/* * wm8994-core.c -- Device access for Wolfson WM8994 * * Copyright 2009 Wolfson Microelectronics PLC. * * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/mfd/core.h> #include <linux/regulator/consumer.h> #include <linux/regulator/machine.h> #include <linux/mfd/wm8994/core.h> #include <linux/mfd/wm8994/pdata.h> #include <linux/mfd/wm8994/registers.h> static int wm8994_read(struct wm8994 *wm8994, unsigned short reg, int bytes, void *dest) { int ret, i; u16 *buf = dest; BUG_ON(bytes % 2); BUG_ON(bytes <= 0); ret = wm8994->read_dev(wm8994, reg, bytes, dest); if (ret < 0) return ret; for (i = 0; i < bytes / 2; i++) { buf[i] = be16_to_cpu(buf[i]); dev_vdbg(wm8994->dev, "Read %04x from R%d(0x%x)\n", buf[i], reg + i, reg + i); } return 0; } /** * wm8994_reg_read: Read a single WM8994 register. * * @wm8994: Device to read from. * @reg: Register to read. */ int wm8994_reg_read(struct wm8994 *wm8994, unsigned short reg) { unsigned short val; int ret; mutex_lock(&wm8994->io_lock); ret = wm8994_read(wm8994, reg, 2, &val); mutex_unlock(&wm8994->io_lock); if (ret < 0) return ret; else return val; } EXPORT_SYMBOL_GPL(wm8994_reg_read); /** * wm8994_bulk_read: Read multiple WM8994 registers * * @wm8994: Device to read from * @reg: First register * @count: Number of registers * @buf: Buffer to fill. */ int wm8994_bulk_read(struct wm8994 *wm8994, unsigned short reg, int count, u16 *buf) { int ret; mutex_lock(&wm8994->io_lock); ret = wm8994_read(wm8994, reg, count * 2, buf); mutex_unlock(&wm8994->io_lock); return ret; } EXPORT_SYMBOL_GPL(wm8994_bulk_read); static int wm8994_write(struct wm8994 *wm8994, unsigned short reg, int bytes, void *src) { u16 *buf = src; int i; BUG_ON(bytes % 2); BUG_ON(bytes <= 0); for (i = 0; i < bytes / 2; i++) { dev_vdbg(wm8994->dev, "Write %04x to R%d(0x%x)\n", buf[i], reg + i, reg + i); buf[i] = cpu_to_be16(buf[i]); } return wm8994->write_dev(wm8994, reg, bytes, src); } /** * wm8994_reg_write: Write a single WM8994 register. * * @wm8994: Device to write to. * @reg: Register to write to. * @val: Value to write. */ int wm8994_reg_write(struct wm8994 *wm8994, unsigned short reg, unsigned short val) { int ret; mutex_lock(&wm8994->io_lock); ret = wm8994_write(wm8994, reg, 2, &val); mutex_unlock(&wm8994->io_lock); return ret; } EXPORT_SYMBOL_GPL(wm8994_reg_write); /** * wm8994_set_bits: Set the value of a bitfield in a WM8994 register * * @wm8994: Device to write to. * @reg: Register to write to. * @mask: Mask of bits to set. * @val: Value to set (unshifted) */ int wm8994_set_bits(struct wm8994 *wm8994, unsigned short reg, unsigned short mask, unsigned short val) { int ret; u16 r; mutex_lock(&wm8994->io_lock); ret = wm8994_read(wm8994, reg, 2, &r); if (ret < 0) goto out; r &= ~mask; r |= val; ret = wm8994_write(wm8994, reg, 2, &r); out: mutex_unlock(&wm8994->io_lock); return ret; } EXPORT_SYMBOL_GPL(wm8994_set_bits); static struct mfd_cell wm8994_regulator_devs[] = { { .name = "wm8994-ldo", .id = 1 }, { .name = "wm8994-ldo", .id = 2 }, }; static struct mfd_cell wm8994_devs[] = { { .name = "wm8994-codec" }, { .name = "wm8994-gpio" }, }; /* * Supplies for the main bulk of CODEC; the LDO supplies are ignored * and should be handled via the standard regulator API supply * management. */ static const char *wm8994_main_supplies[] = { "DBVDD", "DCVDD", "AVDD1", "AVDD2", "CPVDD", "SPKVDD1", "SPKVDD2", }; #ifdef CONFIG_PM static int wm8994_device_suspend(struct device *dev) { struct wm8994 *wm8994 = dev_get_drvdata(dev); int ret; /* GPIO configuration state is saved here since we may be configuring * the GPIO alternate functions even if we're not using the gpiolib * driver for them. */ ret = wm8994_read(wm8994, WM8994_GPIO_1, WM8994_NUM_GPIO_REGS * 2, &wm8994->gpio_regs); if (ret < 0) dev_err(dev, "Failed to save GPIO registers: %d\n", ret); /* For similar reasons we also stash the regulator states */ ret = wm8994_read(wm8994, WM8994_LDO_1, WM8994_NUM_LDO_REGS * 2, &wm8994->ldo_regs); if (ret < 0) dev_err(dev, "Failed to save LDO registers: %d\n", ret); ret = regulator_bulk_disable(ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); if (ret != 0) { dev_err(dev, "Failed to disable supplies: %d\n", ret); return ret; } return 0; } static int wm8994_device_resume(struct device *dev) { struct wm8994 *wm8994 = dev_get_drvdata(dev); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); if (ret != 0) { dev_err(dev, "Failed to enable supplies: %d\n", ret); return ret; } ret = wm8994_write(wm8994, WM8994_LDO_1, WM8994_NUM_LDO_REGS * 2, &wm8994->ldo_regs); if (ret < 0) dev_err(dev, "Failed to restore LDO registers: %d\n", ret); ret = wm8994_write(wm8994, WM8994_GPIO_1, WM8994_NUM_GPIO_REGS * 2, &wm8994->gpio_regs); if (ret < 0) dev_err(dev, "Failed to restore GPIO registers: %d\n", ret); return 0; } #endif #ifdef CONFIG_REGULATOR static int wm8994_ldo_in_use(struct wm8994_pdata *pdata, int ldo) { struct wm8994_ldo_pdata *ldo_pdata; if (!pdata) return 0; ldo_pdata = &pdata->ldo[ldo]; if (!ldo_pdata->init_data) return 0; return ldo_pdata->init_data->num_consumer_supplies != 0; } #else static int wm8994_ldo_in_use(struct wm8994_pdata *pdata, int ldo) { return 0; } #endif /* * Instantiate the generic non-control parts of the device. */ static int wm8994_device_init(struct wm8994 *wm8994, unsigned long id, int irq) { struct wm8994_pdata *pdata = wm8994->dev->platform_data; int ret, i; mutex_init(&wm8994->io_lock); dev_set_drvdata(wm8994->dev, wm8994); /* Add the on-chip regulators first for bootstrapping */ ret = mfd_add_devices(wm8994->dev, -1, wm8994_regulator_devs, ARRAY_SIZE(wm8994_regulator_devs), NULL, 0); if (ret != 0) { dev_err(wm8994->dev, "Failed to add children: %d\n", ret); goto err; } wm8994->supplies = kzalloc(sizeof(struct regulator_bulk_data) * ARRAY_SIZE(wm8994_main_supplies), GFP_KERNEL); if (!wm8994->supplies) goto err; for (i = 0; i < ARRAY_SIZE(wm8994_main_supplies); i++) wm8994->supplies[i].supply = wm8994_main_supplies[i]; ret = regulator_bulk_get(wm8994->dev, ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); if (ret != 0) { dev_err(wm8994->dev, "Failed to get supplies: %d\n", ret); goto err_supplies; } ret = regulator_bulk_enable(ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); if (ret != 0) { dev_err(wm8994->dev, "Failed to enable supplies: %d\n", ret); goto err_get; } ret = wm8994_reg_read(wm8994, WM8994_SOFTWARE_RESET); if (ret < 0) { dev_err(wm8994->dev, "Failed to read ID register\n"); goto err_enable; } if (ret != 0x8994) { dev_err(wm8994->dev, "Device is not a WM8994, ID is %x\n", ret); ret = -EINVAL; goto err_enable; } ret = wm8994_reg_read(wm8994, WM8994_CHIP_REVISION); if (ret < 0) { dev_err(wm8994->dev, "Failed to read revision register: %d\n", ret); goto err_enable; } switch (ret) { case 0: case 1: dev_warn(wm8994->dev, "revision %c not fully supported\n", 'A' + ret); break; default: dev_info(wm8994->dev, "revision %c\n", 'A' + ret); break; } if (pdata) { wm8994->gpio_base = pdata->gpio_base; /* GPIO configuration is only applied if it's non-zero */ for (i = 0; i < ARRAY_SIZE(pdata->gpio_defaults); i++) { if (pdata->gpio_defaults[i]) { wm8994_set_bits(wm8994, WM8994_GPIO_1 + i, 0xffff, pdata->gpio_defaults[i]); } } } /* In some system designs where the regulators are not in use, * we can achieve a small reduction in leakage currents by * floating LDO outputs. This bit makes no difference if the * LDOs are enabled, it only affects cases where the LDOs were * in operation and are then disabled. */ for (i = 0; i < WM8994_NUM_LDO_REGS; i++) { if (wm8994_ldo_in_use(pdata, i)) wm8994_set_bits(wm8994, WM8994_LDO_1 + i, WM8994_LDO1_DISCH, WM8994_LDO1_DISCH); else wm8994_set_bits(wm8994, WM8994_LDO_1 + i, WM8994_LDO1_DISCH, 0); } ret = mfd_add_devices(wm8994->dev, -1, wm8994_devs, ARRAY_SIZE(wm8994_devs), NULL, 0); if (ret != 0) { dev_err(wm8994->dev, "Failed to add children: %d\n", ret); goto err_enable; } return 0; err_enable: regulator_bulk_disable(ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); err_get: regulator_bulk_free(ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); err_supplies: kfree(wm8994->supplies); err: mfd_remove_devices(wm8994->dev); kfree(wm8994); return ret; } static void wm8994_device_exit(struct wm8994 *wm8994) { mfd_remove_devices(wm8994->dev); regulator_bulk_disable(ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); regulator_bulk_free(ARRAY_SIZE(wm8994_main_supplies), wm8994->supplies); kfree(wm8994->supplies); kfree(wm8994); } static int wm8994_i2c_read_device(struct wm8994 *wm8994, unsigned short reg, int bytes, void *dest) { struct i2c_client *i2c = wm8994->control_data; int ret; u16 r = cpu_to_be16(reg); ret = i2c_master_send(i2c, (unsigned char *)&r, 2); if (ret < 0) return ret; if (ret != 2) return -EIO; ret = i2c_master_recv(i2c, dest, bytes); if (ret < 0) return ret; if (ret != bytes) return -EIO; return 0; } /* Currently we allocate the write buffer on the stack; this is OK for * small writes - if we need to do large writes this will need to be * revised. */ static int wm8994_i2c_write_device(struct wm8994 *wm8994, unsigned short reg, int bytes, void *src) { struct i2c_client *i2c = wm8994->control_data; unsigned char msg[bytes + 2]; int ret; reg = cpu_to_be16(reg); memcpy(&msg[0], ®, 2); memcpy(&msg[2], src, bytes); ret = i2c_master_send(i2c, msg, bytes + 2); if (ret < 0) return ret; if (ret < bytes + 2) return -EIO; return 0; } static int wm8994_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct wm8994 *wm8994; wm8994 = kzalloc(sizeof(struct wm8994), GFP_KERNEL); if (wm8994 == NULL) { kfree(i2c); return -ENOMEM; } i2c_set_clientdata(i2c, wm8994); wm8994->dev = &i2c->dev; wm8994->control_data = i2c; wm8994->read_dev = wm8994_i2c_read_device; wm8994->write_dev = wm8994_i2c_write_device; return wm8994_device_init(wm8994, id->driver_data, i2c->irq); } static int wm8994_i2c_remove(struct i2c_client *i2c) { struct wm8994 *wm8994 = i2c_get_clientdata(i2c); wm8994_device_exit(wm8994); return 0; } #ifdef CONFIG_PM static int wm8994_i2c_suspend(struct i2c_client *i2c, pm_message_t state) { return wm8994_device_suspend(&i2c->dev); } static int wm8994_i2c_resume(struct i2c_client *i2c) { return wm8994_device_resume(&i2c->dev); } #else #define wm8994_i2c_suspend NULL #define wm8994_i2c_resume NULL #endif static const struct i2c_device_id wm8994_i2c_id[] = { { "wm8994", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, wm8994_i2c_id); static struct i2c_driver wm8994_i2c_driver = { .driver = { .name = "wm8994", .owner = THIS_MODULE, }, .probe = wm8994_i2c_probe, .remove = wm8994_i2c_remove, .suspend = wm8994_i2c_suspend, .resume = wm8994_i2c_resume, .id_table = wm8994_i2c_id, }; static int __init wm8994_i2c_init(void) { int ret; ret = i2c_add_driver(&wm8994_i2c_driver); if (ret != 0) pr_err("Failed to register wm8994 I2C driver: %d\n", ret); return ret; } module_init(wm8994_i2c_init); static void __exit wm8994_i2c_exit(void) { i2c_del_driver(&wm8994_i2c_driver); } module_exit(wm8994_i2c_exit); MODULE_DESCRIPTION("Core support for the WM8994 audio CODEC"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");