/* * Aic94xx SAS/SATA driver SCB management. * * Copyright (C) 2005 Adaptec, Inc. All rights reserved. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> * * This file is licensed under GPLv2. * * This file is part of the aic94xx driver. * * The aic94xx driver is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of the * License. * * The aic94xx driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the aic94xx driver; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include <scsi/scsi_host.h> #include "aic94xx.h" #include "aic94xx_reg.h" #include "aic94xx_hwi.h" #include "aic94xx_seq.h" #include "aic94xx_dump.h" /* ---------- EMPTY SCB ---------- */ #define DL_PHY_MASK 7 #define BYTES_DMAED 0 #define PRIMITIVE_RECVD 0x08 #define PHY_EVENT 0x10 #define LINK_RESET_ERROR 0x18 #define TIMER_EVENT 0x20 #define REQ_TASK_ABORT 0xF0 #define REQ_DEVICE_RESET 0xF1 #define SIGNAL_NCQ_ERROR 0xF2 #define CLEAR_NCQ_ERROR 0xF3 #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \ | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \ | CURRENT_OOB_ERROR) static inline void get_lrate_mode(struct asd_phy *phy, u8 oob_mode) { struct sas_phy *sas_phy = phy->sas_phy.phy; switch (oob_mode & 7) { case PHY_SPEED_60: /* FIXME: sas transport class doesn't have this */ phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; break; case PHY_SPEED_30: phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; break; case PHY_SPEED_15: phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; break; } sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS; sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate; sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate; if (oob_mode & SAS_MODE) phy->sas_phy.oob_mode = SAS_OOB_MODE; else if (oob_mode & SATA_MODE) phy->sas_phy.oob_mode = SATA_OOB_MODE; } static inline void asd_phy_event_tasklet(struct asd_ascb *ascb, struct done_list_struct *dl) { struct asd_ha_struct *asd_ha = ascb->ha; struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; int phy_id = dl->status_block[0] & DL_PHY_MASK; struct asd_phy *phy = &asd_ha->phys[phy_id]; u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS; u8 oob_mode = dl->status_block[2]; switch (oob_status) { case CURRENT_LOSS_OF_SIGNAL: /* directly attached device was removed */ ASD_DPRINTK("phy%d: device unplugged\n", phy_id); asd_turn_led(asd_ha, phy_id, 0); sas_phy_disconnected(&phy->sas_phy); sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL); break; case CURRENT_OOB_DONE: /* hot plugged device */ asd_turn_led(asd_ha, phy_id, 1); get_lrate_mode(phy, oob_mode); ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n", phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto); sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); break; case CURRENT_SPINUP_HOLD: /* hot plug SATA, no COMWAKE sent */ asd_turn_led(asd_ha, phy_id, 1); sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD); break; case CURRENT_GTO_TIMEOUT: case CURRENT_OOB_ERROR: ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id, dl->status_block[1]); asd_turn_led(asd_ha, phy_id, 0); sas_phy_disconnected(&phy->sas_phy); sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR); break; } } /* If phys are enabled sparsely, this will do the right thing. */ static inline unsigned ord_phy(struct asd_ha_struct *asd_ha, struct asd_phy *phy) { u8 enabled_mask = asd_ha->hw_prof.enabled_phys; int i, k = 0; for_each_phy(enabled_mask, enabled_mask, i) { if (&asd_ha->phys[i] == phy) return k; k++; } return 0; } /** * asd_get_attached_sas_addr -- extract/generate attached SAS address * phy: pointer to asd_phy * sas_addr: pointer to buffer where the SAS address is to be written * * This function extracts the SAS address from an IDENTIFY frame * received. If OOB is SATA, then a SAS address is generated from the * HA tables. * * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame * buffer. */ static inline void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr) { if (phy->sas_phy.frame_rcvd[0] == 0x34 && phy->sas_phy.oob_mode == SATA_OOB_MODE) { struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha; /* FIS device-to-host */ u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr); addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy); *(__be64 *)sas_addr = cpu_to_be64(addr); } else { struct sas_identify_frame *idframe = (void *) phy->sas_phy.frame_rcvd; memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); } } static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy) { int i; struct asd_port *free_port = NULL; struct asd_port *port; struct asd_sas_phy *sas_phy = &phy->sas_phy; unsigned long flags; spin_lock_irqsave(&asd_ha->asd_ports_lock, flags); if (!phy->asd_port) { for (i = 0; i < ASD_MAX_PHYS; i++) { port = &asd_ha->asd_ports[i]; /* Check for wide port */ if (port->num_phys > 0 && memcmp(port->sas_addr, sas_phy->sas_addr, SAS_ADDR_SIZE) == 0 && memcmp(port->attached_sas_addr, sas_phy->attached_sas_addr, SAS_ADDR_SIZE) == 0) { break; } /* Find a free port */ if (port->num_phys == 0 && free_port == NULL) { free_port = port; } } /* Use a free port if this doesn't form a wide port */ if (i >= ASD_MAX_PHYS) { port = free_port; BUG_ON(!port); memcpy(port->sas_addr, sas_phy->sas_addr, SAS_ADDR_SIZE); memcpy(port->attached_sas_addr, sas_phy->attached_sas_addr, SAS_ADDR_SIZE); } port->num_phys++; port->phy_mask |= (1U << sas_phy->id); phy->asd_port = port; } ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n", __FUNCTION__, phy->asd_port->phy_mask, sas_phy->id); asd_update_port_links(asd_ha, phy); spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags); } static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy) { struct asd_port *port = phy->asd_port; struct asd_sas_phy *sas_phy = &phy->sas_phy; unsigned long flags; spin_lock_irqsave(&asd_ha->asd_ports_lock, flags); if (port) { port->num_phys--; port->phy_mask &= ~(1U << sas_phy->id); phy->asd_port = NULL; } spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags); } static inline void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb, struct done_list_struct *dl, int edb_id, int phy_id) { unsigned long flags; int edb_el = edb_id + ascb->edb_index; struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el]; struct asd_phy *phy = &ascb->ha->phys[phy_id]; struct sas_ha_struct *sas_ha = phy->sas_phy.ha; u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2]; size = min(size, (u16) sizeof(phy->frame_rcvd)); spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size); phy->sas_phy.frame_rcvd_size = size; asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); asd_dump_frame_rcvd(phy, dl); asd_form_port(ascb->ha, phy); sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED); } static inline void asd_link_reset_err_tasklet(struct asd_ascb *ascb, struct done_list_struct *dl, int phy_id) { struct asd_ha_struct *asd_ha = ascb->ha; struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; struct asd_phy *phy = &asd_ha->phys[phy_id]; u8 lr_error = dl->status_block[1]; u8 retries_left = dl->status_block[2]; switch (lr_error) { case 0: ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id); break; case 1: ASD_DPRINTK("phy%d: Loss of signal\n", phy_id); break; case 2: ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id); break; case 3: ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id); break; default: ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n", phy_id, lr_error); break; } asd_turn_led(asd_ha, phy_id, 0); sas_phy_disconnected(sas_phy); asd_deform_port(asd_ha, phy); sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); if (retries_left == 0) { int num = 1; struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num, GFP_ATOMIC); if (!cp) { asd_printk("%s: out of memory\n", __FUNCTION__); goto out; } ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n", phy_id); asd_build_control_phy(cp, phy_id, ENABLE_PHY); if (asd_post_ascb_list(ascb->ha, cp, 1) != 0) asd_ascb_free(cp); } out: ; } static inline void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb, struct done_list_struct *dl, int phy_id) { unsigned long flags; struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha; struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; struct asd_ha_struct *asd_ha = ascb->ha; struct asd_phy *phy = &asd_ha->phys[phy_id]; u8 reg = dl->status_block[1]; u32 cont = dl->status_block[2] << ((reg & 3)*8); reg &= ~3; switch (reg) { case LmPRMSTAT0BYTE0: switch (cont) { case LmBROADCH: case LmBROADRVCH0: case LmBROADRVCH1: case LmBROADSES: ASD_DPRINTK("phy%d: BROADCAST change received:%d\n", phy_id, cont); spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); sas_phy->sas_prim = ffs(cont); spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD); break; case LmUNKNOWNP: ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id); break; default: ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n", phy_id, reg, cont); break; } break; case LmPRMSTAT1BYTE0: switch (cont) { case LmHARDRST: ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n", phy_id); /* The sequencer disables all phys on that port. * We have to re-enable the phys ourselves. */ asd_deform_port(asd_ha, phy); sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET); break; default: ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n", phy_id, reg, cont); break; } break; default: ASD_DPRINTK("unknown primitive register:0x%x\n", dl->status_block[1]); break; } } /** * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB * @ascb: pointer to Empty SCB * @edb_id: index [0,6] to the empty data buffer which is to be invalidated * * After an EDB has been invalidated, if all EDBs in this ESCB have been * invalidated, the ESCB is posted back to the sequencer. * Context is tasklet/IRQ. */ void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id) { struct asd_seq_data *seq = &ascb->ha->seq; struct empty_scb *escb = &ascb->scb->escb; struct sg_el *eb = &escb->eb[edb_id]; struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id]; memset(edb->vaddr, 0, ASD_EDB_SIZE); eb->flags |= ELEMENT_NOT_VALID; escb->num_valid--; if (escb->num_valid == 0) { int i; /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, " "dma_handle: 0x%08llx, next: 0x%08llx, " "index:%d, opcode:0x%02x\n", ascb->dma_scb.vaddr, (u64)ascb->dma_scb.dma_handle, le64_to_cpu(ascb->scb->header.next_scb), le16_to_cpu(ascb->scb->header.index), ascb->scb->header.opcode); */ escb->num_valid = ASD_EDBS_PER_SCB; for (i = 0; i < ASD_EDBS_PER_SCB; i++) escb->eb[i].flags = 0; if (!list_empty(&ascb->list)) list_del_init(&ascb->list); i = asd_post_escb_list(ascb->ha, ascb, 1); if (i) asd_printk("couldn't post escb, err:%d\n", i); } } static void escb_tasklet_complete(struct asd_ascb *ascb, struct done_list_struct *dl) { struct asd_ha_struct *asd_ha = ascb->ha; struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */ u8 sb_opcode = dl->status_block[0]; int phy_id = sb_opcode & DL_PHY_MASK; struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; struct asd_phy *phy = &asd_ha->phys[phy_id]; if (edb > 6 || edb < 0) { ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n", edb, dl->opcode); ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n", sb_opcode, phy_id); ASD_DPRINTK("escb: vaddr: 0x%p, " "dma_handle: 0x%llx, next: 0x%llx, " "index:%d, opcode:0x%02x\n", ascb->dma_scb.vaddr, (unsigned long long)ascb->dma_scb.dma_handle, (unsigned long long) le64_to_cpu(ascb->scb->header.next_scb), le16_to_cpu(ascb->scb->header.index), ascb->scb->header.opcode); } /* Catch these before we mask off the sb_opcode bits */ switch (sb_opcode) { case REQ_TASK_ABORT: { struct asd_ascb *a, *b; u16 tc_abort; struct domain_device *failed_dev = NULL; ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n", __FUNCTION__, dl->status_block[3]); /* * Find the task that caused the abort and abort it first. * The sequencer won't put anything on the done list until * that happens. */ tc_abort = *((u16*)(&dl->status_block[1])); tc_abort = le16_to_cpu(tc_abort); list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) { struct sas_task *task = ascb->uldd_task; if (task && a->tc_index == tc_abort) { failed_dev = task->dev; sas_task_abort(task); break; } } if (!failed_dev) { ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n", __FUNCTION__, tc_abort); goto out; } /* * Now abort everything else for that device (hba?) so * that the EH will wake up and do something. */ list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) { struct sas_task *task = ascb->uldd_task; if (task && task->dev == failed_dev && a->tc_index != tc_abort) sas_task_abort(task); } goto out; } case REQ_DEVICE_RESET: { struct asd_ascb *a; u16 conn_handle; unsigned long flags; struct sas_task *last_dev_task = NULL; conn_handle = *((u16*)(&dl->status_block[1])); conn_handle = le16_to_cpu(conn_handle); ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __FUNCTION__, dl->status_block[3]); /* Find the last pending task for the device... */ list_for_each_entry(a, &asd_ha->seq.pend_q, list) { u16 x; struct domain_device *dev; struct sas_task *task = a->uldd_task; if (!task) continue; dev = task->dev; x = (unsigned long)dev->lldd_dev; if (x == conn_handle) last_dev_task = task; } if (!last_dev_task) { ASD_DPRINTK("%s: Device reset for idle device %d?\n", __FUNCTION__, conn_handle); goto out; } /* ...and set the reset flag */ spin_lock_irqsave(&last_dev_task->task_state_lock, flags); last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags); /* Kill all pending tasks for the device */ list_for_each_entry(a, &asd_ha->seq.pend_q, list) { u16 x; struct domain_device *dev; struct sas_task *task = a->uldd_task; if (!task) continue; dev = task->dev; x = (unsigned long)dev->lldd_dev; if (x == conn_handle) sas_task_abort(task); } goto out; } case SIGNAL_NCQ_ERROR: ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __FUNCTION__); goto out; case CLEAR_NCQ_ERROR: ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __FUNCTION__); goto out; } sb_opcode &= ~DL_PHY_MASK; switch (sb_opcode) { case BYTES_DMAED: ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __FUNCTION__, phy_id); asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id); break; case PRIMITIVE_RECVD: ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __FUNCTION__, phy_id); asd_primitive_rcvd_tasklet(ascb, dl, phy_id); break; case PHY_EVENT: ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __FUNCTION__, phy_id); asd_phy_event_tasklet(ascb, dl); break; case LINK_RESET_ERROR: ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __FUNCTION__, phy_id); asd_link_reset_err_tasklet(ascb, dl, phy_id); break; case TIMER_EVENT: ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n", __FUNCTION__, phy_id); asd_turn_led(asd_ha, phy_id, 0); /* the device is gone */ sas_phy_disconnected(sas_phy); asd_deform_port(asd_ha, phy); sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT); break; default: ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __FUNCTION__, phy_id, sb_opcode); ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n", edb, dl->opcode); ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n", sb_opcode, phy_id); ASD_DPRINTK("escb: vaddr: 0x%p, " "dma_handle: 0x%llx, next: 0x%llx, " "index:%d, opcode:0x%02x\n", ascb->dma_scb.vaddr, (unsigned long long)ascb->dma_scb.dma_handle, (unsigned long long) le64_to_cpu(ascb->scb->header.next_scb), le16_to_cpu(ascb->scb->header.index), ascb->scb->header.opcode); break; } out: asd_invalidate_edb(ascb, edb); } int asd_init_post_escbs(struct asd_ha_struct *asd_ha) { struct asd_seq_data *seq = &asd_ha->seq; int i; for (i = 0; i < seq->num_escbs; i++) seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete; ASD_DPRINTK("posting %d escbs\n", i); return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs); } /* ---------- CONTROL PHY ---------- */ #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \ | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \ | CURRENT_OOB_ERROR) /** * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb * @ascb: pointer to an ascb * @dl: pointer to the done list entry * * This function completes a CONTROL PHY scb and frees the ascb. * A note on LEDs: * - an LED blinks if there is IO though it, * - if a device is connected to the LED, it is lit, * - if no device is connected to the LED, is is dimmed (off). */ static void control_phy_tasklet_complete(struct asd_ascb *ascb, struct done_list_struct *dl) { struct asd_ha_struct *asd_ha = ascb->ha; struct scb *scb = ascb->scb; struct control_phy *control_phy = &scb->control_phy; u8 phy_id = control_phy->phy_id; struct asd_phy *phy = &ascb->ha->phys[phy_id]; u8 status = dl->status_block[0]; u8 oob_status = dl->status_block[1]; u8 oob_mode = dl->status_block[2]; /* u8 oob_signals= dl->status_block[3]; */ if (status != 0) { ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n", __FUNCTION__, phy_id, status); goto out; } switch (control_phy->sub_func) { case DISABLE_PHY: asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id); asd_turn_led(asd_ha, phy_id, 0); asd_control_led(asd_ha, phy_id, 0); ASD_DPRINTK("%s: disable phy%d\n", __FUNCTION__, phy_id); break; case ENABLE_PHY: asd_control_led(asd_ha, phy_id, 1); if (oob_status & CURRENT_OOB_DONE) { asd_ha->hw_prof.enabled_phys |= (1 << phy_id); get_lrate_mode(phy, oob_mode); asd_turn_led(asd_ha, phy_id, 1); ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n", __FUNCTION__, phy_id,phy->sas_phy.linkrate, phy->sas_phy.iproto); } else if (oob_status & CURRENT_SPINUP_HOLD) { asd_ha->hw_prof.enabled_phys |= (1 << phy_id); asd_turn_led(asd_ha, phy_id, 1); ASD_DPRINTK("%s: phy%d, spinup hold\n", __FUNCTION__, phy_id); } else if (oob_status & CURRENT_ERR_MASK) { asd_turn_led(asd_ha, phy_id, 0); ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n", __FUNCTION__, phy_id, oob_status); } else if (oob_status & (CURRENT_HOT_PLUG_CNCT | CURRENT_DEVICE_PRESENT)) { asd_ha->hw_prof.enabled_phys |= (1 << phy_id); asd_turn_led(asd_ha, phy_id, 1); ASD_DPRINTK("%s: phy%d: hot plug or device present\n", __FUNCTION__, phy_id); } else { asd_ha->hw_prof.enabled_phys |= (1 << phy_id); asd_turn_led(asd_ha, phy_id, 0); ASD_DPRINTK("%s: phy%d: no device present: " "oob_status:0x%x\n", __FUNCTION__, phy_id, oob_status); } break; case RELEASE_SPINUP_HOLD: case PHY_NO_OP: case EXECUTE_HARD_RESET: ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __FUNCTION__, phy_id, control_phy->sub_func); /* XXX finish */ break; default: ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __FUNCTION__, phy_id, control_phy->sub_func); break; } out: asd_ascb_free(ascb); } static inline void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd) { /* disable all speeds, then enable defaults */ *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS; switch (pd->max_sas_lrate) { case SAS_LINK_RATE_6_0_GBPS: *speed_mask &= ~SAS_SPEED_60_DIS; default: case SAS_LINK_RATE_3_0_GBPS: *speed_mask &= ~SAS_SPEED_30_DIS; case SAS_LINK_RATE_1_5_GBPS: *speed_mask &= ~SAS_SPEED_15_DIS; } switch (pd->min_sas_lrate) { case SAS_LINK_RATE_6_0_GBPS: *speed_mask |= SAS_SPEED_30_DIS; case SAS_LINK_RATE_3_0_GBPS: *speed_mask |= SAS_SPEED_15_DIS; default: case SAS_LINK_RATE_1_5_GBPS: /* nothing to do */ ; } switch (pd->max_sata_lrate) { case SAS_LINK_RATE_3_0_GBPS: *speed_mask &= ~SATA_SPEED_30_DIS; default: case SAS_LINK_RATE_1_5_GBPS: *speed_mask &= ~SATA_SPEED_15_DIS; } switch (pd->min_sata_lrate) { case SAS_LINK_RATE_3_0_GBPS: *speed_mask |= SATA_SPEED_15_DIS; default: case SAS_LINK_RATE_1_5_GBPS: /* nothing to do */ ; } } /** * asd_build_control_phy -- build a CONTROL PHY SCB * @ascb: pointer to an ascb * @phy_id: phy id to control, integer * @subfunc: subfunction, what to actually to do the phy * * This function builds a CONTROL PHY scb. No allocation of any kind * is performed. @ascb is allocated with the list function. * The caller can override the ascb->tasklet_complete to point * to its own callback function. It must call asd_ascb_free() * at its tasklet complete function. * See the default implementation. */ void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc) { struct asd_phy *phy = &ascb->ha->phys[phy_id]; struct scb *scb = ascb->scb; struct control_phy *control_phy = &scb->control_phy; scb->header.opcode = CONTROL_PHY; control_phy->phy_id = (u8) phy_id; control_phy->sub_func = subfunc; switch (subfunc) { case EXECUTE_HARD_RESET: /* 0x81 */ case ENABLE_PHY: /* 0x01 */ /* decide hot plug delay */ control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT; /* decide speed mask */ set_speed_mask(&control_phy->speed_mask, phy->phy_desc); /* initiator port settings are in the hi nibble */ if (phy->sas_phy.role == PHY_ROLE_INITIATOR) control_phy->port_type = SAS_PROTO_ALL << 4; else if (phy->sas_phy.role == PHY_ROLE_TARGET) control_phy->port_type = SAS_PROTO_ALL; else control_phy->port_type = (SAS_PROTO_ALL << 4) | SAS_PROTO_ALL; /* link reset retries, this should be nominal */ control_phy->link_reset_retries = 10; case RELEASE_SPINUP_HOLD: /* 0x02 */ /* decide the func_mask */ control_phy->func_mask = FUNCTION_MASK_DEFAULT; if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD) control_phy->func_mask &= ~SPINUP_HOLD_DIS; else control_phy->func_mask |= SPINUP_HOLD_DIS; } control_phy->conn_handle = cpu_to_le16(0xFFFF); ascb->tasklet_complete = control_phy_tasklet_complete; } /* ---------- INITIATE LINK ADM TASK ---------- */ static void link_adm_tasklet_complete(struct asd_ascb *ascb, struct done_list_struct *dl) { u8 opcode = dl->opcode; struct initiate_link_adm *link_adm = &ascb->scb->link_adm; u8 phy_id = link_adm->phy_id; if (opcode != TC_NO_ERROR) { asd_printk("phy%d: link adm task 0x%x completed with error " "0x%x\n", phy_id, link_adm->sub_func, opcode); } ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n", phy_id, link_adm->sub_func, opcode); asd_ascb_free(ascb); } void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id, u8 subfunc) { struct scb *scb = ascb->scb; struct initiate_link_adm *link_adm = &scb->link_adm; scb->header.opcode = INITIATE_LINK_ADM_TASK; link_adm->phy_id = phy_id; link_adm->sub_func = subfunc; link_adm->conn_handle = cpu_to_le16(0xFFFF); ascb->tasklet_complete = link_adm_tasklet_complete; } /* ---------- SCB timer ---------- */ /** * asd_ascb_timedout -- called when a pending SCB's timer has expired * @data: unsigned long, a pointer to the ascb in question * * This is the default timeout function which does the most necessary. * Upper layers can implement their own timeout function, say to free * resources they have with this SCB, and then call this one at the * end of their timeout function. To do this, one should initialize * the ascb->timer.{function, data, expires} prior to calling the post * funcion. The timer is started by the post function. */ void asd_ascb_timedout(unsigned long data) { struct asd_ascb *ascb = (void *) data; struct asd_seq_data *seq = &ascb->ha->seq; unsigned long flags; ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode); spin_lock_irqsave(&seq->pend_q_lock, flags); seq->pending--; list_del_init(&ascb->list); spin_unlock_irqrestore(&seq->pend_q_lock, flags); asd_ascb_free(ascb); } /* ---------- CONTROL PHY ---------- */ /* Given the spec value, return a driver value. */ static const int phy_func_table[] = { [PHY_FUNC_NOP] = PHY_NO_OP, [PHY_FUNC_LINK_RESET] = ENABLE_PHY, [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET, [PHY_FUNC_DISABLE] = DISABLE_PHY, [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD, }; int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg) { struct asd_ha_struct *asd_ha = phy->ha->lldd_ha; struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc; struct asd_ascb *ascb; struct sas_phy_linkrates *rates; int res = 1; switch (func) { case PHY_FUNC_CLEAR_ERROR_LOG: return -ENOSYS; case PHY_FUNC_SET_LINK_RATE: rates = arg; if (rates->minimum_linkrate) { pd->min_sas_lrate = rates->minimum_linkrate; pd->min_sata_lrate = rates->minimum_linkrate; } if (rates->maximum_linkrate) { pd->max_sas_lrate = rates->maximum_linkrate; pd->max_sata_lrate = rates->maximum_linkrate; } func = PHY_FUNC_LINK_RESET; break; default: break; } ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL); if (!ascb) return -ENOMEM; asd_build_control_phy(ascb, phy->id, phy_func_table[func]); res = asd_post_ascb_list(asd_ha, ascb , 1); if (res) asd_ascb_free(ascb); return res; }