
|
|
|
static void RIOReceive(struct rio_info *, struct Port *);
|
|
|
|
|
|
static char *firstchars (char *p, int nch)
|
|
{
|
|
static char buf[2][128];
|
|
static int t=0;
|
|
t = ! t;
|
|
memcpy (buf[t], p, nch);
|
|
buf[t][nch] = 0;
|
|
return buf[t];
|
|
}
|
|
|
|
|
|
#define INCR( P, I ) ((P) = (((P)+(I)) & p->RIOBufferMask))
|
|
/* Enable and start the transmission of packets */
|
|
void
|
|
RIOTxEnable(en)
|
|
char * en;
|
|
{
|
|
struct Port * PortP;
|
|
struct rio_info *p;
|
|
struct tty_struct* tty;
|
|
int c;
|
|
struct PKT * PacketP;
|
|
unsigned long flags;
|
|
|
|
PortP = (struct Port *)en;
|
|
p = (struct rio_info *)PortP->p;
|
|
tty = PortP->gs.tty;
|
|
|
|
|
|
rio_dprintk (RIO_DEBUG_INTR, "tx port %d: %d chars queued.\n",
|
|
PortP->PortNum, PortP->gs.xmit_cnt);
|
|
|
|
if (!PortP->gs.xmit_cnt) return;
|
|
|
|
|
|
/* This routine is an order of magnitude simpler than the specialix
|
|
version. One of the disadvantages is that this version will send
|
|
an incomplete packet (usually 64 bytes instead of 72) once for
|
|
every 4k worth of data. Let's just say that this won't influence
|
|
performance significantly..... */
|
|
|
|
rio_spin_lock_irqsave(&PortP->portSem, flags);
|
|
|
|
while (can_add_transmit( &PacketP, PortP )) {
|
|
c = PortP->gs.xmit_cnt;
|
|
if (c > PKT_MAX_DATA_LEN) c = PKT_MAX_DATA_LEN;
|
|
|
|
/* Don't copy past the end of the source buffer */
|
|
if (c > SERIAL_XMIT_SIZE - PortP->gs.xmit_tail)
|
|
c = SERIAL_XMIT_SIZE - PortP->gs.xmit_tail;
|
|
|
|
{ int t;
|
|
t = (c > 10)?10:c;
|
|
|
|
rio_dprintk (RIO_DEBUG_INTR, "rio: tx port %d: copying %d chars: %s - %s\n",
|
|
PortP->PortNum, c,
|
|
firstchars (PortP->gs.xmit_buf + PortP->gs.xmit_tail , t),
|
|
firstchars (PortP->gs.xmit_buf + PortP->gs.xmit_tail + c-t, t));
|
|
}
|
|
/* If for one reason or another, we can't copy more data,
|
|
we're done! */
|
|
if (c == 0) break;
|
|
|
|
rio_memcpy_toio (PortP->HostP->Caddr, (caddr_t)PacketP->data,
|
|
PortP->gs.xmit_buf + PortP->gs.xmit_tail, c);
|
|
/* udelay (1); */
|
|
|
|
writeb (c, &(PacketP->len));
|
|
if (!( PortP->State & RIO_DELETED ) ) {
|
|
add_transmit ( PortP );
|
|
/*
|
|
** Count chars tx'd for port statistics reporting
|
|
*/
|
|
if ( PortP->statsGather )
|
|
PortP->txchars += c;
|
|
}
|
|
PortP->gs.xmit_tail = (PortP->gs.xmit_tail + c) & (SERIAL_XMIT_SIZE-1);
|
|
PortP->gs.xmit_cnt -= c;
|
|
}
|
|
|
|
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
|
|
|
|
if (PortP->gs.xmit_cnt <= (PortP->gs.wakeup_chars + 2*PKT_MAX_DATA_LEN)) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "Waking up.... ldisc:%d (%d/%d)....",
|
|
(int)(PortP->gs.tty->flags & (1 << TTY_DO_WRITE_WAKEUP)),
|
|
PortP->gs.wakeup_chars, PortP->gs.xmit_cnt);
|
|
if ((PortP->gs.tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
|
|
PortP->gs.tty->ldisc.write_wakeup)
|
|
(PortP->gs.tty->ldisc.write_wakeup)(PortP->gs.tty);
|
|
rio_dprintk (RIO_DEBUG_INTR, "(%d/%d)\n",
|
|
PortP->gs.wakeup_chars, PortP->gs.xmit_cnt);
|
|
wake_up_interruptible(&PortP->gs.tty->write_wait);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
** RIO Host Service routine. Does all the work traditionally associated with an
|
|
** interrupt.
|
|
*/
|
|
static int RupIntr;
|
|
static int RxIntr;
|
|
static int TxIntr;
|
|
void
|
|
RIOServiceHost(p, HostP, From)
|
|
struct rio_info * p;
|
|
struct Host *HostP;
|
|
int From;
|
|
{
|
|
rio_spin_lock (&HostP->HostLock);
|
|
if ( (HostP->Flags & RUN_STATE) != RC_RUNNING ) {
|
|
static int t =0;
|
|
rio_spin_unlock (&HostP->HostLock);
|
|
if ((t++ % 200) == 0)
|
|
rio_dprintk (RIO_DEBUG_INTR, "Interrupt but host not running. flags=%x.\n", (int)HostP->Flags);
|
|
return;
|
|
}
|
|
rio_spin_unlock (&HostP->HostLock);
|
|
|
|
if ( RWORD( HostP->ParmMapP->rup_intr ) ) {
|
|
WWORD( HostP->ParmMapP->rup_intr , 0 );
|
|
p->RIORupCount++;
|
|
RupIntr++;
|
|
rio_dprintk (RIO_DEBUG_INTR, "rio: RUP interrupt on host %d\n", HostP-p->RIOHosts);
|
|
RIOPollHostCommands(p, HostP );
|
|
}
|
|
|
|
if ( RWORD( HostP->ParmMapP->rx_intr ) ) {
|
|
int port;
|
|
|
|
WWORD( HostP->ParmMapP->rx_intr , 0 );
|
|
p->RIORxCount++;
|
|
RxIntr++;
|
|
|
|
rio_dprintk (RIO_DEBUG_INTR, "rio: RX interrupt on host %d\n", HostP-p->RIOHosts);
|
|
/*
|
|
** Loop through every port. If the port is mapped into
|
|
** the system ( i.e. has /dev/ttyXXXX associated ) then it is
|
|
** worth checking. If the port isn't open, grab any packets
|
|
** hanging on its receive queue and stuff them on the free
|
|
** list; check for commands on the way.
|
|
*/
|
|
for ( port=p->RIOFirstPortsBooted;
|
|
port<p->RIOLastPortsBooted+PORTS_PER_RTA; port++ ) {
|
|
struct Port *PortP = p->RIOPortp[port];
|
|
struct tty_struct *ttyP;
|
|
struct PKT *PacketP;
|
|
|
|
/*
|
|
** not mapped in - most of the RIOPortp[] information
|
|
** has not been set up!
|
|
** Optimise: ports come in bundles of eight.
|
|
*/
|
|
if ( !PortP->Mapped ) {
|
|
port += 7;
|
|
continue; /* with the next port */
|
|
}
|
|
|
|
/*
|
|
** If the host board isn't THIS host board, check the next one.
|
|
** optimise: ports come in bundles of eight.
|
|
*/
|
|
if ( PortP->HostP != HostP ) {
|
|
port += 7;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
** Let us see - is the port open? If not, then don't service it.
|
|
*/
|
|
if ( !( PortP->PortState & PORT_ISOPEN ) ) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
** find corresponding tty structure. The process of mapping
|
|
** the ports puts these here.
|
|
*/
|
|
ttyP = PortP->gs.tty;
|
|
|
|
/*
|
|
** Lock the port before we begin working on it.
|
|
*/
|
|
rio_spin_lock(&PortP->portSem);
|
|
|
|
/*
|
|
** Process received data if there is any.
|
|
*/
|
|
if ( can_remove_receive( &PacketP, PortP ) )
|
|
RIOReceive(p, PortP);
|
|
|
|
/*
|
|
** If there is no data left to be read from the port, and
|
|
** it's handshake bit is set, then we must clear the handshake,
|
|
** so that that downstream RTA is re-enabled.
|
|
*/
|
|
if ( !can_remove_receive( &PacketP, PortP ) &&
|
|
( RWORD( PortP->PhbP->handshake )==PHB_HANDSHAKE_SET ) ) {
|
|
/*
|
|
** MAGIC! ( Basically, handshake the RX buffer, so that
|
|
** the RTAs upstream can be re-enabled. )
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INTR, "Set RX handshake bit\n");
|
|
WWORD( PortP->PhbP->handshake,
|
|
PHB_HANDSHAKE_SET|PHB_HANDSHAKE_RESET );
|
|
}
|
|
rio_spin_unlock(&PortP->portSem);
|
|
}
|
|
}
|
|
|
|
if ( RWORD( HostP->ParmMapP->tx_intr ) ) {
|
|
int port;
|
|
|
|
WWORD( HostP->ParmMapP->tx_intr , 0);
|
|
|
|
p->RIOTxCount++;
|
|
TxIntr++;
|
|
rio_dprintk (RIO_DEBUG_INTR, "rio: TX interrupt on host %d\n", HostP-p->RIOHosts);
|
|
|
|
/*
|
|
** Loop through every port.
|
|
** If the port is mapped into the system ( i.e. has /dev/ttyXXXX
|
|
** associated ) then it is worth checking.
|
|
*/
|
|
for ( port=p->RIOFirstPortsBooted;
|
|
port<p->RIOLastPortsBooted+PORTS_PER_RTA; port++ ) {
|
|
struct Port *PortP = p->RIOPortp[port];
|
|
struct tty_struct *ttyP;
|
|
struct PKT *PacketP;
|
|
|
|
/*
|
|
** not mapped in - most of the RIOPortp[] information
|
|
** has not been set up!
|
|
*/
|
|
if ( !PortP->Mapped ) {
|
|
port += 7;
|
|
continue; /* with the next port */
|
|
}
|
|
|
|
/*
|
|
** If the host board isn't running, then its data structures
|
|
** are no use to us - continue quietly.
|
|
*/
|
|
if ( PortP->HostP != HostP ) {
|
|
port += 7;
|
|
continue; /* with the next port */
|
|
}
|
|
|
|
/*
|
|
** Let us see - is the port open? If not, then don't service it.
|
|
*/
|
|
if ( !( PortP->PortState & PORT_ISOPEN ) ) {
|
|
continue;
|
|
}
|
|
|
|
rio_dprintk (RIO_DEBUG_INTR, "rio: Looking into port %d.\n", port);
|
|
/*
|
|
** Lock the port before we begin working on it.
|
|
*/
|
|
rio_spin_lock(&PortP->portSem);
|
|
|
|
/*
|
|
** If we can't add anything to the transmit queue, then
|
|
** we need do none of this processing.
|
|
*/
|
|
if ( !can_add_transmit( &PacketP, PortP ) ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "Can't add to port, so skipping.\n");
|
|
rio_spin_unlock(&PortP->portSem);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
** find corresponding tty structure. The process of mapping
|
|
** the ports puts these here.
|
|
*/
|
|
ttyP = PortP->gs.tty;
|
|
/* If ttyP is NULL, the port is getting closed. Forget about it. */
|
|
if (!ttyP) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "no tty, so skipping.\n");
|
|
rio_spin_unlock(&PortP->portSem);
|
|
continue;
|
|
}
|
|
/*
|
|
** If there is more room available we start up the transmit
|
|
** data process again. This can be direct I/O, if the cookmode
|
|
** is set to COOK_RAW or COOK_MEDIUM, or will be a call to the
|
|
** riotproc( T_OUTPUT ) if we are in COOK_WELL mode, to fetch
|
|
** characters via the line discipline. We must always call
|
|
** the line discipline,
|
|
** so that user input characters can be echoed correctly.
|
|
**
|
|
** ++++ Update +++++
|
|
** With the advent of double buffering, we now see if
|
|
** TxBufferOut-In is non-zero. If so, then we copy a packet
|
|
** to the output place, and set it going. If this empties
|
|
** the buffer, then we must issue a wakeup( ) on OUT.
|
|
** If it frees space in the buffer then we must issue
|
|
** a wakeup( ) on IN.
|
|
**
|
|
** ++++ Extra! Extra! If PortP->WflushFlag is set, then we
|
|
** have to send a WFLUSH command down the PHB, to mark the
|
|
** end point of a WFLUSH. We also need to clear out any
|
|
** data from the double buffer! ( note that WflushFlag is a
|
|
** *count* of the number of WFLUSH commands outstanding! )
|
|
**
|
|
** ++++ And there's more!
|
|
** If an RTA is powered off, then on again, and rebooted,
|
|
** whilst it has ports open, then we need to re-open the ports.
|
|
** ( reasonable enough ). We can't do this when we spot the
|
|
** re-boot, in interrupt time, because the queue is probably
|
|
** full. So, when we come in here, we need to test if any
|
|
** ports are in this condition, and re-open the port before
|
|
** we try to send any more data to it. Now, the re-booted
|
|
** RTA will be discarding packets from the PHB until it
|
|
** receives this open packet, but don't worry tooo much
|
|
** about that. The one thing that is interesting is the
|
|
** combination of this effect and the WFLUSH effect!
|
|
*/
|
|
/* For now don't handle RTA reboots. -- REW.
|
|
Reenabled. Otherwise RTA reboots didn't work. Duh. -- REW */
|
|
if ( PortP->MagicFlags ) {
|
|
#if 1
|
|
if ( PortP->MagicFlags & MAGIC_REBOOT ) {
|
|
/*
|
|
** well, the RTA has been rebooted, and there is room
|
|
** on its queue to add the open packet that is required.
|
|
**
|
|
** The messy part of this line is trying to decide if
|
|
** we need to call the Param function as a tty or as
|
|
** a modem.
|
|
** DONT USE CLOCAL AS A TEST FOR THIS!
|
|
**
|
|
** If we can't param the port, then move on to the
|
|
** next port.
|
|
*/
|
|
PortP->InUse = NOT_INUSE;
|
|
|
|
rio_spin_unlock(&PortP->portSem);
|
|
if ( RIOParam(PortP, OPEN, ((PortP->Cor2Copy &
|
|
(COR2_RTSFLOW|COR2_CTSFLOW ) )==
|
|
(COR2_RTSFLOW|COR2_CTSFLOW ) ) ?
|
|
TRUE : FALSE, DONT_SLEEP ) == RIO_FAIL ) {
|
|
continue; /* with next port */
|
|
}
|
|
rio_spin_lock(&PortP->portSem);
|
|
PortP->MagicFlags &= ~MAGIC_REBOOT;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** As mentioned above, this is a tacky hack to cope
|
|
** with WFLUSH
|
|
*/
|
|
if ( PortP->WflushFlag ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "Want to WFLUSH mark this port\n");
|
|
|
|
if ( PortP->InUse )
|
|
rio_dprintk (RIO_DEBUG_INTR, "FAILS - PORT IS IN USE\n");
|
|
}
|
|
|
|
while ( PortP->WflushFlag &&
|
|
can_add_transmit( &PacketP, PortP ) &&
|
|
( PortP->InUse == NOT_INUSE ) ) {
|
|
int p;
|
|
struct PktCmd *PktCmdP;
|
|
|
|
rio_dprintk (RIO_DEBUG_INTR, "Add WFLUSH marker to data queue\n");
|
|
/*
|
|
** make it look just like a WFLUSH command
|
|
*/
|
|
PktCmdP = ( struct PktCmd * )&PacketP->data[0];
|
|
|
|
WBYTE( PktCmdP->Command , WFLUSH );
|
|
|
|
p = PortP->HostPort % ( ushort )PORTS_PER_RTA;
|
|
|
|
/*
|
|
** If second block of ports for 16 port RTA, add 8
|
|
** to index 8-15.
|
|
*/
|
|
if ( PortP->SecondBlock )
|
|
p += PORTS_PER_RTA;
|
|
|
|
WBYTE( PktCmdP->PhbNum, p );
|
|
|
|
/*
|
|
** to make debuggery easier
|
|
*/
|
|
WBYTE( PacketP->data[ 2], 'W' );
|
|
WBYTE( PacketP->data[ 3], 'F' );
|
|
WBYTE( PacketP->data[ 4], 'L' );
|
|
WBYTE( PacketP->data[ 5], 'U' );
|
|
WBYTE( PacketP->data[ 6], 'S' );
|
|
WBYTE( PacketP->data[ 7], 'H' );
|
|
WBYTE( PacketP->data[ 8], ' ' );
|
|
WBYTE( PacketP->data[ 9], '0'+PortP->WflushFlag );
|
|
WBYTE( PacketP->data[10], ' ' );
|
|
WBYTE( PacketP->data[11], ' ' );
|
|
WBYTE( PacketP->data[12], '\0' );
|
|
|
|
/*
|
|
** its two bytes long!
|
|
*/
|
|
WBYTE( PacketP->len , PKT_CMD_BIT | 2 );
|
|
|
|
/*
|
|
** queue it!
|
|
*/
|
|
if ( !( PortP->State & RIO_DELETED ) ) {
|
|
add_transmit( PortP );
|
|
/*
|
|
** Count chars tx'd for port statistics reporting
|
|
*/
|
|
if ( PortP->statsGather )
|
|
PortP->txchars += 2;
|
|
}
|
|
|
|
if ( --( PortP->WflushFlag ) == 0 ) {
|
|
PortP->MagicFlags &= ~MAGIC_FLUSH;
|
|
}
|
|
|
|
rio_dprintk (RIO_DEBUG_INTR, "Wflush count now stands at %d\n",
|
|
PortP->WflushFlag);
|
|
}
|
|
if ( PortP->MagicFlags & MORE_OUTPUT_EYGOR ) {
|
|
if ( PortP->MagicFlags & MAGIC_FLUSH ) {
|
|
PortP->MagicFlags |= MORE_OUTPUT_EYGOR;
|
|
}
|
|
else {
|
|
if ( !can_add_transmit( &PacketP, PortP ) ) {
|
|
rio_spin_unlock(&PortP->portSem);
|
|
continue;
|
|
}
|
|
rio_spin_unlock(&PortP->portSem);
|
|
RIOTxEnable((char *)PortP);
|
|
rio_spin_lock(&PortP->portSem);
|
|
PortP->MagicFlags &= ~MORE_OUTPUT_EYGOR;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** If we can't add anything to the transmit queue, then
|
|
** we need do none of the remaining processing.
|
|
*/
|
|
if (!can_add_transmit( &PacketP, PortP ) ) {
|
|
rio_spin_unlock(&PortP->portSem);
|
|
continue;
|
|
}
|
|
|
|
rio_spin_unlock(&PortP->portSem);
|
|
RIOTxEnable((char *)PortP);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Routine for handling received data for clist drivers.
|
|
** NB: Called with the tty locked. The spl from the lockb( ) is passed.
|
|
** we return the ttySpl level that we re-locked at.
|
|
*/
|
|
static void
|
|
RIOReceive(p, PortP)
|
|
struct rio_info * p;
|
|
struct Port * PortP;
|
|
{
|
|
struct tty_struct *TtyP;
|
|
register ushort transCount;
|
|
struct PKT *PacketP;
|
|
register uint DataCnt;
|
|
uchar * ptr;
|
|
int copied =0;
|
|
|
|
static int intCount, RxIntCnt;
|
|
|
|
/*
|
|
** The receive data process is to remove packets from the
|
|
** PHB until there aren't any more or the current cblock
|
|
** is full. When this occurs, there will be some left over
|
|
** data in the packet, that we must do something with.
|
|
** As we haven't unhooked the packet from the read list
|
|
** yet, we can just leave the packet there, having first
|
|
** made a note of how far we got. This means that we need
|
|
** a pointer per port saying where we start taking the
|
|
** data from - this will normally be zero, but when we
|
|
** run out of space it will be set to the offset of the
|
|
** next byte to copy from the packet data area. The packet
|
|
** length field is decremented by the number of bytes that
|
|
** we succesfully removed from the packet. When this reaches
|
|
** zero, we reset the offset pointer to be zero, and free
|
|
** the packet from the front of the queue.
|
|
*/
|
|
|
|
intCount++;
|
|
|
|
TtyP = PortP->gs.tty;
|
|
if (!TtyP) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "RIOReceive: tty is null. \n");
|
|
return;
|
|
}
|
|
|
|
if (PortP->State & RIO_THROTTLE_RX) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "RIOReceive: Throttled. Can't handle more input.\n");
|
|
return;
|
|
}
|
|
|
|
if ( PortP->State & RIO_DELETED )
|
|
{
|
|
while ( can_remove_receive( &PacketP, PortP ) )
|
|
{
|
|
remove_receive( PortP );
|
|
put_free_end( PortP->HostP, PacketP );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
** loop, just so long as:
|
|
** i ) there's some data ( i.e. can_remove_receive )
|
|
** ii ) we haven't been blocked
|
|
** iii ) there's somewhere to put the data
|
|
** iv ) we haven't outstayed our welcome
|
|
*/
|
|
transCount = 1;
|
|
while ( can_remove_receive(&PacketP, PortP)
|
|
&& transCount)
|
|
{
|
|
#ifdef STATS
|
|
PortP->Stat.RxIntCnt++;
|
|
#endif /* STATS */
|
|
RxIntCnt++;
|
|
|
|
/*
|
|
** check that it is not a command!
|
|
*/
|
|
if ( PacketP->len & PKT_CMD_BIT ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "RIO: unexpected command packet received on PHB\n");
|
|
/* rio_dprint(RIO_DEBUG_INTR, (" sysport = %d\n", p->RIOPortp->PortNum)); */
|
|
rio_dprintk (RIO_DEBUG_INTR, " dest_unit = %d\n", PacketP->dest_unit);
|
|
rio_dprintk (RIO_DEBUG_INTR, " dest_port = %d\n", PacketP->dest_port);
|
|
rio_dprintk (RIO_DEBUG_INTR, " src_unit = %d\n", PacketP->src_unit);
|
|
rio_dprintk (RIO_DEBUG_INTR, " src_port = %d\n", PacketP->src_port);
|
|
rio_dprintk (RIO_DEBUG_INTR, " len = %d\n", PacketP->len);
|
|
rio_dprintk (RIO_DEBUG_INTR, " control = %d\n", PacketP->control);
|
|
rio_dprintk (RIO_DEBUG_INTR, " csum = %d\n", PacketP->csum);
|
|
rio_dprintk (RIO_DEBUG_INTR, " data bytes: ");
|
|
for ( DataCnt=0; DataCnt<PKT_MAX_DATA_LEN; DataCnt++ )
|
|
rio_dprintk (RIO_DEBUG_INTR, "%d\n", PacketP->data[DataCnt]);
|
|
remove_receive( PortP );
|
|
put_free_end( PortP->HostP, PacketP );
|
|
continue; /* with next packet */
|
|
}
|
|
|
|
/*
|
|
** How many characters can we move 'upstream' ?
|
|
**
|
|
** Determine the minimum of the amount of data
|
|
** available and the amount of space in which to
|
|
** put it.
|
|
**
|
|
** 1. Get the packet length by masking 'len'
|
|
** for only the length bits.
|
|
** 2. Available space is [buffer size] - [space used]
|
|
**
|
|
** Transfer count is the minimum of packet length
|
|
** and available space.
|
|
*/
|
|
|
|
transCount = min_t(unsigned int, PacketP->len & PKT_LEN_MASK,
|
|
TTY_FLIPBUF_SIZE - TtyP->flip.count);
|
|
rio_dprintk (RIO_DEBUG_REC, "port %d: Copy %d bytes\n",
|
|
PortP->PortNum, transCount);
|
|
/*
|
|
** To use the following 'kkprintfs' for debugging - change the '#undef'
|
|
** to '#define', (this is the only place ___DEBUG_IT___ occurs in the
|
|
** driver).
|
|
*/
|
|
#undef ___DEBUG_IT___
|
|
#ifdef ___DEBUG_IT___
|
|
kkprintf("I:%d R:%d P:%d Q:%d C:%d F:%x ",
|
|
intCount,
|
|
RxIntCnt,
|
|
PortP->PortNum,
|
|
TtyP->rxqueue.count,
|
|
transCount,
|
|
TtyP->flags );
|
|
#endif
|
|
ptr = (uchar *) PacketP->data + PortP->RxDataStart;
|
|
|
|
rio_memcpy_fromio (TtyP->flip.char_buf_ptr, ptr, transCount);
|
|
memset(TtyP->flip.flag_buf_ptr, TTY_NORMAL, transCount);
|
|
|
|
#ifdef STATS
|
|
/*
|
|
** keep a count for statistical purposes
|
|
*/
|
|
PortP->Stat.RxCharCnt += transCount;
|
|
#endif
|
|
PortP->RxDataStart += transCount;
|
|
PacketP->len -= transCount;
|
|
copied += transCount;
|
|
TtyP->flip.count += transCount;
|
|
TtyP->flip.char_buf_ptr += transCount;
|
|
TtyP->flip.flag_buf_ptr += transCount;
|
|
|
|
|
|
#ifdef ___DEBUG_IT___
|
|
kkprintf("T:%d L:%d\n", DataCnt, PacketP->len );
|
|
#endif
|
|
|
|
if ( PacketP->len == 0 )
|
|
{
|
|
/*
|
|
** If we have emptied the packet, then we can
|
|
** free it, and reset the start pointer for
|
|
** the next packet.
|
|
*/
|
|
remove_receive( PortP );
|
|
put_free_end( PortP->HostP, PacketP );
|
|
PortP->RxDataStart = 0;
|
|
#ifdef STATS
|
|
/*
|
|
** more lies ( oops, I mean statistics )
|
|
*/
|
|
PortP->Stat.RxPktCnt++;
|
|
#endif /* STATS */
|
|
}
|
|
}
|
|
}
|
|
if (copied) {
|
|
rio_dprintk (RIO_DEBUG_REC, "port %d: pushing tty flip buffer: %d total bytes copied.\n", PortP->PortNum, copied);
|
|
tty_flip_buffer_push (TtyP);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef FUTURE_RELEASE
|
|
/*
|
|
** The proc routine called by the line discipline to do the work for it.
|
|
** The proc routine works hand in hand with the interrupt routine.
|
|
*/
|
|
int
|
|
riotproc(p, tp, cmd, port)
|
|
struct rio_info * p;
|
|
register struct ttystatics *tp;
|
|
int cmd;
|
|
int port;
|
|
{
|
|
register struct Port *PortP;
|
|
int SysPort;
|
|
struct PKT *PacketP;
|
|
|
|
SysPort = port; /* Believe me, it works. */
|
|
|
|
if ( SysPort < 0 || SysPort >= RIO_PORTS ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "Illegal port %d derived from TTY in riotproc()\n",SysPort);
|
|
return 0;
|
|
}
|
|
PortP = p->RIOPortp[SysPort];
|
|
|
|
if ((uint)PortP->PhbP < (uint)PortP->Caddr ||
|
|
(uint)PortP->PhbP >= (uint)PortP->Caddr+SIXTY_FOUR_K ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "RIO: NULL or BAD PhbP on sys port %d in proc routine\n",
|
|
SysPort);
|
|
rio_dprintk (RIO_DEBUG_INTR, " PortP = 0x%x\n",PortP);
|
|
rio_dprintk (RIO_DEBUG_INTR, " PortP->PhbP = 0x%x\n",PortP->PhbP);
|
|
rio_dprintk (RIO_DEBUG_INTR, " PortP->Caddr = 0x%x\n",PortP->PhbP);
|
|
rio_dprintk (RIO_DEBUG_INTR, " PortP->HostPort = 0x%x\n",PortP->HostPort);
|
|
return 0;
|
|
}
|
|
|
|
switch(cmd) {
|
|
case T_WFLUSH:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_WFLUSH\n");
|
|
/*
|
|
** Because of the spooky way the RIO works, we don't need
|
|
** to issue a flush command on any of the SET*F commands,
|
|
** as that causes trouble with getty and login, which issue
|
|
** these commands to incur a READ flush, and rely on the fact
|
|
** that the line discipline does a wait for drain for them.
|
|
** As the rio doesn't wait for drain, the write flush would
|
|
** destroy the Password: prompt. This isn't very friendly, so
|
|
** here we only issue a WFLUSH command if we are in the interrupt
|
|
** routine, or we aren't executing a SET*F command.
|
|
*/
|
|
if ( PortP->HostP->InIntr || !PortP->FlushCmdBodge ) {
|
|
/*
|
|
** form a wflush packet - 1 byte long, no data
|
|
*/
|
|
if ( PortP->State & RIO_DELETED ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "WFLUSH on deleted RTA\n");
|
|
}
|
|
else {
|
|
if ( RIOPreemptiveCmd(p, PortP, WFLUSH ) == RIO_FAIL ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_WFLUSH Command failed\n");
|
|
}
|
|
else
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_WFLUSH Command\n");
|
|
}
|
|
/*
|
|
** WFLUSH operation - flush the data!
|
|
*/
|
|
PortP->TxBufferIn = PortP->TxBufferOut = 0;
|
|
}
|
|
else {
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_WFLUSH Command ignored\n");
|
|
}
|
|
/*
|
|
** sort out the line discipline
|
|
*/
|
|
if (PortP->CookMode == COOK_WELL)
|
|
goto start;
|
|
break;
|
|
|
|
case T_RESUME:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_RESUME\n");
|
|
/*
|
|
** send pre-emptive resume packet
|
|
*/
|
|
if ( PortP->State & RIO_DELETED ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "RESUME on deleted RTA\n");
|
|
}
|
|
else {
|
|
if ( RIOPreemptiveCmd(p, PortP, RESUME ) == RIO_FAIL ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_RESUME Command failed\n");
|
|
}
|
|
}
|
|
/*
|
|
** and re-start the sender software!
|
|
*/
|
|
if (PortP->CookMode == COOK_WELL)
|
|
goto start;
|
|
break;
|
|
|
|
case T_TIME:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_TIME\n");
|
|
/*
|
|
** T_TIME is called when xDLY is set in oflags and
|
|
** the line discipline timeout has expired. It's
|
|
** function in life is to clear the TIMEOUT flag
|
|
** and to re-start output to the port.
|
|
*/
|
|
/*
|
|
** Fall through and re-start output
|
|
*/
|
|
case T_OUTPUT:
|
|
start:
|
|
if ( PortP->MagicFlags & MAGIC_FLUSH ) {
|
|
PortP->MagicFlags |= MORE_OUTPUT_EYGOR;
|
|
return 0;
|
|
}
|
|
RIOTxEnable((char *)PortP);
|
|
PortP->MagicFlags &= ~MORE_OUTPUT_EYGOR;
|
|
/*rio_dprint(RIO_DEBUG_INTR, PortP,DBG_PROC,"T_OUTPUT finished\n");*/
|
|
break;
|
|
|
|
case T_SUSPEND:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_SUSPEND\n");
|
|
/*
|
|
** send a suspend pre-emptive packet.
|
|
*/
|
|
if ( PortP->State & RIO_DELETED ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "SUSPEND deleted RTA\n");
|
|
}
|
|
else {
|
|
if ( RIOPreemptiveCmd(p, PortP, SUSPEND ) == RIO_FAIL ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_SUSPEND Command failed\n");
|
|
}
|
|
}
|
|
/*
|
|
** done!
|
|
*/
|
|
break;
|
|
|
|
case T_BLOCK:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_BLOCK\n");
|
|
break;
|
|
|
|
case T_RFLUSH:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_RFLUSH\n");
|
|
if ( PortP->State & RIO_DELETED ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "RFLUSH on deleted RTA\n");
|
|
PortP->RxDataStart = 0;
|
|
}
|
|
else {
|
|
if ( RIOPreemptiveCmd( p, PortP, RFLUSH ) == RIO_FAIL ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_RFLUSH Command failed\n");
|
|
return 0;
|
|
}
|
|
PortP->RxDataStart = 0;
|
|
while ( can_remove_receive(&PacketP, PortP) ) {
|
|
remove_receive(PortP);
|
|
ShowPacket(DBG_PROC, PacketP );
|
|
put_free_end(PortP->HostP, PacketP );
|
|
}
|
|
if ( PortP->PhbP->handshake == PHB_HANDSHAKE_SET ) {
|
|
/*
|
|
** MAGIC!
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INTR, "Set receive handshake bit\n");
|
|
PortP->PhbP->handshake |= PHB_HANDSHAKE_RESET;
|
|
}
|
|
}
|
|
break;
|
|
/* FALLTHROUGH */
|
|
case T_UNBLOCK:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_UNBLOCK\n");
|
|
/*
|
|
** If there is any data to receive set a timeout to service it.
|
|
*/
|
|
RIOReceive(p, PortP);
|
|
break;
|
|
|
|
case T_BREAK:
|
|
rio_dprintk (RIO_DEBUG_INTR, "T_BREAK\n");
|
|
/*
|
|
** Send a break command. For Sys V
|
|
** this is a timed break, so we
|
|
** send a SBREAK[time] packet
|
|
*/
|
|
/*
|
|
** Build a BREAK command
|
|
*/
|
|
if ( PortP->State & RIO_DELETED ) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "BREAK on deleted RTA\n");
|
|
}
|
|
else {
|
|
if (RIOShortCommand(PortP,SBREAK,2,
|
|
p->RIOConf.BreakInterval)==RIO_FAIL) {
|
|
rio_dprintk (RIO_DEBUG_INTR, "SBREAK RIOShortCommand failed\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
** done!
|
|
*/
|
|
break;
|
|
|
|
case T_INPUT:
|
|
rio_dprintk (RIO_DEBUG_INTR, "Proc T_INPUT called - I don't know what to do!\n");
|
|
break;
|
|
case T_PARM:
|
|
rio_dprintk (RIO_DEBUG_INTR, "Proc T_PARM called - I don't know what to do!\n");
|
|
break;
|
|
|
|
case T_SWTCH:
|
|
rio_dprintk (RIO_DEBUG_INTR, "Proc T_SWTCH called - I don't know what to do!\n");
|
|
break;
|
|
|
|
default:
|
|
rio_dprintk (RIO_DEBUG_INTR, "Proc UNKNOWN command %d\n",cmd);
|
|
}
|
|
/*
|
|
** T_OUTPUT returns without passing through this point!
|
|
*/
|
|
/*rio_dprint(RIO_DEBUG_INTR, PortP,DBG_PROC,"riotproc done\n");*/
|
|
return(0);
|
|
}
|
|
#endif
|
|
|