You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/fs/pstore/platform.c

896 lines
20 KiB

/*
* Persistent Storage - platform driver interface parts.
*
* Copyright (C) 2007-2008 Google, Inc.
* Copyright (C) 2010 Intel Corporation <tony.luck@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define pr_fmt(fmt) "pstore: " fmt
#include <linux/atomic.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kmsg_dump.h>
#include <linux/console.h>
#include <linux/module.h>
#include <linux/pstore.h>
#ifdef CONFIG_PSTORE_ZLIB_COMPRESS
#include <linux/zlib.h>
#endif
#ifdef CONFIG_PSTORE_LZO_COMPRESS
#include <linux/lzo.h>
#endif
#ifdef CONFIG_PSTORE_LZ4_COMPRESS
#include <linux/lz4.h>
#endif
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <linux/jiffies.h>
#include <linux/workqueue.h>
#include "internal.h"
/*
* We defer making "oops" entries appear in pstore - see
* whether the system is actually still running well enough
* to let someone see the entry
*/
static int pstore_update_ms = -1;
module_param_named(update_ms, pstore_update_ms, int, 0600);
MODULE_PARM_DESC(update_ms, "milliseconds before pstore updates its content "
"(default is -1, which means runtime updates are disabled; "
"enabling this option is not safe, it may lead to further "
"corruption on Oopses)");
static int pstore_new_entry;
static void pstore_timefunc(unsigned long);
static DEFINE_TIMER(pstore_timer, pstore_timefunc, 0, 0);
static void pstore_dowork(struct work_struct *);
static DECLARE_WORK(pstore_work, pstore_dowork);
/*
* pstore_lock just protects "psinfo" during
* calls to pstore_register()
*/
static DEFINE_SPINLOCK(pstore_lock);
struct pstore_info *psinfo;
static char *backend;
/* Compression parameters */
#ifdef CONFIG_PSTORE_ZLIB_COMPRESS
#define COMPR_LEVEL 6
#define WINDOW_BITS 12
#define MEM_LEVEL 4
static struct z_stream_s stream;
#else
static unsigned char *workspace;
#endif
struct pstore_zbackend {
int (*compress)(const void *in, void *out, size_t inlen, size_t outlen);
int (*decompress)(void *in, void *out, size_t inlen, size_t outlen);
void (*allocate)(void);
void (*free)(void);
const char *name;
};
static char *big_oops_buf;
static size_t big_oops_buf_sz;
/* How much of the console log to snapshot */
unsigned long kmsg_bytes = PSTORE_DEFAULT_KMSG_BYTES;
void pstore_set_kmsg_bytes(int bytes)
{
kmsg_bytes = bytes;
}
/* Tag each group of saved records with a sequence number */
static int oopscount;
static const char *get_reason_str(enum kmsg_dump_reason reason)
{
switch (reason) {
case KMSG_DUMP_PANIC:
return "Panic";
case KMSG_DUMP_OOPS:
return "Oops";
case KMSG_DUMP_EMERG:
return "Emergency";
case KMSG_DUMP_SHUTDOWN:
return "Shutdown";
default:
return "Unknown";
}
}
/*
* Should pstore_dump() wait for a concurrent pstore_dump()? If
* not, the current pstore_dump() will report a failure to dump
* and return.
*/
static bool pstore_cannot_wait(enum kmsg_dump_reason reason)
{
/* In NMI path, pstore shouldn't block regardless of reason. */
if (in_nmi())
return true;
switch (reason) {
/* In panic case, other cpus are stopped by smp_send_stop(). */
case KMSG_DUMP_PANIC:
/* Emergency restart shouldn't be blocked. */
case KMSG_DUMP_EMERG:
return true;
default:
return false;
}
}
#ifdef CONFIG_PSTORE_ZLIB_COMPRESS
/* Derived from logfs_compress() */
static int compress_zlib(const void *in, void *out, size_t inlen, size_t outlen)
{
int err, ret;
ret = -EIO;
err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
MEM_LEVEL, Z_DEFAULT_STRATEGY);
if (err != Z_OK)
goto error;
stream.next_in = in;
stream.avail_in = inlen;
stream.total_in = 0;
stream.next_out = out;
stream.avail_out = outlen;
stream.total_out = 0;
err = zlib_deflate(&stream, Z_FINISH);
if (err != Z_STREAM_END)
goto error;
err = zlib_deflateEnd(&stream);
if (err != Z_OK)
goto error;
if (stream.total_out >= stream.total_in)
goto error;
ret = stream.total_out;
error:
return ret;
}
/* Derived from logfs_uncompress */
static int decompress_zlib(void *in, void *out, size_t inlen, size_t outlen)
{
int err, ret;
ret = -EIO;
err = zlib_inflateInit2(&stream, WINDOW_BITS);
if (err != Z_OK)
goto error;
stream.next_in = in;
stream.avail_in = inlen;
stream.total_in = 0;
stream.next_out = out;
stream.avail_out = outlen;
stream.total_out = 0;
err = zlib_inflate(&stream, Z_FINISH);
if (err != Z_STREAM_END)
goto error;
err = zlib_inflateEnd(&stream);
if (err != Z_OK)
goto error;
ret = stream.total_out;
error:
return ret;
}
static void allocate_zlib(void)
{
size_t size;
size_t cmpr;
switch (psinfo->bufsize) {
/* buffer range for efivars */
case 1000 ... 2000:
cmpr = 56;
break;
case 2001 ... 3000:
cmpr = 54;
break;
case 3001 ... 3999:
cmpr = 52;
break;
/* buffer range for nvram, erst */
case 4000 ... 10000:
cmpr = 45;
break;
default:
cmpr = 60;
break;
}
big_oops_buf_sz = (psinfo->bufsize * 100) / cmpr;
big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
if (big_oops_buf) {
size = max(zlib_deflate_workspacesize(WINDOW_BITS, MEM_LEVEL),
zlib_inflate_workspacesize());
stream.workspace = kmalloc(size, GFP_KERNEL);
if (!stream.workspace) {
pr_err("No memory for compression workspace; skipping compression\n");
kfree(big_oops_buf);
big_oops_buf = NULL;
}
} else {
pr_err("No memory for uncompressed data; skipping compression\n");
stream.workspace = NULL;
}
}
static void free_zlib(void)
{
kfree(stream.workspace);
stream.workspace = NULL;
kfree(big_oops_buf);
big_oops_buf = NULL;
big_oops_buf_sz = 0;
}
static const struct pstore_zbackend backend_zlib = {
.compress = compress_zlib,
.decompress = decompress_zlib,
.allocate = allocate_zlib,
.free = free_zlib,
.name = "zlib",
};
#endif
#ifdef CONFIG_PSTORE_LZO_COMPRESS
static int compress_lzo(const void *in, void *out, size_t inlen, size_t outlen)
{
int ret;
ret = lzo1x_1_compress(in, inlen, out, &outlen, workspace);
if (ret != LZO_E_OK) {
pr_err("lzo_compress error, ret = %d!\n", ret);
return -EIO;
}
return outlen;
}
static int decompress_lzo(void *in, void *out, size_t inlen, size_t outlen)
{
int ret;
ret = lzo1x_decompress_safe(in, inlen, out, &outlen);
if (ret != LZO_E_OK) {
pr_err("lzo_decompress error, ret = %d!\n", ret);
return -EIO;
}
return outlen;
}
static void allocate_lzo(void)
{
big_oops_buf_sz = lzo1x_worst_compress(psinfo->bufsize);
big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
if (big_oops_buf) {
workspace = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
if (!workspace) {
pr_err("No memory for compression workspace; skipping compression\n");
kfree(big_oops_buf);
big_oops_buf = NULL;
}
} else {
pr_err("No memory for uncompressed data; skipping compression\n");
workspace = NULL;
}
}
static void free_lzo(void)
{
kfree(workspace);
kfree(big_oops_buf);
big_oops_buf = NULL;
big_oops_buf_sz = 0;
}
static const struct pstore_zbackend backend_lzo = {
.compress = compress_lzo,
.decompress = decompress_lzo,
.allocate = allocate_lzo,
.free = free_lzo,
.name = "lzo",
};
#endif
#ifdef CONFIG_PSTORE_LZ4_COMPRESS
static int compress_lz4(const void *in, void *out, size_t inlen, size_t outlen)
{
int ret;
ret = LZ4_compress_default(in, out, inlen, outlen, workspace);
if (!ret) {
pr_err("LZ4_compress_default error; compression failed!\n");
return -EIO;
}
return ret;
}
static int decompress_lz4(void *in, void *out, size_t inlen, size_t outlen)
{
int ret;
ret = LZ4_decompress_safe(in, out, inlen, outlen);
if (ret < 0) {
/*
* LZ4_decompress_safe will return an error code
* (< 0) if decompression failed
*/
pr_err("LZ4_decompress_safe error, ret = %d!\n", ret);
return -EIO;
}
return ret;
}
static void allocate_lz4(void)
{
big_oops_buf_sz = LZ4_compressBound(psinfo->bufsize);
big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
if (big_oops_buf) {
workspace = kmalloc(LZ4_MEM_COMPRESS, GFP_KERNEL);
if (!workspace) {
pr_err("No memory for compression workspace; skipping compression\n");
kfree(big_oops_buf);
big_oops_buf = NULL;
}
} else {
pr_err("No memory for uncompressed data; skipping compression\n");
workspace = NULL;
}
}
static void free_lz4(void)
{
kfree(workspace);
kfree(big_oops_buf);
big_oops_buf = NULL;
big_oops_buf_sz = 0;
}
static const struct pstore_zbackend backend_lz4 = {
.compress = compress_lz4,
.decompress = decompress_lz4,
.allocate = allocate_lz4,
.free = free_lz4,
.name = "lz4",
};
#endif
static const struct pstore_zbackend *zbackend =
#if defined(CONFIG_PSTORE_ZLIB_COMPRESS)
&backend_zlib;
#elif defined(CONFIG_PSTORE_LZO_COMPRESS)
&backend_lzo;
#elif defined(CONFIG_PSTORE_LZ4_COMPRESS)
&backend_lz4;
#else
NULL;
#endif
static int pstore_compress(const void *in, void *out,
size_t inlen, size_t outlen)
{
if (zbackend)
return zbackend->compress(in, out, inlen, outlen);
else
return -EIO;
}
static int pstore_decompress(void *in, void *out, size_t inlen, size_t outlen)
{
if (zbackend)
return zbackend->decompress(in, out, inlen, outlen);
else
return -EIO;
}
static void allocate_buf_for_compression(void)
{
if (zbackend) {
pr_info("using %s compression\n", zbackend->name);
zbackend->allocate();
} else {
pr_err("allocate compression buffer error!\n");
}
}
static void free_buf_for_compression(void)
{
if (zbackend)
zbackend->free();
else
pr_err("free compression buffer error!\n");
}
/*
* Called when compression fails, since the printk buffer
* would be fetched for compression calling it again when
* compression fails would have moved the iterator of
* printk buffer which results in fetching old contents.
* Copy the recent messages from big_oops_buf to psinfo->buf
*/
static size_t copy_kmsg_to_buffer(int hsize, size_t len)
{
size_t total_len;
size_t diff;
total_len = hsize + len;
if (total_len > psinfo->bufsize) {
diff = total_len - psinfo->bufsize + hsize;
memcpy(psinfo->buf, big_oops_buf, hsize);
memcpy(psinfo->buf + hsize, big_oops_buf + diff,
psinfo->bufsize - hsize);
total_len = psinfo->bufsize;
} else
memcpy(psinfo->buf, big_oops_buf, total_len);
return total_len;
}
void pstore_record_init(struct pstore_record *record,
struct pstore_info *psinfo)
{
memset(record, 0, sizeof(*record));
record->psi = psinfo;
/* Report zeroed timestamp if called before timekeeping has resumed. */
if (__getnstimeofday(&record->time)) {
record->time.tv_sec = 0;
record->time.tv_nsec = 0;
}
}
/*
* callback from kmsg_dump. (s2,l2) has the most recently
* written bytes, older bytes are in (s1,l1). Save as much
* as we can from the end of the buffer.
*/
static void pstore_dump(struct kmsg_dumper *dumper,
enum kmsg_dump_reason reason)
{
unsigned long total = 0;
const char *why;
unsigned int part = 1;
int ret;
why = get_reason_str(reason);
if (down_trylock(&psinfo->buf_lock)) {
/* Failed to acquire lock: give up if we cannot wait. */
if (pstore_cannot_wait(reason)) {
pr_err("dump skipped in %s path: may corrupt error record\n",
in_nmi() ? "NMI" : why);
return;
}
if (down_interruptible(&psinfo->buf_lock)) {
pr_err("could not grab semaphore?!\n");
return;
}
}
oopscount++;
while (total < kmsg_bytes) {
char *dst;
size_t dst_size;
int header_size;
int zipped_len = -1;
size_t dump_size;
struct pstore_record record;
pstore_record_init(&record, psinfo);
record.type = PSTORE_TYPE_DMESG;
record.count = oopscount;
record.reason = reason;
record.part = part;
record.buf = psinfo->buf;
if (big_oops_buf) {
dst = big_oops_buf;
dst_size = big_oops_buf_sz;
} else {
dst = psinfo->buf;
dst_size = psinfo->bufsize;
}
/* Write dump header. */
header_size = snprintf(dst, dst_size, "%s#%d Part%u\n", why,
oopscount, part);
dst_size -= header_size;
/* Write dump contents. */
if (!kmsg_dump_get_buffer(dumper, true, dst + header_size,
dst_size, &dump_size))
break;
if (big_oops_buf) {
zipped_len = pstore_compress(dst, psinfo->buf,
header_size + dump_size,
psinfo->bufsize);
if (zipped_len > 0) {
record.compressed = true;
record.size = zipped_len;
} else {
record.size = copy_kmsg_to_buffer(header_size,
dump_size);
}
} else {
record.size = header_size + dump_size;
}
ret = psinfo->write(&record);
if (ret == 0 && reason == KMSG_DUMP_OOPS && pstore_is_mounted())
pstore_new_entry = 1;
total += record.size;
part++;
}
up(&psinfo->buf_lock);
}
static struct kmsg_dumper pstore_dumper = {
.dump = pstore_dump,
};
/*
* Register with kmsg_dump to save last part of console log on panic.
*/
static void pstore_register_kmsg(void)
{
kmsg_dump_register(&pstore_dumper);
}
static void pstore_unregister_kmsg(void)
{
kmsg_dump_unregister(&pstore_dumper);
}
#ifdef CONFIG_PSTORE_CONSOLE
static void pstore_console_write(struct console *con, const char *s, unsigned c)
{
struct pstore_record record;
if (!c)
return;
pstore_record_init(&record, psinfo);
record.type = PSTORE_TYPE_CONSOLE;
record.buf = (char *)s;
record.size = c;
psinfo->write(&record);
}
static struct console pstore_console = {
.name = "pstore",
.write = pstore_console_write,
.flags = CON_PRINTBUFFER | CON_ENABLED | CON_ANYTIME,
.index = -1,
};
static void pstore_register_console(void)
{
register_console(&pstore_console);
}
static void pstore_unregister_console(void)
{
unregister_console(&pstore_console);
}
#else
static void pstore_register_console(void) {}
static void pstore_unregister_console(void) {}
#endif
static int pstore_write_user_compat(struct pstore_record *record,
const char __user *buf)
{
int ret = 0;
if (record->buf)
return -EINVAL;
record->buf = memdup_user(buf, record->size);
if (unlikely(IS_ERR(record->buf))) {
ret = PTR_ERR(record->buf);
goto out;
}
ret = record->psi->write(record);
kfree(record->buf);
out:
record->buf = NULL;
return unlikely(ret < 0) ? ret : record->size;
}
/*
* platform specific persistent storage driver registers with
* us here. If pstore is already mounted, call the platform
* read function right away to populate the file system. If not
* then the pstore mount code will call us later to fill out
* the file system.
*/
int pstore_register(struct pstore_info *psi)
{
struct module *owner = psi->owner;
if (backend && strcmp(backend, psi->name)) {
pr_warn("ignoring unexpected backend '%s'\n", psi->name);
return -EPERM;
}
/* Sanity check flags. */
if (!psi->flags) {
pr_warn("backend '%s' must support at least one frontend\n",
psi->name);
return -EINVAL;
}
/* Check for required functions. */
if (!psi->read || !psi->write) {
pr_warn("backend '%s' must implement read() and write()\n",
psi->name);
return -EINVAL;
}
spin_lock(&pstore_lock);
if (psinfo) {
pr_warn("backend '%s' already loaded: ignoring '%s'\n",
psinfo->name, psi->name);
spin_unlock(&pstore_lock);
return -EBUSY;
}
if (!psi->write_user)
psi->write_user = pstore_write_user_compat;
psinfo = psi;
mutex_init(&psinfo->read_mutex);
sema_init(&psinfo->buf_lock, 1);
spin_unlock(&pstore_lock);
if (owner && !try_module_get(owner)) {
psinfo = NULL;
return -EINVAL;
}
if (psi->flags & PSTORE_FLAGS_DMESG)
allocate_buf_for_compression();
if (pstore_is_mounted())
pstore_get_records(0);
if (psi->flags & PSTORE_FLAGS_DMESG) {
pstore_dumper.max_reason = psinfo->max_reason;
pstore_register_kmsg();
}
if (psi->flags & PSTORE_FLAGS_CONSOLE)
pstore_register_console();
if (psi->flags & PSTORE_FLAGS_FTRACE)
pstore_register_ftrace();
if (psi->flags & PSTORE_FLAGS_PMSG)
pstore_register_pmsg();
/* Start watching for new records, if desired. */
if (pstore_update_ms >= 0) {
pstore_timer.expires = jiffies +
msecs_to_jiffies(pstore_update_ms);
add_timer(&pstore_timer);
}
/*
* Update the module parameter backend, so it is visible
* through /sys/module/pstore/parameters/backend
*/
backend = psi->name;
pr_info("Registered %s as persistent store backend\n", psi->name);
module_put(owner);
return 0;
}
EXPORT_SYMBOL_GPL(pstore_register);
void pstore_unregister(struct pstore_info *psi)
{
/* Stop timer and make sure all work has finished. */
pstore_update_ms = -1;
del_timer_sync(&pstore_timer);
flush_work(&pstore_work);
if (psi->flags & PSTORE_FLAGS_PMSG)
pstore_unregister_pmsg();
if (psi->flags & PSTORE_FLAGS_FTRACE)
pstore_unregister_ftrace();
if (psi->flags & PSTORE_FLAGS_CONSOLE)
pstore_unregister_console();
if (psi->flags & PSTORE_FLAGS_DMESG)
pstore_unregister_kmsg();
free_buf_for_compression();
psinfo = NULL;
backend = NULL;
}
EXPORT_SYMBOL_GPL(pstore_unregister);
static void decompress_record(struct pstore_record *record)
{
int unzipped_len;
char *decompressed;
if (!record->compressed)
return;
/* Only PSTORE_TYPE_DMESG support compression. */
if (record->type != PSTORE_TYPE_DMESG) {
pr_warn("ignored compressed record type %d\n", record->type);
return;
}
/* No compression method has created the common buffer. */
if (!big_oops_buf) {
pr_warn("no decompression buffer allocated\n");
return;
}
unzipped_len = pstore_decompress(record->buf, big_oops_buf,
record->size, big_oops_buf_sz);
if (unzipped_len <= 0) {
pr_err("decompression failed: %d\n", unzipped_len);
return;
}
/* Build new buffer for decompressed contents. */
decompressed = kmalloc(unzipped_len + record->ecc_notice_size,
GFP_KERNEL);
if (!decompressed) {
pr_err("decompression ran out of memory\n");
return;
}
memcpy(decompressed, big_oops_buf, unzipped_len);
/* Append ECC notice to decompressed buffer. */
memcpy(decompressed + unzipped_len, record->buf + record->size,
record->ecc_notice_size);
/* Swap out compresed contents with decompressed contents. */
kfree(record->buf);
record->buf = decompressed;
record->size = unzipped_len;
record->compressed = false;
}
/*
* Read all the records from one persistent store backend. Create
* files in our filesystem. Don't warn about -EEXIST errors
* when we are re-scanning the backing store looking to add new
* error records.
*/
void pstore_get_backend_records(struct pstore_info *psi,
struct dentry *root, int quiet)
{
int failed = 0;
unsigned int stop_loop = 65536;
if (!psi || !root)
return;
mutex_lock(&psi->read_mutex);
if (psi->open && psi->open(psi))
goto out;
/*
* Backend callback read() allocates record.buf. decompress_record()
* may reallocate record.buf. On success, pstore_mkfile() will keep
* the record.buf, so free it only on failure.
*/
for (; stop_loop; stop_loop--) {
struct pstore_record *record;
int rc;
record = kzalloc(sizeof(*record), GFP_KERNEL);
if (!record) {
pr_err("out of memory creating record\n");
break;
}
pstore_record_init(record, psi);
record->size = psi->read(record);
/* No more records left in backend? */
if (record->size <= 0) {
kfree(record);
break;
}
decompress_record(record);
rc = pstore_mkfile(root, record);
if (rc) {
/* pstore_mkfile() did not take record, so free it. */
kfree(record->buf);
kfree(record);
if (rc != -EEXIST || !quiet)
failed++;
}
}
if (psi->close)
psi->close(psi);
out:
mutex_unlock(&psi->read_mutex);
if (failed)
pr_warn("failed to create %d record(s) from '%s'\n",
failed, psi->name);
if (!stop_loop)
pr_err("looping? Too many records seen from '%s'\n",
psi->name);
}
static void pstore_dowork(struct work_struct *work)
{
pstore_get_records(1);
}
static void pstore_timefunc(unsigned long dummy)
{
if (pstore_new_entry) {
pstore_new_entry = 0;
schedule_work(&pstore_work);
}
if (pstore_update_ms >= 0)
mod_timer(&pstore_timer,
jiffies + msecs_to_jiffies(pstore_update_ms));
}
module_param(backend, charp, 0444);
MODULE_PARM_DESC(backend, "Pstore backend to use");