You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/iio/adc/qcom-spmi-adc5.c

1166 lines
29 KiB

/*
* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/qpnp/qpnp-revid.h>
#include <dt-bindings/iio/qcom,spmi-vadc.h>
#include "qcom-vadc-common.h"
#define ADC_USR_STATUS1 0x8
#define ADC_USR_STATUS1_REQ_STS BIT(1)
#define ADC_USR_STATUS1_EOC BIT(0)
#define ADC_USR_STATUS1_REQ_STS_EOC_MASK 0x3
#define ADC_USR_STATUS2 0x9
#define ADC_USR_STATUS2_CONV_SEQ_MASK 0x70
#define ADC_USR_STATUS2_CONV_SEQ_MASK_SHIFT 0x5
#define ADC_USR_IBAT_MEAS 0xf
#define ADC_USR_IBAT_MEAS_SUPPORTED BIT(0)
#define ADC_USR_DIG_PARAM 0x42
#define ADC_USR_DIG_PARAM_CAL_VAL BIT(6)
#define ADC_USR_DIG_PARAM_CAL_VAL_SHIFT 6
#define ADC_USR_DIG_PARAM_CAL_SEL 0x30
#define ADC_USR_DIG_PARAM_CAL_SEL_SHIFT 4
#define ADC_USR_DIG_PARAM_DEC_RATIO_SEL 0xc
#define ADC_USR_DIG_PARAM_DEC_RATIO_SEL_SHIFT 2
#define ADC_USR_DIG_PARAM_ABS_CAL_VAL 0x28
#define ADC_USR_FAST_AVG_CTL 0x43
#define ADC_USR_FAST_AVG_CTL_EN BIT(7)
#define ADC_USR_FAST_AVG_CTL_SAMPLES_MASK 0x7
#define ADC_USR_CH_SEL_CTL 0x44
#define ADC_USR_DELAY_CTL 0x45
#define ADC_USR_HW_SETTLE_DELAY_MASK 0xf
#define ADC_USR_EN_CTL1 0x46
#define ADC_USR_EN_CTL1_ADC_EN BIT(7)
#define ADC_USR_CONV_REQ 0x47
#define ADC_USR_CONV_REQ_REQ BIT(7)
#define ADC_USR_DATA0 0x50
#define ADC_USR_DATA1 0x51
#define ADC_USR_IBAT_DATA0 0x52
#define ADC_USR_IBAT_DATA1 0x53
#define ADC_CHAN_MIN ADC_USBIN
#define ADC_CHAN_MAX ADC_LR_MUX3_BUF_PU1_PU2_XO_THERM
/*
* Conversion time varies between 139uS to 6827uS based on the decimation,
* clock rate, fast average samples with no measurement in queue.
* Set the timeout to a max of 100ms.
*/
#define ADC_POLL_DELAY_MIN_US 10000
#define ADC_POLL_DELAY_MAX_US 10001
#define ADC_CONV_TIME_RETRY_POLL 40
#define ADC_CONV_TIME_RETRY 30
#define ADC_CONV_TIMEOUT msecs_to_jiffies(100)
/* CAL peripheral */
#define ADC_CAL_DELAY_CTL 0x44
#define ADC_CAL_DELAY_CTL_VAL_256S 0x73
#define ADC_CAL_DELAY_CTL_VAL_125MS 0x3
enum adc_cal_method {
ADC_NO_CAL = 0,
ADC_RATIOMETRIC_CAL,
ADC_ABSOLUTE_CAL
};
enum adc_cal_val {
ADC_TIMER_CAL = 0,
ADC_NEW_CAL
};
struct pmic_rev_data {
int subtype;
int rev4;
};
/**
* struct adc_channel_prop - ADC channel property.
* @channel: channel number, refer to the channel list.
* @cal_method: calibration method.
* @cal_val: calibration value
* @decimation: sampling rate supported for the channel.
* @prescale: channel scaling performed on the input signal.
* @hw_settle_time: the time between AMUX being configured and the
* start of conversion.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements.
* @scale_fn_type: Represents the scaling function to convert voltage
* physical units desired by the client for the channel.
*/
struct adc_channel_prop {
unsigned int channel;
enum adc_cal_method cal_method;
enum adc_cal_val cal_val;
unsigned int decimation;
unsigned int prescale;
unsigned int hw_settle_time;
unsigned int avg_samples;
/*lut_index is used only for bat_therm LUTs*/
unsigned int lut_index;
enum vadc_scale_fn_type scale_fn_type;
const char *datasheet_name;
};
/**
* struct adc_chip - ADC private structure.
* @regmap: pointer to struct regmap.
* @dev: pointer to struct device.
* @base: base address for the ADC peripheral.
* @cal_addr: base address for the CAL peripheral.
* @nchannels: number of ADC channels.
* @chan_props: array of ADC channel properties.
* @iio_chans: array of IIO channels specification.
* @poll_eoc: use polling instead of interrupt.
* @complete: ADC result notification after interrupt is received.
* @lock: ADC lock for access to the peripheral.
* @data: software configuration data.
*/
struct adc_chip {
struct regmap *regmap;
struct device *dev;
u16 base;
u16 cal_addr;
unsigned int nchannels;
struct adc_channel_prop *chan_props;
struct iio_chan_spec *iio_chans;
bool poll_eoc;
struct completion complete;
struct mutex lock;
bool skip_usb_wa;
struct pmic_revid_data *pmic_rev_id;
const struct adc_data *data;
int adc_irq;
};
static const struct vadc_prescale_ratio adc_prescale_ratios[] = {
{.num = 1, .den = 1},
{.num = 1, .den = 3},
{.num = 1, .den = 4},
{.num = 1, .den = 6},
{.num = 1, .den = 20},
{.num = 1, .den = 8},
{.num = 10, .den = 81},
{.num = 1, .den = 10},
{.num = 1, .den = 16}
};
static int adc_read(struct adc_chip *adc, u16 offset, u8 *data, int len)
{
return regmap_bulk_read(adc->regmap, adc->base + offset, data, len);
}
static int adc_write(struct adc_chip *adc, u16 offset, u8 *data, int len)
{
return regmap_bulk_write(adc->regmap, adc->base + offset, data, len);
}
static int adc_prescaling_from_dt(u32 num, u32 den)
{
unsigned int pre;
for (pre = 0; pre < ARRAY_SIZE(adc_prescale_ratios); pre++)
if (adc_prescale_ratios[pre].num == num &&
adc_prescale_ratios[pre].den == den)
break;
if (pre == ARRAY_SIZE(adc_prescale_ratios))
return -EINVAL;
return pre;
}
static int adc_hw_settle_time_from_dt(u32 value,
const unsigned int *hw_settle)
{
uint32_t i;
for (i = 0; i < VADC_HW_SETTLE_SAMPLES_MAX; i++) {
if (value == hw_settle[i])
return i;
}
return -EINVAL;
}
static int adc_avg_samples_from_dt(u32 value)
{
if (!is_power_of_2(value) || value > ADC5_AVG_SAMPLES_MAX)
return -EINVAL;
return __ffs64(value);
}
static int adc_read_current_data(struct adc_chip *adc, u16 *data)
{
int ret;
u8 rslt_lsb = 0, rslt_msb = 0;
ret = adc_read(adc, ADC_USR_IBAT_DATA0, &rslt_lsb, 1);
if (ret)
return ret;
ret = adc_read(adc, ADC_USR_IBAT_DATA1, &rslt_msb, 1);
if (ret)
return ret;
*data = (rslt_msb << 8) | rslt_lsb;
if (*data == ADC_USR_DATA_CHECK) {
pr_err("Invalid data:0x%x\n", *data);
return -EINVAL;
}
return ret;
}
static int adc_read_voltage_data(struct adc_chip *adc, u16 *data)
{
int ret;
u8 rslt_lsb = 0, rslt_msb = 0;
ret = adc_read(adc, ADC_USR_DATA0, &rslt_lsb, 1);
if (ret)
return ret;
ret = adc_read(adc, ADC_USR_DATA1, &rslt_msb, 1);
if (ret)
return ret;
*data = (rslt_msb << 8) | rslt_lsb;
if (*data == ADC_USR_DATA_CHECK) {
pr_err("Invalid data:0x%x\n", *data);
return -EINVAL;
}
return ret;
}
static int adc_poll_wait_eoc(struct adc_chip *adc, bool poll_only)
{
unsigned int count, retry;
u8 status1;
int ret;
if (poll_only)
retry = ADC_CONV_TIME_RETRY_POLL;
else
retry = ADC_CONV_TIME_RETRY;
for (count = 0; count < retry; count++) {
ret = adc_read(adc, ADC_USR_STATUS1, &status1, 1);
if (ret)
return ret;
status1 &= ADC_USR_STATUS1_REQ_STS_EOC_MASK;
if (status1 == ADC_USR_STATUS1_EOC)
return 0;
usleep_range(ADC_POLL_DELAY_MIN_US, ADC_POLL_DELAY_MAX_US);
}
return -ETIMEDOUT;
}
static int adc_wait_eoc(struct adc_chip *adc)
{
int ret;
if (adc->poll_eoc) {
ret = adc_poll_wait_eoc(adc, true);
if (ret < 0) {
pr_err("EOC bit not set\n");
return ret;
}
} else {
ret = wait_for_completion_timeout(&adc->complete,
ADC_CONV_TIMEOUT);
if (!ret) {
pr_debug("Did not get completion timeout.\n");
ret = adc_poll_wait_eoc(adc, false);
if (ret < 0) {
pr_err("EOC bit not set\n");
return ret;
}
}
}
return ret;
}
static void adc_update_dig_param(struct adc_chip *adc,
struct adc_channel_prop *prop, u8 *data)
{
/* Update calibration value */
*data &= ~ADC_USR_DIG_PARAM_CAL_VAL;
*data |= (prop->cal_val << ADC_USR_DIG_PARAM_CAL_VAL_SHIFT);
/* Update calibration select */
*data &= ~ADC_USR_DIG_PARAM_CAL_SEL;
*data |= (prop->cal_method << ADC_USR_DIG_PARAM_CAL_SEL_SHIFT);
/* Update decimation ratio select */
*data &= ~ADC_USR_DIG_PARAM_DEC_RATIO_SEL;
*data |= (prop->decimation << ADC_USR_DIG_PARAM_DEC_RATIO_SEL_SHIFT);
}
static int adc_channel_check(struct adc_chip *adc, u8 buf)
{
int ret = 0;
u8 chno = 0;
ret = adc_read(adc, ADC_USR_CH_SEL_CTL, &chno, 1);
if (ret)
return ret;
if (buf != chno) {
pr_debug("Channel write fails once: written:0x%x actual:0x%x\n",
chno, buf);
ret = adc_write(adc, ADC_USR_CH_SEL_CTL, &buf, 1);
if (ret)
return ret;
ret = adc_read(adc, ADC_USR_CH_SEL_CTL, &chno, 1);
if (ret)
return ret;
if (chno != buf) {
pr_err("Write fails twice: written: 0x%x\n", chno);
return -EINVAL;
}
}
return 0;
}
static int adc_post_configure_usb_in_read(struct adc_chip *adc,
struct adc_channel_prop *prop)
{
u8 data;
if ((prop->channel == ADC_USB_IN_V_16) && adc->cal_addr &&
!adc->skip_usb_wa) {
data = ADC_CAL_DELAY_CTL_VAL_125MS;
/* Set calibration measurement interval to 125ms */
return regmap_bulk_write(adc->regmap,
adc->cal_addr + ADC_CAL_DELAY_CTL,
&data, 1);
}
return 0;
}
static int adc_pre_configure_usb_in_read(struct adc_chip *adc)
{
int ret;
u8 data = ADC_CAL_DELAY_CTL_VAL_256S;
bool channel_check = false;
if (adc->pmic_rev_id)
if (adc->pmic_rev_id->pmic_subtype == PMI632_SUBTYPE)
channel_check = true;
/* Increase calibration measurement interval to 256s */
ret = regmap_bulk_write(adc->regmap,
adc->cal_addr + ADC_CAL_DELAY_CTL, &data, 1);
if (ret)
return ret;
/* Add delay of 20ms to allow completion of pending conversions */
msleep(20);
/* Select REF_GND and start a conversion */
data = ADC_REF_GND;
ret = adc_write(adc, ADC_USR_CH_SEL_CTL, &data, 1);
if (ret)
return ret;
if (channel_check) {
ret = adc_channel_check(adc, data);
if (ret)
return ret;
}
data = ADC_USR_EN_CTL1_ADC_EN;
ret = adc_write(adc, ADC_USR_EN_CTL1, &data, 1);
if (ret)
return ret;
if (!adc->poll_eoc)
reinit_completion(&adc->complete);
data = ADC_USR_CONV_REQ_REQ;
ret = adc_write(adc, ADC_USR_CONV_REQ, &data, 1);
if (ret)
return ret;
/* Select DIG PARAM and CH_SEL for USBIN */
data = ADC_USR_DIG_PARAM_ABS_CAL_VAL;
ret = adc_write(adc, ADC_USR_DIG_PARAM, &data, 1);
if (ret)
return ret;
data = ADC_USB_IN_V_16;
ret = adc_write(adc, ADC_USR_CH_SEL_CTL, &data, 1);
if (ret)
return ret;
if (channel_check) {
ret = adc_channel_check(adc, data);
if (ret)
return ret;
}
/* Check EOC for GND conversion */
ret = adc_wait_eoc(adc);
if (ret < 0)
return ret;
if (!adc->poll_eoc)
reinit_completion(&adc->complete);
/* Conversion request for USB_IN */
data = ADC_USR_CONV_REQ_REQ;
return adc_write(adc, ADC_USR_CONV_REQ, &data, 1);
}
#define ADC5_MULTI_TRANSFER 5
static int adc_configure(struct adc_chip *adc,
struct adc_channel_prop *prop)
{
int ret;
u8 buf[ADC5_MULTI_TRANSFER];
u8 conv_req = 0;
bool channel_check = false;
if (adc->pmic_rev_id)
if (adc->pmic_rev_id->pmic_subtype == PMI632_SUBTYPE)
channel_check = true;
/* Read registers 0x42 through 0x46 */
ret = adc_read(adc, ADC_USR_DIG_PARAM, buf, ADC5_MULTI_TRANSFER);
if (ret < 0)
return ret;
/* Digital param selection */
adc_update_dig_param(adc, prop, &buf[0]);
/* Update fast average sample value */
buf[1] &= (u8) ~ADC_USR_FAST_AVG_CTL_SAMPLES_MASK;
buf[1] |= prop->avg_samples;
/* Select ADC channel */
buf[2] = prop->channel;
/* Select HW settle delay for channel */
buf[3] &= (u8) ~ADC_USR_HW_SETTLE_DELAY_MASK;
buf[3] |= prop->hw_settle_time;
/* Select ADC enable */
buf[4] |= ADC_USR_EN_CTL1_ADC_EN;
/* Select CONV request */
conv_req = ADC_USR_CONV_REQ_REQ;
if (!adc->poll_eoc)
reinit_completion(&adc->complete);
ret = adc_write(adc, ADC_USR_DIG_PARAM, buf, 1);
if (ret)
return ret;
ret = adc_write(adc, ADC_USR_FAST_AVG_CTL, &buf[1], 1);
if (ret)
return ret;
ret = adc_write(adc, ADC_USR_CH_SEL_CTL, &buf[2], 1);
if (ret)
return ret;
ret = adc_write(adc, ADC_USR_DELAY_CTL, &buf[3], 1);
if (ret)
return ret;
ret = adc_write(adc, ADC_USR_EN_CTL1, &buf[4], 1);
if (ret)
return ret;
if (channel_check) {
ret = adc_channel_check(adc, buf[2]);
if (ret)
return ret;
}
ret = adc_write(adc, ADC_USR_CONV_REQ, &conv_req, 1);
return ret;
}
static int adc_do_conversion(struct adc_chip *adc,
struct adc_channel_prop *prop,
struct iio_chan_spec const *chan,
u16 *data_volt, u16 *data_cur)
{
int ret;
mutex_lock(&adc->lock);
if ((prop->channel == ADC_USB_IN_V_16) && adc->cal_addr &&
!adc->skip_usb_wa) {
ret = adc_pre_configure_usb_in_read(adc);
if (ret) {
pr_err("ADC configure failed with %d\n", ret);
goto unlock;
}
} else {
ret = adc_configure(adc, prop);
if (ret) {
pr_err("ADC configure failed with %d\n", ret);
goto unlock;
}
}
ret = adc_wait_eoc(adc);
if (ret < 0)
goto unlock;
if ((chan->type == IIO_VOLTAGE) || (chan->type == IIO_TEMP)) {
ret = adc_read_voltage_data(adc, data_volt);
if (ret)
goto unlock;
}
else if (chan->type == IIO_POWER) {
ret = adc_read_voltage_data(adc, data_volt);
if (ret)
goto unlock;
ret = adc_read_current_data(adc, data_cur);
if (ret)
goto unlock;
}
ret = adc_post_configure_usb_in_read(adc, prop);
unlock:
mutex_unlock(&adc->lock);
return ret;
}
static irqreturn_t adc_isr(int irq, void *dev_id)
{
struct adc_chip *adc = dev_id;
complete(&adc->complete);
return IRQ_HANDLED;
}
static int adc_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
struct adc_chip *adc = iio_priv(indio_dev);
int i;
for (i = 0; i < adc->nchannels; i++)
if (adc->chan_props[i].channel == iiospec->args[0])
return i;
return -EINVAL;
}
static int adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask)
{
struct adc_chip *adc = iio_priv(indio_dev);
struct adc_channel_prop *prop;
u16 adc_code_volt, adc_code_cur;
int ret;
prop = &adc->chan_props[chan->address];
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
ret = adc_do_conversion(adc, prop, chan,
&adc_code_volt, &adc_code_cur);
if (ret)
break;
if ((chan->type == IIO_VOLTAGE) || (chan->type == IIO_TEMP))
ret = qcom_vadc_hw_scale(prop->scale_fn_type,
&adc_prescale_ratios[prop->prescale],
adc->data, prop->lut_index,
adc_code_volt, val);
if (ret)
break;
if (chan->type == IIO_POWER) {
ret = qcom_vadc_hw_scale(SCALE_HW_CALIB_DEFAULT,
&adc_prescale_ratios[VADC_DEF_VBAT_PRESCALING],
adc->data, prop->lut_index,
adc_code_volt, val);
if (ret)
break;
ret = qcom_vadc_hw_scale(prop->scale_fn_type,
&adc_prescale_ratios[prop->prescale],
adc->data, prop->lut_index,
adc_code_cur, val2);
if (ret)
break;
}
if (chan->type == IIO_POWER)
return IIO_VAL_INT_MULTIPLE;
else
return IIO_VAL_INT;
case IIO_CHAN_INFO_RAW:
ret = adc_do_conversion(adc, prop, chan,
&adc_code_volt, &adc_code_cur);
if (ret)
break;
*val = (int)adc_code_volt;
*val2 = (int)adc_code_cur;
if (chan->type == IIO_POWER)
return IIO_VAL_INT_MULTIPLE;
else
return IIO_VAL_INT;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct iio_info adc_info = {
.read_raw = adc_read_raw,
.driver_module = THIS_MODULE,
.of_xlate = adc_of_xlate,
};
struct adc_channels {
const char *datasheet_name;
unsigned int prescale_index;
enum iio_chan_type type;
long info_mask;
enum vadc_scale_fn_type scale_fn_type;
};
#define ADC_CHAN(_dname, _type, _mask, _pre, _scale) \
{ \
.datasheet_name = (_dname), \
.prescale_index = _pre, \
.type = _type, \
.info_mask = _mask, \
.scale_fn_type = _scale, \
}, \
#define ADC_CHAN_TEMP(_dname, _pre, _scale) \
ADC_CHAN(_dname, IIO_TEMP, \
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), \
_pre, _scale) \
#define ADC_CHAN_VOLT(_dname, _pre, _scale) \
ADC_CHAN(_dname, IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\
_pre, _scale) \
#define ADC_CHAN_POWER(_dname, _pre, _scale) \
ADC_CHAN(_dname, IIO_POWER, \
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\
_pre, _scale) \
static const struct adc_channels adc_chans_pmic5[ADC_MAX_CHANNEL] = {
[ADC_REF_GND] = ADC_CHAN_VOLT("ref_gnd", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_1P25VREF] = ADC_CHAN_VOLT("vref_1p25", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_VPH_PWR] = ADC_CHAN_VOLT("vph_pwr", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC_VBAT_SNS] = ADC_CHAN_VOLT("vbat_sns", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC_VCOIN] = ADC_CHAN_VOLT("vcoin", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC_DIE_TEMP] = ADC_CHAN_TEMP("die_temp", 1,
SCALE_HW_CALIB_PMIC_THERM)
[ADC_USB_IN_I] = ADC_CHAN_VOLT("usb_in_i_uv", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_USB_IN_V_16] = ADC_CHAN_VOLT("usb_in_v_div_16", 16,
SCALE_HW_CALIB_DEFAULT)
[ADC_CHG_TEMP] = ADC_CHAN_TEMP("chg_temp", 1,
SCALE_HW_CALIB_PM5_CHG_TEMP)
/* Charger prescales SBUx and MID_CHG to fit within 1.8V upper unit */
[ADC_SBUx] = ADC_CHAN_VOLT("chg_sbux", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC_MID_CHG_DIV6] = ADC_CHAN_VOLT("chg_mid_chg", 6,
SCALE_HW_CALIB_DEFAULT)
[ADC_XO_THERM_PU2] = ADC_CHAN_TEMP("xo_therm", 1,
SCALE_HW_CALIB_XOTHERM)
[ADC_BAT_THERM_PU2] = ADC_CHAN_TEMP("bat_therm_pu2", 1,
SCALE_HW_CALIB_BATT_THERM_100K)
[ADC_BAT_THERM_PU1] = ADC_CHAN_TEMP("bat_therm_pu1", 1,
SCALE_HW_CALIB_BATT_THERM_30K)
[ADC_BAT_THERM_PU3] = ADC_CHAN_TEMP("bat_therm_pu3", 1,
SCALE_HW_CALIB_BATT_THERM_400K)
[ADC_BAT_ID_PU2] = ADC_CHAN_TEMP("bat_id", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_AMUX_THM1_PU2] = ADC_CHAN_TEMP("amux_thm1_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_AMUX_THM2_PU2] = ADC_CHAN_TEMP("amux_thm2_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_AMUX_THM3_PU2] = ADC_CHAN_TEMP("amux_thm3_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_AMUX_THM4_PU2] = ADC_CHAN_TEMP("amux_thm4_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_INT_EXT_ISENSE_VBAT_VDATA] = ADC_CHAN_POWER("int_ext_isense", 1,
SCALE_HW_CALIB_CUR)
[ADC_EXT_ISENSE_VBAT_VDATA] = ADC_CHAN_POWER("ext_isense", 1,
SCALE_HW_CALIB_CUR)
[ADC_PARALLEL_ISENSE_VBAT_VDATA] = ADC_CHAN_POWER("parallel_isense", 1,
SCALE_HW_CALIB_CUR)
[ADC_AMUX_THM2] = ADC_CHAN_TEMP("amux_thm2", 1,
SCALE_HW_CALIB_PM5_SMB_TEMP)
[ADC_AMUX_THM3] = ADC_CHAN_TEMP("amux_thm3", 1,
SCALE_HW_CALIB_PM5_SMB_TEMP)
[ADC_GPIO1_PU2] = ADC_CHAN_TEMP("gpio1_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_GPIO2_PU2] = ADC_CHAN_TEMP("gpio2_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_GPIO3_PU2] = ADC_CHAN_TEMP("gpio3_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_GPIO4_PU2] = ADC_CHAN_TEMP("gpio4_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_GPIO4] = ADC_CHAN_TEMP("adc_gpio4", 1,
SCALE_HW_CALIB_DEFAULT)
};
static const struct adc_channels adc_chans_rev2[ADC_MAX_CHANNEL] = {
[ADC_REF_GND] = ADC_CHAN_VOLT("ref_gnd", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_1P25VREF] = ADC_CHAN_VOLT("vref_1p25", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_VPH_PWR] = ADC_CHAN_VOLT("vph_pwr", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC_VBAT_SNS] = ADC_CHAN_VOLT("vbat_sns", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC_VCOIN] = ADC_CHAN_VOLT("vcoin", 3,
SCALE_HW_CALIB_DEFAULT)
[ADC_DIE_TEMP] = ADC_CHAN_TEMP("die_temp", 1,
SCALE_HW_CALIB_PMIC_THERM)
[ADC_AMUX_THM1_PU2] = ADC_CHAN_TEMP("amux_thm1_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_AMUX_THM3_PU2] = ADC_CHAN_TEMP("amux_thm3_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_AMUX_THM5_PU2] = ADC_CHAN_TEMP("amux_thm5_pu2", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ADC_XO_THERM_PU2] = ADC_CHAN_TEMP("xo_therm", 1,
SCALE_HW_CALIB_THERM_100K_PULLUP)
[ANA_IN] = ADC_CHAN_TEMP("drax_temp", 1,
SCALE_HW_CALIB_PMIC_THERM)
[ADC_AMUX_THM1] = ADC_CHAN_VOLT("amux_thm1", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_AMUX_THM3] = ADC_CHAN_VOLT("amux_thm3", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC_GPIO4] = ADC_CHAN_TEMP("adc_gpio4", 1,
SCALE_HW_CALIB_DEFAULT)
};
static int adc_get_dt_channel_data(struct device *dev,
struct adc_channel_prop *prop,
struct device_node *node,
const struct adc_data *data)
{
const char *name = node->name, *channel_name;
u32 chan, value, varr[2];
int ret;
ret = of_property_read_u32(node, "reg", &chan);
if (ret) {
dev_err(dev, "invalid channel number %s\n", name);
return ret;
}
if (chan > ADC_PARALLEL_ISENSE_VBAT_IDATA) {
dev_err(dev, "%s invalid channel number %d\n", name, chan);
return -EINVAL;
}
/* the channel has DT description */
prop->channel = chan;
channel_name = of_get_property(node,
"label", NULL) ? : node->name;
if (!channel_name) {
pr_err("Invalid channel name\n");
return -EINVAL;
}
prop->datasheet_name = channel_name;
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = qcom_adc5_decimation_from_dt(value, data->decimation);
if (ret < 0) {
dev_err(dev, "%02x invalid decimation %d\n",
chan, value);
return ret;
}
prop->decimation = ret;
} else {
prop->decimation = ADC_DECIMATION_DEFAULT;
}
ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
if (!ret) {
ret = adc_prescaling_from_dt(varr[0], varr[1]);
if (ret < 0) {
dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
chan, varr[0], varr[1]);
return ret;
}
prop->prescale = ret;
}
ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
if (!ret) {
ret = adc_hw_settle_time_from_dt(value, data->hw_settle);
if (ret < 0) {
dev_err(dev, "%02x invalid hw-settle-time %d us\n",
chan, value);
return ret;
}
prop->hw_settle_time = ret;
} else {
prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
}
ret = of_property_read_u32(node, "qcom,avg-samples", &value);
if (!ret) {
ret = adc_avg_samples_from_dt(value);
if (ret < 0) {
dev_err(dev, "%02x invalid avg-samples %d\n",
chan, value);
return ret;
}
prop->avg_samples = ret;
} else {
prop->avg_samples = VADC_DEF_AVG_SAMPLES;
}
prop->scale_fn_type = -EINVAL;
ret = of_property_read_u32(node, "qcom,scale-fn-type", &value);
if (!ret && value < SCALE_HW_CALIB_MAX)
prop->scale_fn_type = value;
prop->lut_index = VADC_DEF_LUT_INDEX;
ret = of_property_read_u32(node, "qcom,lut-index", &value);
if (!ret)
prop->lut_index = value;
if (of_property_read_bool(node, "qcom,ratiometric"))
prop->cal_method = ADC_RATIOMETRIC_CAL;
else
prop->cal_method = ADC_ABSOLUTE_CAL;
/*
* Default to using timer calibration. Using a fresh calibration value
* for every conversion will increase the overall time for a request.
*/
prop->cal_val = ADC_TIMER_CAL;
dev_dbg(dev, "%02x name %s\n", chan, name);
return 0;
}
const struct adc_data data_pmic5 = {
.full_scale_code_volt = 0x70e4,
/* On PM8150B, IBAT LSB = 10A/32767 */
.full_scale_code_cur = 10000,
.adc_chans = adc_chans_pmic5,
.decimation = (unsigned int []) {250, 420, 840},
.hw_settle = (unsigned int []) {15, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1, 2, 4, 6, 8, 10},
};
const struct adc_data data_pmic_rev2 = {
.full_scale_code_volt = 0x4000,
.full_scale_code_cur = 0x1800,
.adc_chans = adc_chans_rev2,
.decimation = (unsigned int []) {256, 512, 1024},
.hw_settle = (unsigned int []) {0, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1, 2, 4, 6, 8, 10},
};
static const struct of_device_id adc_match_table[] = {
{
.compatible = "qcom,spmi-adc5",
.data = &data_pmic5,
},
{
.compatible = "qcom,spmi-adc-rev2",
.data = &data_pmic_rev2,
},
{ }
};
static int adc_get_dt_data(struct adc_chip *adc, struct device_node *node)
{
const struct adc_channels *adc_chan;
struct iio_chan_spec *iio_chan;
struct adc_channel_prop prop;
struct device_node *child;
unsigned int index = 0;
const struct of_device_id *id;
const struct adc_data *data;
int ret;
adc->nchannels = of_get_available_child_count(node);
if (!adc->nchannels)
return -EINVAL;
adc->iio_chans = devm_kcalloc(adc->dev, adc->nchannels,
sizeof(*adc->iio_chans), GFP_KERNEL);
if (!adc->iio_chans)
return -ENOMEM;
adc->chan_props = devm_kcalloc(adc->dev, adc->nchannels,
sizeof(*adc->chan_props), GFP_KERNEL);
if (!adc->chan_props)
return -ENOMEM;
iio_chan = adc->iio_chans;
id = of_match_node(adc_match_table, node);
if (id)
data = id->data;
else
data = &data_pmic5;
adc->data = data;
for_each_available_child_of_node(node, child) {
ret = adc_get_dt_channel_data(adc->dev, &prop, child, data);
if (ret) {
of_node_put(child);
return ret;
}
if (prop.scale_fn_type == -EINVAL)
prop.scale_fn_type =
data->adc_chans[prop.channel].scale_fn_type;
adc->chan_props[index] = prop;
adc_chan = &data->adc_chans[prop.channel];
iio_chan->channel = prop.channel;
iio_chan->datasheet_name = prop.datasheet_name;
iio_chan->extend_name = prop.datasheet_name;
iio_chan->info_mask_separate = adc_chan->info_mask;
iio_chan->type = adc_chan->type;
iio_chan->address = index;
iio_chan++;
index++;
}
return 0;
}
static const struct pmic_rev_data pmic_data[] = {
{PM6150_SUBTYPE, 1},
};
bool skip_usb_in_wa(struct pmic_revid_data *pmic_rev_id)
{
int i = 0;
uint32_t tablesize = ARRAY_SIZE(pmic_data);
while (i < tablesize) {
if (pmic_data[i].subtype == pmic_rev_id->pmic_subtype
&& pmic_data[i].rev4 < pmic_rev_id->rev4) {
return true;
}
i++;
}
return false;
}
static int adc_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device_node *revid_dev_node;
struct pmic_revid_data *pmic_rev_id = NULL;
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct adc_chip *adc;
struct regmap *regmap;
const __be32 *prop_addr;
int ret;
u32 reg;
bool skip_usb_wa = false;
regmap = dev_get_regmap(dev->parent, NULL);
if (!regmap)
return -ENODEV;
ret = of_property_read_u32(node, "reg", &reg);
if (ret < 0)
return ret;
revid_dev_node = of_parse_phandle(node, "qcom,pmic-revid", 0);
if (revid_dev_node) {
pmic_rev_id = get_revid_data(revid_dev_node);
if (!(IS_ERR_OR_NULL(pmic_rev_id)))
skip_usb_wa = skip_usb_in_wa(pmic_rev_id);
else {
pr_err("Unable to get revid\n");
pmic_rev_id = NULL;
}
of_node_put(revid_dev_node);
}
indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
adc = iio_priv(indio_dev);
adc->regmap = regmap;
adc->dev = dev;
adc->pmic_rev_id = pmic_rev_id;
dev_set_drvdata(&pdev->dev, adc);
prop_addr = of_get_address(dev->of_node, 0, NULL, NULL);
if (!prop_addr) {
pr_err("invalid IO resources\n");
return -EINVAL;
}
adc->base = be32_to_cpu(*prop_addr);
prop_addr = of_get_address(dev->of_node, 1, NULL, NULL);
if (!prop_addr)
pr_debug("invalid cal IO resources\n");
else
adc->cal_addr = be32_to_cpu(*prop_addr);
adc->skip_usb_wa = skip_usb_wa;
init_completion(&adc->complete);
mutex_init(&adc->lock);
ret = adc_get_dt_data(adc, node);
if (ret) {
pr_err("adc get dt data failed\n");
return ret;
}
adc->adc_irq = platform_get_irq(pdev, 0);
if (adc->adc_irq < 0) {
if (adc->adc_irq == -EPROBE_DEFER || adc->adc_irq == -EINVAL)
return adc->adc_irq;
adc->poll_eoc = true;
} else {
ret = devm_request_irq(dev, adc->adc_irq, adc_isr, 0,
"pm-adc5", adc);
if (ret)
return ret;
}
indio_dev->dev.parent = dev;
indio_dev->dev.of_node = node;
indio_dev->name = pdev->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &adc_info;
indio_dev->channels = adc->iio_chans;
indio_dev->num_channels = adc->nchannels;
return devm_iio_device_register(dev, indio_dev);
}
static int adc_restore(struct device *dev)
{
int ret = 0;
struct adc_chip *adc = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
if (adc->adc_irq > 0) {
ret = devm_request_irq(dev, adc->adc_irq, adc_isr, 0,
"pm-adc5", adc);
if (ret)
return ret;
}
return ret;
}
static int adc_freeze(struct device *dev)
{
struct adc_chip *adc = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
if (adc->adc_irq > 0)
devm_free_irq(dev, adc->adc_irq, adc);
return 0;
}
static const struct dev_pm_ops adc_pm_ops = {
.freeze = adc_freeze,
.restore = adc_restore,
.thaw = adc_restore,
};
static struct platform_driver adc_driver = {
.driver = {
.name = "qcom-spmi-adc5.c",
.of_match_table = adc_match_table,
.pm = &adc_pm_ops,
},
.probe = adc_probe,
};
module_platform_driver(adc_driver);
MODULE_ALIAS("platform:qcom-spmi-adc5");
MODULE_DESCRIPTION("Qualcomm Technologies Inc. PMIC5 ADC driver");
MODULE_LICENSE("GPL v2");