You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
kernel_samsung_sm7125/drivers/crypto/msm/ice.c

1616 lines
41 KiB

/* Copyright (c) 2014-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/device-mapper.h>
#include <linux/clk.h>
#include <linux/cdev.h>
#include <linux/regulator/consumer.h>
#include <linux/msm-bus.h>
#include <crypto/ice.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/qseecomi.h>
#include "iceregs.h"
#include <linux/atomic.h>
#include <linux/wait.h>
#define TZ_SYSCALL_CREATE_SMC_ID(o, s, f) \
((uint32_t)((((o & 0x3f) << 24) | (s & 0xff) << 8) | (f & 0xff)))
#define TZ_OWNER_QSEE_OS 50
#define TZ_SVC_KEYSTORE 5 /* Keystore management */
#define TZ_OS_KS_RESTORE_KEY_ID \
TZ_SYSCALL_CREATE_SMC_ID(TZ_OWNER_QSEE_OS, TZ_SVC_KEYSTORE, 0x06)
#define TZ_SYSCALL_CREATE_PARAM_ID_0 0
#define TZ_OS_KS_RESTORE_KEY_ID_PARAM_ID \
TZ_SYSCALL_CREATE_PARAM_ID_0
#define TZ_OS_KS_RESTORE_KEY_CONFIG_ID \
TZ_SYSCALL_CREATE_SMC_ID(TZ_OWNER_QSEE_OS, TZ_SVC_KEYSTORE, 0x06)
#define TZ_OS_KS_RESTORE_KEY_CONFIG_ID_PARAM_ID \
TZ_SYSCALL_CREATE_PARAM_ID_1(TZ_SYSCALL_PARAM_TYPE_VAL)
#define ICE_REV(x, y) (((x) & ICE_CORE_##y##_REV_MASK) >> ICE_CORE_##y##_REV)
#define QCOM_UFS_ICE_DEV "iceufs"
#define QCOM_SDCC_ICE_DEV "icesdcc"
#define QCOM_ICE_TYPE_NAME_LEN 8
#define QCOM_ICE_MAX_BIST_CHECK_COUNT 100
#define QCOM_ICE_UFS 10
#define QCOM_ICE_SDCC 20
#define QCOM_ICE_ENCRYPT 0x1
#define QCOM_ICE_DECRYPT 0x2
#define QCOM_SECT_LEN_IN_BYTE 512
#define QCOM_UD_FOOTER_SIZE 0x4000
#define QCOM_UD_FOOTER_SECS (QCOM_UD_FOOTER_SIZE / QCOM_SECT_LEN_IN_BYTE)
#define ICE_CRYPTO_CXT_FDE 1
#define ICE_CRYPTO_CXT_FBE 2
static int ice_fde_flag;
struct ice_clk_info {
struct list_head list;
struct clk *clk;
const char *name;
u32 max_freq;
u32 min_freq;
u32 curr_freq;
bool enabled;
};
struct qcom_ice_bus_vote {
uint32_t client_handle;
uint32_t curr_vote;
int min_bw_vote;
int max_bw_vote;
int saved_vote;
bool is_max_bw_needed;
struct device_attribute max_bus_bw;
};
static LIST_HEAD(ice_devices);
/*
* ICE HW device structure.
*/
struct ice_device {
struct list_head list;
struct device *pdev;
struct cdev cdev;
dev_t device_no;
struct class *driver_class;
void __iomem *mmio;
struct resource *res;
int irq;
bool is_ice_enabled;
bool is_ice_disable_fuse_blown;
ice_error_cb error_cb;
void *host_controller_data; /* UFS/EMMC/other? */
struct list_head clk_list_head;
u32 ice_hw_version;
bool is_ice_clk_available;
char ice_instance_type[QCOM_ICE_TYPE_NAME_LEN];
struct regulator *reg;
bool is_regulator_available;
struct qcom_ice_bus_vote bus_vote;
ktime_t ice_reset_start_time;
ktime_t ice_reset_complete_time;
atomic_t is_ice_suspended;
atomic_t is_ice_busy;
wait_queue_head_t block_suspend_ice_queue;
};
static int qcom_ice_init(struct ice_device *ice_dev, void *host_controller_data,
ice_error_cb error_cb);
static int qti_ice_setting_config(struct request *req,
struct ice_crypto_setting *crypto_data,
struct ice_data_setting *setting, uint32_t cxt)
{
if (!setting)
return -EINVAL;
if ((short)(crypto_data->key_index) >= 0) {
memcpy(&setting->crypto_data, crypto_data,
sizeof(setting->crypto_data));
if (rq_data_dir(req) == WRITE) {
if ((cxt == ICE_CRYPTO_CXT_FBE) ||
((cxt == ICE_CRYPTO_CXT_FDE) &&
(ice_fde_flag & QCOM_ICE_ENCRYPT)))
setting->encr_bypass = false;
} else if (rq_data_dir(req) == READ) {
if ((cxt == ICE_CRYPTO_CXT_FBE) ||
((cxt == ICE_CRYPTO_CXT_FDE) &&
(ice_fde_flag & QCOM_ICE_DECRYPT)))
setting->decr_bypass = false;
} else {
/* Should I say BUG_ON */
setting->encr_bypass = true;
setting->decr_bypass = true;
}
}
return 0;
}
void qcom_ice_set_fde_flag(int flag)
{
ice_fde_flag = flag;
pr_debug("%s read_write setting %d\n", __func__, ice_fde_flag);
}
EXPORT_SYMBOL(qcom_ice_set_fde_flag);
static int qcom_ice_enable_clocks(struct ice_device *, bool);
#ifdef CONFIG_MSM_BUS_SCALING
static int qcom_ice_set_bus_vote(struct ice_device *ice_dev, int vote)
{
int err = 0;
if (vote != ice_dev->bus_vote.curr_vote) {
err = msm_bus_scale_client_update_request(
ice_dev->bus_vote.client_handle, vote);
if (err) {
dev_err(ice_dev->pdev,
"%s:failed:client_handle=0x%x, vote=%d, err=%d\n",
__func__, ice_dev->bus_vote.client_handle,
vote, err);
goto out;
}
ice_dev->bus_vote.curr_vote = vote;
}
out:
return err;
}
static int qcom_ice_get_bus_vote(struct ice_device *ice_dev,
const char *speed_mode)
{
struct device *dev = ice_dev->pdev;
struct device_node *np = dev->of_node;
int err;
const char *key = "qcom,bus-vector-names";
if (!speed_mode) {
err = -EINVAL;
goto out;
}
if (ice_dev->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN"))
err = of_property_match_string(np, key, "MAX");
else
err = of_property_match_string(np, key, speed_mode);
out:
if (err < 0)
dev_err(dev, "%s: Invalid %s mode %d\n",
__func__, speed_mode, err);
return err;
}
static int qcom_ice_bus_register(struct ice_device *ice_dev)
{
int err = 0;
struct msm_bus_scale_pdata *bus_pdata;
struct device *dev = ice_dev->pdev;
struct platform_device *pdev = to_platform_device(dev);
struct device_node *np = dev->of_node;
bus_pdata = msm_bus_cl_get_pdata(pdev);
if (!bus_pdata) {
dev_err(dev, "%s: failed to get bus vectors\n", __func__);
err = -ENODATA;
goto out;
}
err = of_property_count_strings(np, "qcom,bus-vector-names");
if (err < 0 || err != bus_pdata->num_usecases) {
dev_err(dev, "%s: Error = %d with qcom,bus-vector-names\n",
__func__, err);
goto out;
}
err = 0;
ice_dev->bus_vote.client_handle =
msm_bus_scale_register_client(bus_pdata);
if (!ice_dev->bus_vote.client_handle) {
dev_err(dev, "%s: msm_bus_scale_register_client failed\n",
__func__);
err = -EFAULT;
goto out;
}
/* cache the vote index for minimum and maximum bandwidth */
ice_dev->bus_vote.min_bw_vote = qcom_ice_get_bus_vote(ice_dev, "MIN");
ice_dev->bus_vote.max_bw_vote = qcom_ice_get_bus_vote(ice_dev, "MAX");
out:
return err;
}
#else
static int qcom_ice_set_bus_vote(struct ice_device *ice_dev, int vote)
{
return 0;
}
static int qcom_ice_get_bus_vote(struct ice_device *ice_dev,
const char *speed_mode)
{
return 0;
}
static int qcom_ice_bus_register(struct ice_device *ice_dev)
{
return 0;
}
#endif /* CONFIG_MSM_BUS_SCALING */
static int qcom_ice_get_vreg(struct ice_device *ice_dev)
{
int ret = 0;
if (!ice_dev->is_regulator_available)
return 0;
if (ice_dev->reg)
return 0;
ice_dev->reg = devm_regulator_get(ice_dev->pdev, "vdd-hba");
if (IS_ERR(ice_dev->reg)) {
ret = PTR_ERR(ice_dev->reg);
dev_err(ice_dev->pdev, "%s: %s get failed, err=%d\n",
__func__, "vdd-hba-supply", ret);
}
return ret;
}
static void qcom_ice_low_power_mode_enable(struct ice_device *ice_dev)
{
u32 regval;
regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ADVANCED_CONTROL);
/*
* Enable low power mode sequence
* [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
*/
regval |= 0x7000;
qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_ADVANCED_CONTROL);
/*
* Ensure previous instructions was completed before issuing next
* ICE initialization/optimization instruction
*/
mb();
}
static void qcom_ice_enable_test_bus_config(struct ice_device *ice_dev)
{
/*
* Configure & enable ICE_TEST_BUS_REG to reflect ICE intr lines
* MAIN_TEST_BUS_SELECTOR = 0 (ICE_CONFIG)
* TEST_BUS_REG_EN = 1 (ENABLE)
*/
u32 regval;
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2)
return;
regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_TEST_BUS_CONTROL);
regval &= 0x0FFFFFFF;
/* TBD: replace 0x2 with define in iceregs.h */
regval |= 0x2;
qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_TEST_BUS_CONTROL);
/*
* Ensure previous instructions was completed before issuing next
* ICE initialization/optimization instruction
*/
mb();
}
static void qcom_ice_optimization_enable(struct ice_device *ice_dev)
{
u32 regval;
regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ADVANCED_CONTROL);
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2)
regval |= 0xD807100;
else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1)
regval |= 0x3F007100;
/* ICE Optimizations Enable Sequence */
udelay(5);
/* [0]-0, [1]-0, [2]-8, [3]-E, [4]-0, [5]-0, [6]-F, [7]-A */
qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_ADVANCED_CONTROL);
/*
* Ensure previous instructions was completed before issuing next
* ICE initialization/optimization instruction
*/
mb();
/* ICE HPG requires sleep before writing */
udelay(5);
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1) {
regval = 0;
regval = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ENDIAN_SWAP);
regval |= 0xF;
qcom_ice_writel(ice_dev, regval, QCOM_ICE_REGS_ENDIAN_SWAP);
/*
* Ensure previous instructions were completed before issue
* next ICE commands
*/
mb();
}
}
static int qcom_ice_wait_bist_status(struct ice_device *ice_dev)
{
int count;
u32 reg;
/* Poll until all BIST bits are reset */
for (count = 0; count < QCOM_ICE_MAX_BIST_CHECK_COUNT; count++) {
reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BIST_STATUS);
if (!(reg & ICE_BIST_STATUS_MASK))
break;
udelay(50);
}
if (reg)
return -ETIMEDOUT;
return 0;
}
static int qcom_ice_enable(struct ice_device *ice_dev)
{
unsigned int reg;
int ret = 0;
if ((ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) ||
((ICE_REV(ice_dev->ice_hw_version, MAJOR) == 2) &&
(ICE_REV(ice_dev->ice_hw_version, MINOR) >= 1)))
ret = qcom_ice_wait_bist_status(ice_dev);
if (ret) {
dev_err(ice_dev->pdev, "BIST status error (%d)\n", ret);
return ret;
}
/* Starting ICE v3 enabling is done at storage controller (UFS/SDCC) */
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 3)
return 0;
/*
* To enable ICE, perform following
* 1. Set IGNORE_CONTROLLER_RESET to USE in ICE_RESET register
* 2. Disable GLOBAL_BYPASS bit in ICE_CONTROL register
*/
reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_RESET);
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2)
reg &= 0x0;
else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1)
reg &= ~0x100;
qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_RESET);
/*
* Ensure previous instructions was completed before issuing next
* ICE initialization/optimization instruction
*/
mb();
reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_CONTROL);
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) >= 2)
reg &= 0xFFFE;
else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1)
reg &= ~0x7;
qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_CONTROL);
/*
* Ensure previous instructions was completed before issuing next
* ICE initialization/optimization instruction
*/
mb();
if ((ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) ||
((ICE_REV(ice_dev->ice_hw_version, MAJOR) == 2) &&
(ICE_REV(ice_dev->ice_hw_version, MINOR) >= 1))) {
reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BYPASS_STATUS);
if ((reg & 0x80000000) != 0x0) {
pr_err("%s: Bypass failed for ice = %pK",
__func__, (void *)ice_dev);
WARN_ON(1);
}
}
return 0;
}
static void qcom_ice_disable_intr(struct ice_device *ice_dev)
{
unsigned int reg;
reg = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_MASK);
reg |= QCOM_ICE_NON_SEC_IRQ_MASK;
qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_NON_SEC_IRQ_MASK);
/*
* Ensure previous instructions was completed before issuing next
* ICE initialization/optimization instruction
*/
mb();
}
static irqreturn_t qcom_ice_isr(int isr, void *data)
{
irqreturn_t retval = IRQ_NONE;
u32 status;
struct ice_device *ice_dev = data;
status = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_STTS);
if (status) {
ice_dev->error_cb(ice_dev->host_controller_data, status);
/* Interrupt has been handled. Clear the IRQ */
qcom_ice_writel(ice_dev, status, QCOM_ICE_REGS_NON_SEC_IRQ_CLR);
/* Ensure instruction is completed */
mb();
retval = IRQ_HANDLED;
}
return retval;
}
static void qcom_ice_parse_ice_instance_type(struct platform_device *pdev,
struct ice_device *ice_dev)
{
int ret = -1;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const char *type;
ret = of_property_read_string_index(np, "qcom,instance-type", 0, &type);
if (ret) {
pr_err("%s: Could not get ICE instance type\n", __func__);
goto out;
}
strlcpy(ice_dev->ice_instance_type, type, QCOM_ICE_TYPE_NAME_LEN);
out:
return;
}
static int qcom_ice_parse_clock_info(struct platform_device *pdev,
struct ice_device *ice_dev)
{
int ret = -1, cnt, i, len;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
char *name;
struct ice_clk_info *clki;
u32 *clkfreq = NULL;
if (!np)
goto out;
cnt = of_property_count_strings(np, "clock-names");
if (cnt <= 0) {
dev_info(dev, "%s: Unable to find clocks, assuming enabled\n",
__func__);
ret = cnt;
goto out;
}
if (!of_get_property(np, "qcom,op-freq-hz", &len)) {
dev_info(dev, "qcom,op-freq-hz property not specified\n");
goto out;
}
len = len/sizeof(*clkfreq);
if (len != cnt)
goto out;
clkfreq = devm_kzalloc(dev, len * sizeof(*clkfreq), GFP_KERNEL);
if (!clkfreq) {
ret = -ENOMEM;
goto out;
}
ret = of_property_read_u32_array(np, "qcom,op-freq-hz", clkfreq, len);
INIT_LIST_HEAD(&ice_dev->clk_list_head);
for (i = 0; i < cnt; i++) {
ret = of_property_read_string_index(np,
"clock-names", i, (const char **)&name);
if (ret)
goto out;
clki = devm_kzalloc(dev, sizeof(*clki), GFP_KERNEL);
if (!clki) {
ret = -ENOMEM;
goto out;
}
clki->max_freq = clkfreq[i];
clki->name = kstrdup(name, GFP_KERNEL);
list_add_tail(&clki->list, &ice_dev->clk_list_head);
}
out:
if (clkfreq)
devm_kfree(dev, (void *)clkfreq);
return ret;
}
static int qcom_ice_get_device_tree_data(struct platform_device *pdev,
struct ice_device *ice_dev)
{
struct device *dev = &pdev->dev;
int rc = -1;
int irq;
ice_dev->mmio = NULL;
if (!of_parse_phandle(pdev->dev.of_node, "vdd-hba-supply", 0)) {
pr_err("%s: No vdd-hba-supply regulator, assuming not needed\n",
__func__);
ice_dev->is_regulator_available = false;
} else {
ice_dev->is_regulator_available = true;
}
ice_dev->is_ice_clk_available = of_property_read_bool(
(&pdev->dev)->of_node,
"qcom,enable-ice-clk");
if (ice_dev->is_ice_clk_available) {
rc = qcom_ice_parse_clock_info(pdev, ice_dev);
if (rc) {
pr_err("%s: qcom_ice_parse_clock_info failed (%d)\n",
__func__, rc);
goto err_dev;
}
}
/* ICE interrupts is only relevant for v2.x */
irq = platform_get_irq(pdev, 0);
if (irq >= 0) {
rc = devm_request_irq(dev, irq, qcom_ice_isr, 0, dev_name(dev),
ice_dev);
if (rc) {
pr_err("%s: devm_request_irq irq=%d failed (%d)\n",
__func__, irq, rc);
goto err_dev;
}
ice_dev->irq = irq;
pr_info("ICE IRQ = %d\n", ice_dev->irq);
} else {
dev_dbg(dev, "IRQ resource not available\n");
}
qcom_ice_parse_ice_instance_type(pdev, ice_dev);
return 0;
err_dev:
if (rc && ice_dev->mmio)
devm_iounmap(dev, ice_dev->mmio);
//out:
return rc;
}
/*
* ICE HW instance can exist in UFS or eMMC based storage HW
* Userspace does not know what kind of ICE it is dealing with.
* Though userspace can find which storage device it is booting
* from but all kind of storage types dont support ICE from
* beginning. So ICE device is created for user space to ping
* if ICE exist for that kind of storage
*/
static const struct file_operations qcom_ice_fops = {
.owner = THIS_MODULE,
};
static int register_ice_device(struct ice_device *ice_dev)
{
int rc = 0;
unsigned int baseminor = 0;
unsigned int count = 1;
struct device *class_dev;
int is_sdcc_ice = !strcmp(ice_dev->ice_instance_type, "sdcc");
rc = alloc_chrdev_region(&ice_dev->device_no, baseminor, count,
is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV);
if (rc < 0) {
pr_err("alloc_chrdev_region failed %d for %s\n", rc,
is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV);
return rc;
}
ice_dev->driver_class = class_create(THIS_MODULE,
is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV);
if (IS_ERR(ice_dev->driver_class)) {
rc = -ENOMEM;
pr_err("class_create failed %d for %s\n", rc,
is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV);
goto exit_unreg_chrdev_region;
}
class_dev = device_create(ice_dev->driver_class, NULL,
ice_dev->device_no, NULL,
is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV);
if (!class_dev) {
pr_err("class_device_create failed %d for %s\n", rc,
is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV);
rc = -ENOMEM;
goto exit_destroy_class;
}
cdev_init(&ice_dev->cdev, &qcom_ice_fops);
ice_dev->cdev.owner = THIS_MODULE;
rc = cdev_add(&ice_dev->cdev, MKDEV(MAJOR(ice_dev->device_no), 0), 1);
if (rc < 0) {
pr_err("cdev_add failed %d for %s\n", rc,
is_sdcc_ice ? QCOM_SDCC_ICE_DEV : QCOM_UFS_ICE_DEV);
goto exit_destroy_device;
}
return 0;
exit_destroy_device:
device_destroy(ice_dev->driver_class, ice_dev->device_no);
exit_destroy_class:
class_destroy(ice_dev->driver_class);
exit_unreg_chrdev_region:
unregister_chrdev_region(ice_dev->device_no, 1);
return rc;
}
static int qcom_ice_probe(struct platform_device *pdev)
{
struct ice_device *ice_dev;
int rc = 0;
if (!pdev) {
pr_err("%s: Invalid platform_device passed\n",
__func__);
return -EINVAL;
}
ice_dev = kzalloc(sizeof(struct ice_device), GFP_KERNEL);
if (!ice_dev) {
rc = -ENOMEM;
pr_err("%s: Error %d allocating memory for ICE device:\n",
__func__, rc);
goto out;
}
ice_dev->pdev = &pdev->dev;
if (!ice_dev->pdev) {
rc = -EINVAL;
pr_err("%s: Invalid device passed in platform_device\n",
__func__);
goto err_ice_dev;
}
if (pdev->dev.of_node)
rc = qcom_ice_get_device_tree_data(pdev, ice_dev);
else {
rc = -EINVAL;
pr_err("%s: ICE device node not found\n", __func__);
}
if (rc)
goto err_ice_dev;
pr_debug("%s: Registering ICE device\n", __func__);
rc = register_ice_device(ice_dev);
if (rc) {
pr_err("create character device failed.\n");
goto err_ice_dev;
}
/*
* If ICE is enabled here, it would be waste of power.
* We would enable ICE when first request for crypto
* operation arrives.
*/
rc = qcom_ice_init(ice_dev, NULL, NULL);
if (rc) {
pr_err("create character device failed.\n");
goto err_ice_dev;
}
ice_dev->is_ice_enabled = true;
platform_set_drvdata(pdev, ice_dev);
list_add_tail(&ice_dev->list, &ice_devices);
goto out;
err_ice_dev:
kfree(ice_dev);
out:
return rc;
}
static int qcom_ice_remove(struct platform_device *pdev)
{
struct ice_device *ice_dev;
ice_dev = (struct ice_device *)platform_get_drvdata(pdev);
if (!ice_dev)
return 0;
qcom_ice_disable_intr(ice_dev);
device_init_wakeup(&pdev->dev, false);
if (ice_dev->mmio)
iounmap(ice_dev->mmio);
list_del_init(&ice_dev->list);
kfree(ice_dev);
return 1;
}
static int qcom_ice_suspend(struct platform_device *pdev)
{
struct ice_device *ice_dev;
int ret = 0;
ice_dev = (struct ice_device *)platform_get_drvdata(pdev);
if (!ice_dev)
return -EINVAL;
if (atomic_read(&ice_dev->is_ice_busy) != 0) {
ret = wait_event_interruptible_timeout(
ice_dev->block_suspend_ice_queue,
atomic_read(&ice_dev->is_ice_busy) == 0,
msecs_to_jiffies(1000));
if (!ret) {
pr_err("%s: Suspend ICE during an ongoing operation\n",
__func__);
atomic_set(&ice_dev->is_ice_suspended, 0);
return -ETIME;
}
}
atomic_set(&ice_dev->is_ice_suspended, 1);
return 0;
}
static int qcom_ice_restore_config(void)
{
struct scm_desc desc = {0};
int ret;
/*
* TZ would check KEYS_RAM_RESET_COMPLETED status bit before processing
* restore config command. This would prevent two calls from HLOS to TZ
* One to check KEYS_RAM_RESET_COMPLETED status bit second to restore
* config
*/
desc.arginfo = TZ_OS_KS_RESTORE_KEY_ID_PARAM_ID;
ret = scm_call2(TZ_OS_KS_RESTORE_KEY_ID, &desc);
if (ret)
pr_err("%s: Error: 0x%x\n", __func__, ret);
return ret;
}
static int qcom_ice_restore_key_config(struct ice_device *ice_dev)
{
struct scm_desc desc = {0};
int ret = -1;
/* For ice 3, key configuration needs to be restored in case of reset */
desc.arginfo = TZ_OS_KS_RESTORE_KEY_CONFIG_ID_PARAM_ID;
if (!strcmp(ice_dev->ice_instance_type, "sdcc"))
desc.args[0] = QCOM_ICE_SDCC;
if (!strcmp(ice_dev->ice_instance_type, "ufs"))
desc.args[0] = QCOM_ICE_UFS;
ret = scm_call2(TZ_OS_KS_RESTORE_KEY_CONFIG_ID, &desc);
if (ret)
pr_err("%s: Error: 0x%x\n", __func__, ret);
return ret;
}
static int qcom_ice_init_clocks(struct ice_device *ice)
{
int ret = -EINVAL;
struct ice_clk_info *clki = NULL;
struct device *dev = ice->pdev;
struct list_head *head = &ice->clk_list_head;
if (!head || list_empty(head)) {
dev_err(dev, "%s:ICE Clock list null/empty\n", __func__);
goto out;
}
list_for_each_entry(clki, head, list) {
if (!clki->name)
continue;
clki->clk = devm_clk_get(dev, clki->name);
if (IS_ERR(clki->clk)) {
ret = PTR_ERR(clki->clk);
dev_err(dev, "%s: %s clk get failed, %d\n",
__func__, clki->name, ret);
goto out;
}
/* Not all clocks would have a rate to be set */
ret = 0;
if (clki->max_freq) {
ret = clk_set_rate(clki->clk, clki->max_freq);
if (ret) {
dev_err(dev,
"%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->max_freq, ret);
goto out;
}
clki->curr_freq = clki->max_freq;
dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
clki->name, clk_get_rate(clki->clk));
}
}
out:
return ret;
}
static int qcom_ice_enable_clocks(struct ice_device *ice, bool enable)
{
int ret = 0;
struct ice_clk_info *clki = NULL;
struct device *dev = ice->pdev;
struct list_head *head = &ice->clk_list_head;
if (!head || list_empty(head)) {
dev_err(dev, "%s:ICE Clock list null/empty\n", __func__);
ret = -EINVAL;
goto out;
}
if (!ice->is_ice_clk_available) {
dev_err(dev, "%s:ICE Clock not available\n", __func__);
ret = -EINVAL;
goto out;
}
list_for_each_entry(clki, head, list) {
if (!clki->name)
continue;
if (enable)
ret = clk_prepare_enable(clki->clk);
else
clk_disable_unprepare(clki->clk);
if (ret) {
dev_err(dev, "Unable to %s ICE core clk\n",
enable?"enable":"disable");
goto out;
}
}
out:
return ret;
}
static int qcom_ice_update_sec_cfg(struct ice_device *ice_dev)
{
int ret = 0, scm_ret = 0;
/* scm command buffer structure */
struct qcom_scm_cmd_buf {
unsigned int device_id;
unsigned int spare;
} cbuf = {0};
/*
* Ideally, we should check ICE version to decide whether to proceed or
* or not. Since version wont be available when this function is called
* we need to depend upon is_ice_clk_available to decide
*/
if (ice_dev->is_ice_clk_available)
goto out;
/*
* Store dev_id in ice_device structure so that emmc/ufs cases can be
* handled properly
*/
#define RESTORE_SEC_CFG_CMD 0x2
#define ICE_TZ_DEV_ID 20
cbuf.device_id = ICE_TZ_DEV_ID;
ret = scm_restore_sec_cfg(cbuf.device_id, cbuf.spare, &scm_ret);
if (ret || scm_ret) {
pr_err("%s: failed, ret %d scm_ret %d\n",
__func__, ret, scm_ret);
if (!ret)
ret = scm_ret;
}
out:
return ret;
}
static int qcom_ice_finish_init(struct ice_device *ice_dev)
{
int err = 0;
if (!ice_dev) {
pr_err("%s: Null data received\n", __func__);
err = -ENODEV;
goto out;
}
if (ice_dev->is_ice_clk_available) {
err = qcom_ice_init_clocks(ice_dev);
if (err)
goto out;
err = qcom_ice_bus_register(ice_dev);
if (err)
goto out;
}
/*
* It is possible that ICE device is not probed when host is probed
* This would cause host probe to be deferred. When probe for host is
* deferred, it can cause power collapse for host and that can wipe
* configurations of host & ice. It is prudent to restore the config
*/
err = qcom_ice_update_sec_cfg(ice_dev);
out:
return err;
}
static int qcom_ice_init(struct ice_device *ice_dev,
void *host_controller_data,
ice_error_cb error_cb)
{
/*
* A completion event for host controller would be triggered upon
* initialization completion
* When ICE is initialized, it would put ICE into Global Bypass mode
* When any request for data transfer is received, it would enable
* the ICE for that particular request
*/
ice_dev->error_cb = error_cb;
ice_dev->host_controller_data = host_controller_data;
return qcom_ice_finish_init(ice_dev);
}
static int qcom_ice_finish_power_collapse(struct ice_device *ice_dev)
{
int err = 0;
if (ice_dev->is_ice_disable_fuse_blown) {
err = -EPERM;
goto out;
}
if (ice_dev->is_ice_enabled) {
/*
* ICE resets into global bypass mode with optimization and
* low power mode disabled. Hence we need to redo those seq's.
*/
qcom_ice_low_power_mode_enable(ice_dev);
qcom_ice_enable_test_bus_config(ice_dev);
qcom_ice_optimization_enable(ice_dev);
qcom_ice_enable(ice_dev);
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) == 1) {
/*
* When ICE resets, it wipes all of keys from LUTs
* ICE driver should call TZ to restore keys
*/
if (qcom_ice_restore_config()) {
err = -EFAULT;
goto out;
}
/*
* ICE looses its key configuration when UFS is reset,
* restore it
*/
} else if (ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) {
err = qcom_ice_restore_key_config(ice_dev);
if (err)
goto out;
}
}
ice_dev->ice_reset_complete_time = ktime_get();
out:
return err;
}
static int qcom_ice_resume(struct platform_device *pdev)
{
/*
* ICE is power collapsed when storage controller is power collapsed
* ICE resume function is responsible for:
* ICE HW enabling sequence
* Key restoration
* A completion event should be triggered
* upon resume completion
* Storage driver will be fully operational only
* after receiving this event
*/
struct ice_device *ice_dev;
ice_dev = platform_get_drvdata(pdev);
if (!ice_dev)
return -EINVAL;
if (ice_dev->is_ice_clk_available) {
/*
* Storage is calling this function after power collapse which
* would put ICE into GLOBAL_BYPASS mode. Make sure to enable
* ICE
*/
qcom_ice_enable(ice_dev);
}
atomic_set(&ice_dev->is_ice_suspended, 0);
return 0;
}
static void qcom_ice_dump_test_bus(struct ice_device *ice_dev)
{
u32 reg = 0x1;
u32 val;
u8 bus_selector;
u8 stream_selector;
pr_err("ICE TEST BUS DUMP:\n");
for (bus_selector = 0; bus_selector <= 0xF; bus_selector++) {
reg = 0x1; /* enable test bus */
reg |= bus_selector << 28;
if (bus_selector == 0xD)
continue;
qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_TEST_BUS_CONTROL);
/*
* make sure test bus selector is written before reading
* the test bus register
*/
mb();
val = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_TEST_BUS_REG);
pr_err("ICE_TEST_BUS_CONTROL: 0x%08x | ICE_TEST_BUS_REG: 0x%08x\n",
reg, val);
}
pr_err("ICE TEST BUS DUMP (ICE_STREAM1_DATAPATH_TEST_BUS):\n");
for (stream_selector = 0; stream_selector <= 0xF; stream_selector++) {
reg = 0xD0000001; /* enable stream test bus */
reg |= stream_selector << 16;
qcom_ice_writel(ice_dev, reg, QCOM_ICE_REGS_TEST_BUS_CONTROL);
/*
* make sure test bus selector is written before reading
* the test bus register
*/
mb();
val = qcom_ice_readl(ice_dev, QCOM_ICE_REGS_TEST_BUS_REG);
pr_err("ICE_TEST_BUS_CONTROL: 0x%08x | ICE_TEST_BUS_REG: 0x%08x\n",
reg, val);
}
}
static void qcom_ice_debug(struct platform_device *pdev)
{
struct ice_device *ice_dev;
if (!pdev) {
pr_err("%s: Invalid params passed\n", __func__);
goto out;
}
ice_dev = platform_get_drvdata(pdev);
if (!ice_dev) {
pr_err("%s: No ICE device available\n", __func__);
goto out;
}
if (!ice_dev->is_ice_enabled) {
pr_err("%s: ICE device is not enabled\n", __func__);
goto out;
}
pr_err("%s: =========== REGISTER DUMP (%pK)===========\n",
ice_dev->ice_instance_type, ice_dev);
pr_err("%s: ICE Control: 0x%08x | ICE Reset: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_CONTROL),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_RESET));
pr_err("%s: ICE Version: 0x%08x | ICE FUSE: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_VERSION),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_FUSE_SETTING));
pr_err("%s: ICE Param1: 0x%08x | ICE Param2: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_1),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_2));
pr_err("%s: ICE Param3: 0x%08x | ICE Param4: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_3),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_4));
pr_err("%s: ICE Param5: 0x%08x | ICE IRQ STTS: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_PARAMETERS_5),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_STTS));
pr_err("%s: ICE IRQ MASK: 0x%08x | ICE IRQ CLR: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_MASK),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_NON_SEC_IRQ_CLR));
if (ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) {
pr_err("%s: ICE INVALID CCFG ERR STTS: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev,
QCOM_ICE_INVALID_CCFG_ERR_STTS));
}
if ((ICE_REV(ice_dev->ice_hw_version, MAJOR) > 2) ||
((ICE_REV(ice_dev->ice_hw_version, MAJOR) == 2) &&
(ICE_REV(ice_dev->ice_hw_version, MINOR) >= 1))) {
pr_err("%s: ICE BIST Sts: 0x%08x | ICE Bypass Sts: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BIST_STATUS),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_BYPASS_STATUS));
}
pr_err("%s: ICE ADV CTRL: 0x%08x | ICE ENDIAN SWAP: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ADVANCED_CONTROL),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_ENDIAN_SWAP));
pr_err("%s: ICE_STM1_ERR_SYND1: 0x%08x | ICE_STM1_ERR_SYND2: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_ERROR_SYNDROME1),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_ERROR_SYNDROME2));
pr_err("%s: ICE_STM2_ERR_SYND1: 0x%08x | ICE_STM2_ERR_SYND2: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_ERROR_SYNDROME1),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_ERROR_SYNDROME2));
pr_err("%s: ICE_STM1_COUNTER1: 0x%08x | ICE_STM1_COUNTER2: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS1),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS2));
pr_err("%s: ICE_STM1_COUNTER3: 0x%08x | ICE_STM1_COUNTER4: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS3),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS4));
pr_err("%s: ICE_STM2_COUNTER1: 0x%08x | ICE_STM2_COUNTER2: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS1),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS2));
pr_err("%s: ICE_STM2_COUNTER3: 0x%08x | ICE_STM2_COUNTER4: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS3),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS4));
pr_err("%s: ICE_STM1_CTR5_MSB: 0x%08x | ICE_STM1_CTR5_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS5_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS5_LSB));
pr_err("%s: ICE_STM1_CTR6_MSB: 0x%08x | ICE_STM1_CTR6_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS6_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS6_LSB));
pr_err("%s: ICE_STM1_CTR7_MSB: 0x%08x | ICE_STM1_CTR7_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS7_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS7_LSB));
pr_err("%s: ICE_STM1_CTR8_MSB: 0x%08x | ICE_STM1_CTR8_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS8_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS8_LSB));
pr_err("%s: ICE_STM1_CTR9_MSB: 0x%08x | ICE_STM1_CTR9_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS9_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM1_COUNTERS9_LSB));
pr_err("%s: ICE_STM2_CTR5_MSB: 0x%08x | ICE_STM2_CTR5_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS5_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS5_LSB));
pr_err("%s: ICE_STM2_CTR6_MSB: 0x%08x | ICE_STM2_CTR6_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS6_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS6_LSB));
pr_err("%s: ICE_STM2_CTR7_MSB: 0x%08x | ICE_STM2_CTR7_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS7_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS7_LSB));
pr_err("%s: ICE_STM2_CTR8_MSB: 0x%08x | ICE_STM2_CTR8_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS8_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS8_LSB));
pr_err("%s: ICE_STM2_CTR9_MSB: 0x%08x | ICE_STM2_CTR9_LSB: 0x%08x\n",
ice_dev->ice_instance_type,
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS9_MSB),
qcom_ice_readl(ice_dev, QCOM_ICE_REGS_STREAM2_COUNTERS9_LSB));
qcom_ice_dump_test_bus(ice_dev);
pr_err("%s: ICE reset start time: %llu ICE reset done time: %llu\n",
ice_dev->ice_instance_type,
(unsigned long long)ice_dev->ice_reset_start_time,
(unsigned long long)ice_dev->ice_reset_complete_time);
if (ktime_to_us(ktime_sub(ice_dev->ice_reset_complete_time,
ice_dev->ice_reset_start_time)) > 0)
pr_err("%s: Time taken for reset: %lu\n",
ice_dev->ice_instance_type,
(unsigned long)ktime_to_us(ktime_sub(
ice_dev->ice_reset_complete_time,
ice_dev->ice_reset_start_time)));
out:
return;
}
static int qcom_ice_reset(struct platform_device *pdev)
{
struct ice_device *ice_dev;
ice_dev = platform_get_drvdata(pdev);
if (!ice_dev) {
pr_err("%s: INVALID ice_dev\n", __func__);
return -EINVAL;
}
ice_dev->ice_reset_start_time = ktime_get();
return qcom_ice_finish_power_collapse(ice_dev);
}
int qcom_ice_config_start(struct request *req, struct ice_data_setting *setting)
{
struct ice_crypto_setting ice_data = {0};
unsigned long sec_end = 0;
sector_t data_size;
if (!req) {
pr_err("%s: Invalid params passed\n", __func__);
return -EINVAL;
}
/*
* It is not an error to have a request with no bio
* Such requests must bypass ICE. So first set bypass and then
* return if bio is not available in request
*/
if (setting) {
setting->encr_bypass = true;
setting->decr_bypass = true;
}
if (!req->bio) {
/* It is not an error to have a request with no bio */
return 0;
}
if (ice_fde_flag && req->part && req->part->info
&& req->part->info->volname[0]) {
if (!strcmp(req->part->info->volname, "userdata")) {
sec_end = req->part->start_sect + req->part->nr_sects -
QCOM_UD_FOOTER_SECS;
if ((req->__sector >= req->part->start_sect) &&
(req->__sector < sec_end)) {
/*
* Ugly hack to address non-block-size aligned
* userdata end address in eMMC based devices.
* for eMMC based devices, since sector and
* block sizes are not same i.e. 4K, it is
* possible that partition is not a multiple of
* block size. For UFS based devices sector
* size and block size are same. Hence ensure
* that data is within userdata partition using
* sector based calculation
*/
data_size = req->__data_len /
QCOM_SECT_LEN_IN_BYTE;
if ((req->__sector + data_size) > sec_end)
return 0;
else
return qti_ice_setting_config(req,
&ice_data, setting,
ICE_CRYPTO_CXT_FDE);
}
}
}
/*
* It is not an error. If target is not req-crypt based, all request
* from storage driver would come here to check if there is any ICE
* setting required
*/
return 0;
}
EXPORT_SYMBOL(qcom_ice_config_start);
static int qcom_ice_status(struct platform_device *pdev)
{
struct ice_device *ice_dev;
unsigned int test_bus_reg_status;
if (!pdev) {
pr_err("%s: Invalid params passed\n", __func__);
return -EINVAL;
}
ice_dev = platform_get_drvdata(pdev);
if (!ice_dev)
return -ENODEV;
if (!ice_dev->is_ice_enabled)
return -ENODEV;
test_bus_reg_status = qcom_ice_readl(ice_dev,
QCOM_ICE_REGS_TEST_BUS_REG);
return !!(test_bus_reg_status & QCOM_ICE_TEST_BUS_REG_NON_SECURE_INTR);
}
struct platform_device *qcom_ice_get_pdevice(struct device_node *node)
{
struct platform_device *ice_pdev = NULL;
struct ice_device *ice_dev = NULL;
if (!node) {
pr_err("%s: invalid node %pK", __func__, node);
goto out;
}
if (!of_device_is_available(node)) {
pr_err("%s: device unavailable\n", __func__);
goto out;
}
if (list_empty(&ice_devices)) {
pr_err("%s: invalid device list\n", __func__);
ice_pdev = ERR_PTR(-EPROBE_DEFER);
goto out;
}
list_for_each_entry(ice_dev, &ice_devices, list) {
if (ice_dev->pdev->of_node == node) {
pr_info("%s: found ice device %pK\n", __func__,
ice_dev);
ice_pdev = to_platform_device(ice_dev->pdev);
break;
}
}
if (ice_pdev)
pr_info("%s: matching platform device %pK\n", __func__,
ice_pdev);
out:
return ice_pdev;
}
static struct ice_device *get_ice_device_from_storage_type
(const char *storage_type)
{
struct ice_device *ice_dev = NULL;
if (list_empty(&ice_devices)) {
pr_err("%s: invalid device list\n", __func__);
ice_dev = ERR_PTR(-EPROBE_DEFER);
goto out;
}
list_for_each_entry(ice_dev, &ice_devices, list) {
if (!strcmp(ice_dev->ice_instance_type, storage_type)) {
pr_debug("%s: ice device %pK\n", __func__, ice_dev);
return ice_dev;
}
}
out:
return NULL;
}
static int enable_ice_setup(struct ice_device *ice_dev)
{
int ret = -1, vote;
/* Setup Regulator */
if (ice_dev->is_regulator_available) {
if (qcom_ice_get_vreg(ice_dev)) {
pr_err("%s: Could not get regulator\n", __func__);
goto out;
}
ret = regulator_enable(ice_dev->reg);
if (ret) {
pr_err("%s:%pK: Could not enable regulator\n",
__func__, ice_dev);
goto out;
}
}
/* Setup Clocks */
if (qcom_ice_enable_clocks(ice_dev, true)) {
pr_err("%s:%pK:%s Could not enable clocks\n", __func__,
ice_dev, ice_dev->ice_instance_type);
goto out_reg;
}
/* Setup Bus Vote */
vote = qcom_ice_get_bus_vote(ice_dev, "MAX");
if (vote < 0)
goto out_clocks;
ret = qcom_ice_set_bus_vote(ice_dev, vote);
if (ret) {
pr_err("%s:%pK: failed %d\n", __func__, ice_dev, ret);
goto out_clocks;
}
return ret;
out_clocks:
qcom_ice_enable_clocks(ice_dev, false);
out_reg:
if (ice_dev->is_regulator_available) {
if (qcom_ice_get_vreg(ice_dev)) {
pr_err("%s: Could not get regulator\n", __func__);
goto out;
}
ret = regulator_disable(ice_dev->reg);
if (ret) {
pr_err("%s:%pK: Could not disable regulator\n",
__func__, ice_dev);
goto out;
}
}
out:
return ret;
}
static int disable_ice_setup(struct ice_device *ice_dev)
{
int ret = -1, vote;
/* Setup Bus Vote */
vote = qcom_ice_get_bus_vote(ice_dev, "MIN");
if (vote < 0) {
pr_err("%s:%pK: Unable to get bus vote\n", __func__, ice_dev);
goto out_disable_clocks;
}
ret = qcom_ice_set_bus_vote(ice_dev, vote);
if (ret)
pr_err("%s:%pK: failed %d\n", __func__, ice_dev, ret);
out_disable_clocks:
/* Setup Clocks */
if (qcom_ice_enable_clocks(ice_dev, false))
pr_err("%s:%pK:%s Could not disable clocks\n", __func__,
ice_dev, ice_dev->ice_instance_type);
/* Setup Regulator */
if (ice_dev->is_regulator_available) {
if (qcom_ice_get_vreg(ice_dev)) {
pr_err("%s: Could not get regulator\n", __func__);
goto out;
}
ret = regulator_disable(ice_dev->reg);
if (ret) {
pr_err("%s:%pK: Could not disable regulator\n",
__func__, ice_dev);
goto out;
}
}
out:
return ret;
}
int qcom_ice_setup_ice_hw(const char *storage_type, int enable)
{
int ret = -1;
struct ice_device *ice_dev = NULL;
ice_dev = get_ice_device_from_storage_type(storage_type);
if (ice_dev == ERR_PTR(-EPROBE_DEFER))
return -EPROBE_DEFER;
if (!ice_dev || (ice_dev->is_ice_enabled == false))
return ret;
if (enable)
return enable_ice_setup(ice_dev);
else
return disable_ice_setup(ice_dev);
}
static struct qcom_ice_variant_ops qcom_ice_ops = {
.name = "qcom",
.reset = qcom_ice_reset,
.resume = qcom_ice_resume,
.suspend = qcom_ice_suspend,
.config_start = qcom_ice_config_start,
.status = qcom_ice_status,
.debug = qcom_ice_debug,
};
struct qcom_ice_variant_ops *qcom_ice_get_variant_ops(struct device_node *node)
{
return &qcom_ice_ops;
}
EXPORT_SYMBOL(qcom_ice_get_variant_ops);
/* Following struct is required to match device with driver from dts file */
static const struct of_device_id qcom_ice_match[] = {
{ .compatible = "qcom,ice" },
{},
};
MODULE_DEVICE_TABLE(of, qcom_ice_match);
static struct platform_driver qcom_ice_driver = {
.probe = qcom_ice_probe,
.remove = qcom_ice_remove,
.driver = {
.owner = THIS_MODULE,
.name = "qcom_ice",
.of_match_table = qcom_ice_match,
},
};
module_platform_driver(qcom_ice_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("QTI Inline Crypto Engine driver");