You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
4.3 KiB
156 lines
4.3 KiB
/*
|
|
* arch/sh/boards/dreamcast/irq.c
|
|
*
|
|
* Holly IRQ support for the Sega Dreamcast.
|
|
*
|
|
* Copyright (c) 2001, 2002 M. R. Brown <mrbrown@0xd6.org>
|
|
*
|
|
* This file is part of the LinuxDC project (www.linuxdc.org)
|
|
* Released under the terms of the GNU GPL v2.0
|
|
*/
|
|
#include <linux/irq.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/export.h>
|
|
#include <linux/err.h>
|
|
#include <mach/sysasic.h>
|
|
|
|
/*
|
|
* Dreamcast System ASIC Hardware Events -
|
|
*
|
|
* The Dreamcast's System ASIC (a.k.a. Holly) is responsible for receiving
|
|
* hardware events from system peripherals and triggering an SH7750 IRQ.
|
|
* Hardware events can trigger IRQs 13, 11, or 9 depending on which bits are
|
|
* set in the Event Mask Registers (EMRs). When a hardware event is
|
|
* triggered, its corresponding bit in the Event Status Registers (ESRs)
|
|
* is set, and that bit should be rewritten to the ESR to acknowledge that
|
|
* event.
|
|
*
|
|
* There are three 32-bit ESRs located at 0xa05f6900 - 0xa05f6908. Event
|
|
* types can be found in arch/sh/include/mach-dreamcast/mach/sysasic.h.
|
|
* There are three groups of EMRs that parallel the ESRs. Each EMR group
|
|
* corresponds to an IRQ, so 0xa05f6910 - 0xa05f6918 triggers IRQ 13,
|
|
* 0xa05f6920 - 0xa05f6928 triggers IRQ 11, and 0xa05f6930 - 0xa05f6938
|
|
* triggers IRQ 9.
|
|
*
|
|
* In the kernel, these events are mapped to virtual IRQs so that drivers can
|
|
* respond to them as they would a normal interrupt. In order to keep this
|
|
* mapping simple, the events are mapped as:
|
|
*
|
|
* 6900/6910 - Events 0-31, IRQ 13
|
|
* 6904/6924 - Events 32-63, IRQ 11
|
|
* 6908/6938 - Events 64-95, IRQ 9
|
|
*
|
|
*/
|
|
|
|
#define ESR_BASE 0x005f6900 /* Base event status register */
|
|
#define EMR_BASE 0x005f6910 /* Base event mask register */
|
|
|
|
/*
|
|
* Helps us determine the EMR group that this event belongs to: 0 = 0x6910,
|
|
* 1 = 0x6920, 2 = 0x6930; also determine the event offset.
|
|
*/
|
|
#define LEVEL(event) (((event) - HW_EVENT_IRQ_BASE) / 32)
|
|
|
|
/* Return the hardware event's bit position within the EMR/ESR */
|
|
#define EVENT_BIT(event) (((event) - HW_EVENT_IRQ_BASE) & 31)
|
|
|
|
/*
|
|
* For each of these *_irq routines, the IRQ passed in is the virtual IRQ
|
|
* (logically mapped to the corresponding bit for the hardware event).
|
|
*/
|
|
|
|
/* Disable the hardware event by masking its bit in its EMR */
|
|
static inline void disable_systemasic_irq(struct irq_data *data)
|
|
{
|
|
unsigned int irq = data->irq;
|
|
__u32 emr = EMR_BASE + (LEVEL(irq) << 4) + (LEVEL(irq) << 2);
|
|
__u32 mask;
|
|
|
|
mask = inl(emr);
|
|
mask &= ~(1 << EVENT_BIT(irq));
|
|
outl(mask, emr);
|
|
}
|
|
|
|
/* Enable the hardware event by setting its bit in its EMR */
|
|
static inline void enable_systemasic_irq(struct irq_data *data)
|
|
{
|
|
unsigned int irq = data->irq;
|
|
__u32 emr = EMR_BASE + (LEVEL(irq) << 4) + (LEVEL(irq) << 2);
|
|
__u32 mask;
|
|
|
|
mask = inl(emr);
|
|
mask |= (1 << EVENT_BIT(irq));
|
|
outl(mask, emr);
|
|
}
|
|
|
|
/* Acknowledge a hardware event by writing its bit back to its ESR */
|
|
static void mask_ack_systemasic_irq(struct irq_data *data)
|
|
{
|
|
unsigned int irq = data->irq;
|
|
__u32 esr = ESR_BASE + (LEVEL(irq) << 2);
|
|
disable_systemasic_irq(data);
|
|
outl((1 << EVENT_BIT(irq)), esr);
|
|
}
|
|
|
|
struct irq_chip systemasic_int = {
|
|
.name = "System ASIC",
|
|
.irq_mask = disable_systemasic_irq,
|
|
.irq_mask_ack = mask_ack_systemasic_irq,
|
|
.irq_unmask = enable_systemasic_irq,
|
|
};
|
|
|
|
/*
|
|
* Map the hardware event indicated by the processor IRQ to a virtual IRQ.
|
|
*/
|
|
int systemasic_irq_demux(int irq)
|
|
{
|
|
__u32 emr, esr, status, level;
|
|
__u32 j, bit;
|
|
|
|
switch (irq) {
|
|
case 13:
|
|
level = 0;
|
|
break;
|
|
case 11:
|
|
level = 1;
|
|
break;
|
|
case 9:
|
|
level = 2;
|
|
break;
|
|
default:
|
|
return irq;
|
|
}
|
|
emr = EMR_BASE + (level << 4) + (level << 2);
|
|
esr = ESR_BASE + (level << 2);
|
|
|
|
/* Mask the ESR to filter any spurious, unwanted interrupts */
|
|
status = inl(esr);
|
|
status &= inl(emr);
|
|
|
|
/* Now scan and find the first set bit as the event to map */
|
|
for (bit = 1, j = 0; j < 32; bit <<= 1, j++) {
|
|
if (status & bit) {
|
|
irq = HW_EVENT_IRQ_BASE + j + (level << 5);
|
|
return irq;
|
|
}
|
|
}
|
|
|
|
/* Not reached */
|
|
return irq;
|
|
}
|
|
|
|
void systemasic_irq_init(void)
|
|
{
|
|
int irq_base, i;
|
|
|
|
irq_base = irq_alloc_descs(HW_EVENT_IRQ_BASE, HW_EVENT_IRQ_BASE,
|
|
HW_EVENT_IRQ_MAX - HW_EVENT_IRQ_BASE, -1);
|
|
if (IS_ERR_VALUE(irq_base)) {
|
|
pr_err("%s: failed hooking irqs\n", __func__);
|
|
return;
|
|
}
|
|
|
|
for (i = HW_EVENT_IRQ_BASE; i < HW_EVENT_IRQ_MAX; i++)
|
|
irq_set_chip_and_handler(i, &systemasic_int, handle_level_irq);
|
|
}
|
|
|