/* Copyright (c) 2014-2019, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "ACC: %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MEM_ACC_DEFAULT_SEL_SIZE 2 #define BYTES_PER_FUSE_ROW 8 /* mem-acc config flags */ enum { MEM_ACC_USE_CORNER_ACC_MAP = BIT(0), MEM_ACC_USE_ADDR_VAL_MAP = BIT(1), }; #define FUSE_MAP_NO_MATCH (-1) #define FUSE_PARAM_MATCH_ANY (-1) #define PARAM_MATCH_ANY (-1) enum { MEMORY_L1, MEMORY_L2, MEMORY_MAX, }; #define MEM_ACC_TYPE_MAX 6 /** * struct acc_reg_value - Acc register configuration structure * @addr_index: An index in to phys_reg_addr_list and remap_reg_addr_list * to get the ACC register physical address and remapped address. * @reg_val: Value to program in to the register mapped by addr_index. */ struct acc_reg_value { u32 addr_index; u32 reg_val; }; struct corner_acc_reg_config { struct acc_reg_value *reg_config_list; int max_reg_config_len; }; struct mem_acc_regulator { struct device *dev; struct regulator_desc rdesc; struct regulator_dev *rdev; int corner; bool mem_acc_supported[MEMORY_MAX]; bool mem_acc_custom_supported[MEMORY_MAX]; u32 *acc_sel_mask[MEMORY_MAX]; u32 *acc_sel_bit_pos[MEMORY_MAX]; u32 acc_sel_bit_size[MEMORY_MAX]; u32 num_acc_sel[MEMORY_MAX]; u32 *acc_en_bit_pos; u32 num_acc_en; u32 *corner_acc_map; u32 num_corners; u32 override_fuse_value; int override_map_match; int override_map_count; void __iomem *acc_sel_base[MEMORY_MAX]; void __iomem *acc_en_base; phys_addr_t acc_sel_addr[MEMORY_MAX]; phys_addr_t acc_en_addr; u32 flags; void __iomem *acc_custom_addr[MEMORY_MAX]; u32 *acc_custom_data[MEMORY_MAX]; phys_addr_t mem_acc_type_addr[MEM_ACC_TYPE_MAX]; u32 *mem_acc_type_data; /* eFuse parameters */ phys_addr_t efuse_addr; void __iomem *efuse_base; u32 num_acc_reg; u32 *phys_reg_addr_list; void __iomem **remap_reg_addr_list; struct corner_acc_reg_config *corner_acc_reg_config; u32 *override_acc_range_fuse_list; int override_acc_range_fuse_num; }; static DEFINE_MUTEX(mem_acc_memory_mutex); static u64 mem_acc_read_efuse_row(struct mem_acc_regulator *mem_acc_vreg, u32 row_num, bool use_tz_api) { int rc; u64 efuse_bits; struct scm_desc desc = {0}; struct mem_acc_read_req { u32 row_address; int addr_type; } req; struct mem_acc_read_rsp { u32 row_data[2]; u32 status; } rsp; if (!use_tz_api) { efuse_bits = readq_relaxed(mem_acc_vreg->efuse_base + row_num * BYTES_PER_FUSE_ROW); return efuse_bits; } desc.args[0] = req.row_address = mem_acc_vreg->efuse_addr + row_num * BYTES_PER_FUSE_ROW; desc.args[1] = req.addr_type = 0; desc.arginfo = SCM_ARGS(2); efuse_bits = 0; if (!is_scm_armv8()) { rc = scm_call(SCM_SVC_FUSE, SCM_FUSE_READ, &req, sizeof(req), &rsp, sizeof(rsp)); } else { rc = scm_call2(SCM_SIP_FNID(SCM_SVC_FUSE, SCM_FUSE_READ), &desc); rsp.row_data[0] = desc.ret[0]; rsp.row_data[1] = desc.ret[1]; rsp.status = desc.ret[2]; } if (rc) { pr_err("read row %d failed, err code = %d", row_num, rc); } else { efuse_bits = ((u64)(rsp.row_data[1]) << 32) + (u64)rsp.row_data[0]; } return efuse_bits; } static inline u32 apc_to_acc_corner(struct mem_acc_regulator *mem_acc_vreg, int corner) { /* * corner_acc_map maps the corner from index 0 and APC corner value * starts from the value 1 */ return mem_acc_vreg->corner_acc_map[corner - 1]; } static void __update_acc_sel(struct mem_acc_regulator *mem_acc_vreg, int corner, int mem_type) { u32 acc_data, acc_data_old, i, bit, acc_corner; acc_data = readl_relaxed(mem_acc_vreg->acc_sel_base[mem_type]); acc_data_old = acc_data; for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) { bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i]; acc_data &= ~mem_acc_vreg->acc_sel_mask[mem_type][i]; acc_corner = apc_to_acc_corner(mem_acc_vreg, corner); acc_data |= (acc_corner << bit) & mem_acc_vreg->acc_sel_mask[mem_type][i]; } pr_debug("corner=%d old_acc_sel=0x%02x new_acc_sel=0x%02x mem_type=%d\n", corner, acc_data_old, acc_data, mem_type); writel_relaxed(acc_data, mem_acc_vreg->acc_sel_base[mem_type]); } static void __update_acc_type(struct mem_acc_regulator *mem_acc_vreg, int corner) { int i, rc; for (i = 0; i < MEM_ACC_TYPE_MAX; i++) { if (mem_acc_vreg->mem_acc_type_addr[i]) { rc = scm_io_write(mem_acc_vreg->mem_acc_type_addr[i], mem_acc_vreg->mem_acc_type_data[corner - 1 + i * mem_acc_vreg->num_corners]); if (rc) pr_err("scm_io_write: %pa failure rc:%d\n", &(mem_acc_vreg->mem_acc_type_addr[i]), rc); } } } static void __update_acc_custom(struct mem_acc_regulator *mem_acc_vreg, int corner, int mem_type) { writel_relaxed( mem_acc_vreg->acc_custom_data[mem_type][corner-1], mem_acc_vreg->acc_custom_addr[mem_type]); pr_debug("corner=%d mem_type=%d custom_data=0x%2x\n", corner, mem_type, mem_acc_vreg->acc_custom_data[mem_type][corner-1]); } static void update_acc_sel(struct mem_acc_regulator *mem_acc_vreg, int corner) { int i; for (i = 0; i < MEMORY_MAX; i++) { if (mem_acc_vreg->mem_acc_supported[i]) __update_acc_sel(mem_acc_vreg, corner, i); if (mem_acc_vreg->mem_acc_custom_supported[i]) __update_acc_custom(mem_acc_vreg, corner, i); } if (mem_acc_vreg->mem_acc_type_data) __update_acc_type(mem_acc_vreg, corner); } static void update_acc_reg(struct mem_acc_regulator *mem_acc_vreg, int corner) { struct corner_acc_reg_config *corner_acc_reg_config; struct acc_reg_value *reg_config_list; int i, index; u32 addr_index, reg_val; corner_acc_reg_config = &mem_acc_vreg->corner_acc_reg_config[mem_acc_vreg->corner]; reg_config_list = corner_acc_reg_config->reg_config_list; for (i = 0; i < corner_acc_reg_config->max_reg_config_len; i++) { /* * Use (corner - 1) in the below equation as * the reg_config_list[] stores the values starting from * index '0' where as the minimum corner value allowed * in regulator framework is '1'. */ index = (corner - 1) * corner_acc_reg_config->max_reg_config_len + i; addr_index = reg_config_list[index].addr_index; reg_val = reg_config_list[index].reg_val; if (addr_index == PARAM_MATCH_ANY) break; writel_relaxed(reg_val, mem_acc_vreg->remap_reg_addr_list[addr_index]); /* make sure write complete */ mb(); pr_debug("corner=%d register:0x%x value:0x%x\n", corner, mem_acc_vreg->phys_reg_addr_list[addr_index], reg_val); } } static int mem_acc_regulator_set_voltage(struct regulator_dev *rdev, int corner, int corner_max, unsigned int *selector) { struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev); int i; if (corner > mem_acc_vreg->num_corners) { pr_err("Invalid corner=%d requested\n", corner); return -EINVAL; } pr_debug("old corner=%d, new corner=%d\n", mem_acc_vreg->corner, corner); if (corner == mem_acc_vreg->corner) return 0; /* go up or down one level at a time */ mutex_lock(&mem_acc_memory_mutex); if (mem_acc_vreg->flags & MEM_ACC_USE_ADDR_VAL_MAP) { update_acc_reg(mem_acc_vreg, corner); } else if (mem_acc_vreg->flags & MEM_ACC_USE_CORNER_ACC_MAP) { if (corner > mem_acc_vreg->corner) { for (i = mem_acc_vreg->corner + 1; i <= corner; i++) { pr_debug("UP: to corner %d\n", i); update_acc_sel(mem_acc_vreg, i); } } else { for (i = mem_acc_vreg->corner - 1; i >= corner; i--) { pr_debug("DOWN: to corner %d\n", i); update_acc_sel(mem_acc_vreg, i); } } } mutex_unlock(&mem_acc_memory_mutex); pr_debug("new voltage corner set %d\n", corner); mem_acc_vreg->corner = corner; return 0; } static int mem_acc_regulator_get_voltage(struct regulator_dev *rdev) { struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev); return mem_acc_vreg->corner; } static struct regulator_ops mem_acc_corner_ops = { .set_voltage = mem_acc_regulator_set_voltage, .get_voltage = mem_acc_regulator_get_voltage, }; static int __mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg, int mem_type) { int i; u32 bit, mask; mem_acc_vreg->acc_sel_mask[mem_type] = devm_kzalloc(mem_acc_vreg->dev, mem_acc_vreg->num_acc_sel[mem_type] * sizeof(u32), GFP_KERNEL); if (!mem_acc_vreg->acc_sel_mask[mem_type]) return -ENOMEM; for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) { bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i]; mask = BIT(mem_acc_vreg->acc_sel_bit_size[mem_type]) - 1; mem_acc_vreg->acc_sel_mask[mem_type][i] = mask << bit; } return 0; } static int mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg) { int i, rc; for (i = 0; i < MEMORY_MAX; i++) { if (mem_acc_vreg->mem_acc_supported[i]) { rc = __mem_acc_sel_init(mem_acc_vreg, i); if (rc) { pr_err("Unable to initialize mem_type=%d rc=%d\n", i, rc); return rc; } } } return 0; } static void mem_acc_en_init(struct mem_acc_regulator *mem_acc_vreg) { int i, bit; u32 acc_data; acc_data = readl_relaxed(mem_acc_vreg->acc_en_base); pr_debug("init: acc_en_register=%x\n", acc_data); for (i = 0; i < mem_acc_vreg->num_acc_en; i++) { bit = mem_acc_vreg->acc_en_bit_pos[i]; acc_data |= BIT(bit); } pr_debug("final: acc_en_register=%x\n", acc_data); writel_relaxed(acc_data, mem_acc_vreg->acc_en_base); } static int populate_acc_data(struct mem_acc_regulator *mem_acc_vreg, const char *prop_name, u32 **value, u32 *len) { int rc; if (!of_get_property(mem_acc_vreg->dev->of_node, prop_name, len)) { pr_err("Unable to find %s property\n", prop_name); return -EINVAL; } *len /= sizeof(u32); if (!(*len)) { pr_err("Incorrect entries in %s\n", prop_name); return -EINVAL; } *value = devm_kzalloc(mem_acc_vreg->dev, (*len) * sizeof(u32), GFP_KERNEL); if (!(*value)) { pr_err("Unable to allocate memory for %s\n", prop_name); return -ENOMEM; } pr_debug("Found %s, data-length = %d\n", prop_name, *len); rc = of_property_read_u32_array(mem_acc_vreg->dev->of_node, prop_name, *value, *len); if (rc) { pr_err("Unable to populate %s rc=%d\n", prop_name, rc); return rc; } return 0; } static int mem_acc_sel_setup(struct mem_acc_regulator *mem_acc_vreg, struct resource *res, int mem_type) { int len, rc; char *mem_select_str; char *mem_select_size_str; mem_acc_vreg->acc_sel_addr[mem_type] = res->start; len = res->end - res->start + 1; pr_debug("'acc_sel_addr' = %pa mem_type=%d (len=%d)\n", &res->start, mem_type, len); mem_acc_vreg->acc_sel_base[mem_type] = devm_ioremap(mem_acc_vreg->dev, mem_acc_vreg->acc_sel_addr[mem_type], len); if (!mem_acc_vreg->acc_sel_base[mem_type]) { pr_err("Unable to map 'acc_sel_addr' %pa for mem_type=%d\n", &mem_acc_vreg->acc_sel_addr[mem_type], mem_type); return -EINVAL; } switch (mem_type) { case MEMORY_L1: mem_select_str = "qcom,acc-sel-l1-bit-pos"; mem_select_size_str = "qcom,acc-sel-l1-bit-size"; break; case MEMORY_L2: mem_select_str = "qcom,acc-sel-l2-bit-pos"; mem_select_size_str = "qcom,acc-sel-l2-bit-size"; break; default: pr_err("Invalid memory type: %d\n", mem_type); return -EINVAL; } mem_acc_vreg->acc_sel_bit_size[mem_type] = MEM_ACC_DEFAULT_SEL_SIZE; of_property_read_u32(mem_acc_vreg->dev->of_node, mem_select_size_str, &mem_acc_vreg->acc_sel_bit_size[mem_type]); rc = populate_acc_data(mem_acc_vreg, mem_select_str, &mem_acc_vreg->acc_sel_bit_pos[mem_type], &mem_acc_vreg->num_acc_sel[mem_type]); if (rc) pr_err("Unable to populate '%s' rc=%d\n", mem_select_str, rc); return rc; } static int mem_acc_efuse_init(struct platform_device *pdev, struct mem_acc_regulator *mem_acc_vreg) { struct resource *res; int len; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse_addr"); if (!res || !res->start) { mem_acc_vreg->efuse_base = NULL; pr_debug("'efuse_addr' resource missing or not used.\n"); return 0; } mem_acc_vreg->efuse_addr = res->start; len = res->end - res->start + 1; pr_info("efuse_addr = %pa (len=0x%x)\n", &res->start, len); mem_acc_vreg->efuse_base = devm_ioremap(&pdev->dev, mem_acc_vreg->efuse_addr, len); if (!mem_acc_vreg->efuse_base) { pr_err("Unable to map efuse_addr %pa\n", &mem_acc_vreg->efuse_addr); return -EINVAL; } return 0; } static int mem_acc_custom_data_init(struct platform_device *pdev, struct mem_acc_regulator *mem_acc_vreg, int mem_type) { struct resource *res; char *custom_apc_addr_str, *custom_apc_data_str; int len, rc = 0; switch (mem_type) { case MEMORY_L1: custom_apc_addr_str = "acc-l1-custom"; custom_apc_data_str = "qcom,l1-acc-custom-data"; break; case MEMORY_L2: custom_apc_addr_str = "acc-l2-custom"; custom_apc_data_str = "qcom,l2-acc-custom-data"; break; default: pr_err("Invalid memory type: %d\n", mem_type); return -EINVAL; } if (!of_find_property(mem_acc_vreg->dev->of_node, custom_apc_data_str, NULL)) { pr_debug("%s custom_data not specified\n", custom_apc_data_str); return 0; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, custom_apc_addr_str); if (!res || !res->start) { pr_debug("%s resource missing\n", custom_apc_addr_str); return -EINVAL; } len = res->end - res->start + 1; mem_acc_vreg->acc_custom_addr[mem_type] = devm_ioremap(mem_acc_vreg->dev, res->start, len); if (!mem_acc_vreg->acc_custom_addr[mem_type]) { pr_err("Unable to map %s %pa\n", custom_apc_addr_str, &res->start); return -EINVAL; } rc = populate_acc_data(mem_acc_vreg, custom_apc_data_str, &mem_acc_vreg->acc_custom_data[mem_type], &len); if (rc) { pr_err("Unable to find %s rc=%d\n", custom_apc_data_str, rc); return rc; } if (mem_acc_vreg->num_corners != len) { pr_err("Custom data is not present for all the corners\n"); return -EINVAL; } mem_acc_vreg->mem_acc_custom_supported[mem_type] = true; return 0; } static int override_mem_acc_custom_data(struct mem_acc_regulator *mem_acc_vreg, int mem_type) { char *custom_apc_data_str; int len, rc = 0, i; int tuple_count, tuple_match; u32 index = 0, value = 0; switch (mem_type) { case MEMORY_L1: custom_apc_data_str = "qcom,override-l1-acc-custom-data"; break; case MEMORY_L2: custom_apc_data_str = "qcom,override-l2-acc-custom-data"; break; default: pr_err("Invalid memory type: %d\n", mem_type); return -EINVAL; } if (!of_find_property(mem_acc_vreg->dev->of_node, custom_apc_data_str, &len)) { pr_debug("%s not specified\n", custom_apc_data_str); return 0; } if (mem_acc_vreg->override_map_count) { if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH) return 0; tuple_count = mem_acc_vreg->override_map_count; tuple_match = mem_acc_vreg->override_map_match; } else { tuple_count = 1; tuple_match = 0; } if (len != mem_acc_vreg->num_corners * tuple_count * sizeof(u32)) { pr_err("%s length=%d is invalid\n", custom_apc_data_str, len); return -EINVAL; } for (i = 0; i < mem_acc_vreg->num_corners; i++) { index = (tuple_match * mem_acc_vreg->num_corners) + i; rc = of_property_read_u32_index(mem_acc_vreg->dev->of_node, custom_apc_data_str, index, &value); if (rc) { pr_err("Unable read %s index %u, rc=%d\n", custom_apc_data_str, index, rc); return rc; } mem_acc_vreg->acc_custom_data[mem_type][i] = value; } return 0; } static int mem_acc_override_corner_map(struct mem_acc_regulator *mem_acc_vreg) { int len = 0, i, rc; int tuple_count, tuple_match; u32 index = 0, value = 0; char *prop_str = "qcom,override-corner-acc-map"; if (!of_find_property(mem_acc_vreg->dev->of_node, prop_str, &len)) return 0; if (mem_acc_vreg->override_map_count) { if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH) return 0; tuple_count = mem_acc_vreg->override_map_count; tuple_match = mem_acc_vreg->override_map_match; } else { tuple_count = 1; tuple_match = 0; } if (len != mem_acc_vreg->num_corners * tuple_count * sizeof(u32)) { pr_err("%s length=%d is invalid\n", prop_str, len); return -EINVAL; } for (i = 0; i < mem_acc_vreg->num_corners; i++) { index = (tuple_match * mem_acc_vreg->num_corners) + i; rc = of_property_read_u32_index(mem_acc_vreg->dev->of_node, prop_str, index, &value); if (rc) { pr_err("Unable read %s index %u, rc=%d\n", prop_str, index, rc); return rc; } mem_acc_vreg->corner_acc_map[i] = value; } return 0; } static void mem_acc_read_efuse_param(struct mem_acc_regulator *mem_acc_vreg, u32 *fuse_sel, int *val) { u64 fuse_bits; fuse_bits = mem_acc_read_efuse_row(mem_acc_vreg, fuse_sel[0], fuse_sel[3]); /* * fuse_sel[1] = LSB position in row (shift) * fuse_sel[2] = num of bits (mask) */ *val = (fuse_bits >> fuse_sel[1]) & ((1 << fuse_sel[2]) - 1); } #define FUSE_TUPLE_SIZE 4 static int mem_acc_parse_override_fuse_version_map( struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = mem_acc_vreg->dev->of_node; int i, rc, tuple_size; int len = 0; u32 *tmp; u32 fuse_sel[4]; char *prop_str; prop_str = "qcom,override-acc-fuse-sel"; rc = of_property_read_u32_array(of_node, prop_str, fuse_sel, FUSE_TUPLE_SIZE); if (rc < 0) { pr_err("Read failed - %s rc=%d\n", prop_str, rc); return rc; } mem_acc_read_efuse_param(mem_acc_vreg, fuse_sel, &mem_acc_vreg->override_fuse_value); prop_str = "qcom,override-fuse-version-map"; if (!of_find_property(of_node, prop_str, &len)) return -EINVAL; tuple_size = 1; mem_acc_vreg->override_map_count = len / (sizeof(u32) * tuple_size); if (len == 0 || len % (sizeof(u32) * tuple_size)) { pr_err("%s length=%d is invalid\n", prop_str, len); return -EINVAL; } tmp = kzalloc(len, GFP_KERNEL); if (!tmp) return -ENOMEM; rc = of_property_read_u32_array(of_node, prop_str, tmp, mem_acc_vreg->override_map_count * tuple_size); if (rc) { pr_err("could not read %s rc=%d\n", prop_str, rc); goto done; } for (i = 0; i < mem_acc_vreg->override_map_count; i++) { if (tmp[i * tuple_size] != mem_acc_vreg->override_fuse_value && tmp[i * tuple_size] != FUSE_PARAM_MATCH_ANY) { continue; } else { mem_acc_vreg->override_map_match = i; break; } } if (mem_acc_vreg->override_map_match != FUSE_MAP_NO_MATCH) pr_info("override_fuse_val=%d, %s tuple match found: %d\n", mem_acc_vreg->override_fuse_value, prop_str, mem_acc_vreg->override_map_match); else pr_err("%s tuple match not found\n", prop_str); done: kfree(tmp); return rc; } static int mem_acc_parse_override_fuse_version_range( struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = mem_acc_vreg->dev->of_node; int i, j, rc, size, row_size; int num_fuse_sel, len = 0; u32 *tmp = NULL; char *prop_str; u32 *fuse_val, *fuse_sel; char *buf = NULL; int pos = 0, buflen; prop_str = "qcom,override-acc-range-fuse-list"; if (!of_find_property(of_node, prop_str, &len)) { pr_err("%s property is missing\n", prop_str); return -EINVAL; } size = len / sizeof(u32); if (len == 0 || (size % FUSE_TUPLE_SIZE)) { pr_err("%s property length (%d) is invalid\n", prop_str, len); return -EINVAL; } num_fuse_sel = size / FUSE_TUPLE_SIZE; fuse_val = devm_kcalloc(mem_acc_vreg->dev, num_fuse_sel, sizeof(*fuse_val), GFP_KERNEL); if (!fuse_val) return -ENOMEM; mem_acc_vreg->override_acc_range_fuse_list = fuse_val; mem_acc_vreg->override_acc_range_fuse_num = num_fuse_sel; fuse_sel = kzalloc(len, GFP_KERNEL); if (!fuse_sel) { rc = -ENOMEM; goto done; } rc = of_property_read_u32_array(of_node, prop_str, fuse_sel, size); if (rc) { pr_err("%s read failed, rc=%d\n", prop_str, rc); goto done; } for (i = 0; i < num_fuse_sel; i++) { mem_acc_read_efuse_param(mem_acc_vreg, &fuse_sel[i * 4], &fuse_val[i]); } prop_str = "qcom,override-fuse-range-map"; if (!of_find_property(of_node, prop_str, &len)) goto done; row_size = num_fuse_sel * 2; mem_acc_vreg->override_map_count = len / (sizeof(u32) * row_size); if (len == 0 || len % (sizeof(u32) * row_size)) { pr_err("%s length=%d is invalid\n", prop_str, len); rc = -EINVAL; goto done; } tmp = kzalloc(len, GFP_KERNEL); if (!tmp) { rc = -ENOMEM; goto done; } rc = of_property_read_u32_array(of_node, prop_str, tmp, mem_acc_vreg->override_map_count * row_size); if (rc) { pr_err("could not read %s rc=%d\n", prop_str, rc); goto done; } for (i = 0; i < mem_acc_vreg->override_map_count; i++) { for (j = 0; j < num_fuse_sel; j++) { if (tmp[i * row_size + j * 2] > fuse_val[j] || tmp[i * row_size + j * 2 + 1] < fuse_val[j]) break; } if (j == num_fuse_sel) { mem_acc_vreg->override_map_match = i; break; } } /* * Log register and value mapping since they are useful for * baseline MEM ACC logging. */ buflen = num_fuse_sel * sizeof("fuse_selxxxx = XXXX "); buf = kzalloc(buflen, GFP_KERNEL); if (!buf) goto done; for (j = 0; j < num_fuse_sel; j++) pos += scnprintf(buf + pos, buflen - pos, "fuse_sel%d = %d ", j, fuse_val[j]); buf[pos] = '\0'; if (mem_acc_vreg->override_map_match != FUSE_MAP_NO_MATCH) pr_info("%s %s tuple match found: %d\n", buf, prop_str, mem_acc_vreg->override_map_match); else pr_err("%s %s tuple match not found\n", buf, prop_str); done: kfree(fuse_sel); kfree(tmp); kfree(buf); return rc; } #define MAX_CHARS_PER_INT 20 static int mem_acc_reg_addr_val_dump(struct mem_acc_regulator *mem_acc_vreg, struct corner_acc_reg_config *corner_acc_reg_config, u32 corner) { int i, k, index, pos = 0; u32 addr_index; size_t buflen; char *buf; struct acc_reg_value *reg_config_list = corner_acc_reg_config->reg_config_list; int max_reg_config_len = corner_acc_reg_config->max_reg_config_len; int num_corners = mem_acc_vreg->num_corners; /* * Log register and value mapping since they are useful for * baseline MEM ACC logging. */ buflen = max_reg_config_len * (MAX_CHARS_PER_INT + 6) * sizeof(*buf); buf = kzalloc(buflen, GFP_KERNEL); if (buf == NULL) { pr_err("Could not allocate memory for acc register and value logging\n"); return -ENOMEM; } for (i = 0; i < num_corners; i++) { if (corner == i + 1) continue; pr_debug("Corner: %d --> %d:\n", corner, i + 1); pos = 0; for (k = 0; k < max_reg_config_len; k++) { index = i * max_reg_config_len + k; addr_index = reg_config_list[index].addr_index; if (addr_index == PARAM_MATCH_ANY) break; pos += scnprintf(buf + pos, buflen - pos, "<0x%x 0x%x> ", mem_acc_vreg->phys_reg_addr_list[addr_index], reg_config_list[index].reg_val); } buf[pos] = '\0'; pr_debug("%s\n", buf); } kfree(buf); return 0; } static int mem_acc_get_reg_addr_val(struct device_node *of_node, const char *prop_str, struct acc_reg_value *reg_config_list, int list_offset, int list_size, u32 max_reg_index) { int i, index, rc = 0; for (i = 0; i < list_size / 2; i++) { index = (list_offset * list_size) + i * 2; rc = of_property_read_u32_index(of_node, prop_str, index, ®_config_list[i].addr_index); rc |= of_property_read_u32_index(of_node, prop_str, index + 1, ®_config_list[i].reg_val); if (rc) { pr_err("could not read %s at tuple %u: rc=%d\n", prop_str, index, rc); return rc; } if (reg_config_list[i].addr_index == PARAM_MATCH_ANY) continue; if ((!reg_config_list[i].addr_index) || reg_config_list[i].addr_index > max_reg_index) { pr_err("Invalid register index %u in %s at tuple %u\n", reg_config_list[i].addr_index, prop_str, index); return -EINVAL; } } return rc; } static int mem_acc_override_reg_addr_val_init( struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = mem_acc_vreg->dev->of_node; struct corner_acc_reg_config *corner_acc_reg_config; struct acc_reg_value *override_reg_config_list; int i, tuple_count, tuple_match, len = 0, rc = 0; u32 list_size, override_max_reg_config_len; char prop_str[40]; struct property *prop; int num_corners = mem_acc_vreg->num_corners; if (!mem_acc_vreg->corner_acc_reg_config) return 0; if (mem_acc_vreg->override_map_count) { if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH) return 0; tuple_count = mem_acc_vreg->override_map_count; tuple_match = mem_acc_vreg->override_map_match; } else { tuple_count = 1; tuple_match = 0; } corner_acc_reg_config = mem_acc_vreg->corner_acc_reg_config; for (i = 1; i <= num_corners; i++) { snprintf(prop_str, sizeof(prop_str), "qcom,override-corner%d-addr-val-map", i); prop = of_find_property(of_node, prop_str, &len); list_size = len / (tuple_count * sizeof(u32)); if (!prop) { pr_debug("%s property not specified\n", prop_str); continue; } if ((!list_size) || list_size < (num_corners * 2)) { pr_err("qcom,override-corner%d-addr-val-map property is missed or invalid length: len=%d\n", i, len); return -EINVAL; } override_max_reg_config_len = list_size / (num_corners * 2); override_reg_config_list = corner_acc_reg_config[i].reg_config_list; if (corner_acc_reg_config[i].max_reg_config_len != override_max_reg_config_len) { /* Free already allocate memory */ devm_kfree(mem_acc_vreg->dev, override_reg_config_list); /* Allocated memory for new requirement */ override_reg_config_list = devm_kcalloc(mem_acc_vreg->dev, override_max_reg_config_len * num_corners, sizeof(*override_reg_config_list), GFP_KERNEL); if (!override_reg_config_list) return -ENOMEM; corner_acc_reg_config[i].max_reg_config_len = override_max_reg_config_len; corner_acc_reg_config[i].reg_config_list = override_reg_config_list; } rc = mem_acc_get_reg_addr_val(of_node, prop_str, override_reg_config_list, tuple_match, list_size, mem_acc_vreg->num_acc_reg); if (rc) { pr_err("Failed to read %s property: rc=%d\n", prop_str, rc); return rc; } rc = mem_acc_reg_addr_val_dump(mem_acc_vreg, &corner_acc_reg_config[i], i); if (rc) { pr_err("could not dump acc address-value dump for corner=%d: rc=%d\n", i, rc); return rc; } } return rc; } static int mem_acc_parse_override_config(struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = mem_acc_vreg->dev->of_node; int i, rc = 0; /* Specify default no match case. */ mem_acc_vreg->override_map_match = FUSE_MAP_NO_MATCH; mem_acc_vreg->override_map_count = 0; if (of_find_property(of_node, "qcom,override-fuse-range-map", NULL)) { rc = mem_acc_parse_override_fuse_version_range(mem_acc_vreg); if (rc) { pr_err("parsing qcom,override-fuse-range-map property failed, rc=%d\n", rc); return rc; } } else if (of_find_property(of_node, "qcom,override-fuse-version-map", NULL)) { rc = mem_acc_parse_override_fuse_version_map(mem_acc_vreg); if (rc) { pr_err("parsing qcom,override-fuse-version-map property failed, rc=%d\n", rc); return rc; } } else { /* No override fuse configuration defined in device node */ return 0; } if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH) return 0; rc = mem_acc_override_corner_map(mem_acc_vreg); if (rc) { pr_err("Unable to override corner map rc=%d\n", rc); return rc; } rc = mem_acc_override_reg_addr_val_init(mem_acc_vreg); if (rc) { pr_err("Unable to override reg_config_list init rc=%d\n", rc); return rc; } for (i = 0; i < MEMORY_MAX; i++) { rc = override_mem_acc_custom_data(mem_acc_vreg, i); if (rc) { pr_err("Unable to override custom data for mem_type=%d rc=%d\n", i, rc); return rc; } } return rc; } static int mem_acc_init_reg_config(struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = mem_acc_vreg->dev->of_node; int i, size, len = 0, rc = 0; u32 addr_index, reg_val, index; char *prop_str = "qcom,acc-init-reg-config"; if (!of_find_property(of_node, prop_str, &len)) { /* Initial acc register configuration not specified */ return rc; } size = len / sizeof(u32); if ((!size) || (size % 2)) { pr_err("%s specified with invalid length: %d\n", prop_str, size); return -EINVAL; } for (i = 0; i < size / 2; i++) { index = i * 2; rc = of_property_read_u32_index(of_node, prop_str, index, &addr_index); rc |= of_property_read_u32_index(of_node, prop_str, index + 1, ®_val); if (rc) { pr_err("could not read %s at tuple %u: rc=%d\n", prop_str, index, rc); return rc; } if ((!addr_index) || addr_index > mem_acc_vreg->num_acc_reg) { pr_err("Invalid register index %u in %s at tuple %u\n", addr_index, prop_str, index); return -EINVAL; } writel_relaxed(reg_val, mem_acc_vreg->remap_reg_addr_list[addr_index]); /* make sure write complete */ mb(); pr_debug("acc initial config: register:0x%x value:0x%x\n", mem_acc_vreg->phys_reg_addr_list[addr_index], reg_val); } return rc; } static int mem_acc_get_reg_addr(struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = mem_acc_vreg->dev->of_node; void __iomem **remap_reg_addr_list; u32 *phys_reg_addr_list; int i, num_acc_reg, len = 0, rc = 0; if (!of_find_property(of_node, "qcom,acc-reg-addr-list", &len)) { /* acc register address list not specified */ return rc; } num_acc_reg = len / sizeof(u32); if (!num_acc_reg) { pr_err("qcom,acc-reg-addr-list has invalid len = %d\n", len); return -EINVAL; } phys_reg_addr_list = devm_kcalloc(mem_acc_vreg->dev, num_acc_reg + 1, sizeof(*phys_reg_addr_list), GFP_KERNEL); if (!phys_reg_addr_list) return -ENOMEM; remap_reg_addr_list = devm_kcalloc(mem_acc_vreg->dev, num_acc_reg + 1, sizeof(*remap_reg_addr_list), GFP_KERNEL); if (!remap_reg_addr_list) return -ENOMEM; rc = of_property_read_u32_array(of_node, "qcom,acc-reg-addr-list", &phys_reg_addr_list[1], num_acc_reg); if (rc) { pr_err("Read- qcom,acc-reg-addr-list failed: rc=%d\n", rc); return rc; } for (i = 1; i <= num_acc_reg; i++) { remap_reg_addr_list[i] = devm_ioremap(mem_acc_vreg->dev, phys_reg_addr_list[i], 0x4); if (!remap_reg_addr_list[i]) { pr_err("Unable to map register address 0x%x\n", phys_reg_addr_list[i]); return -EINVAL; } } mem_acc_vreg->num_acc_reg = num_acc_reg; mem_acc_vreg->phys_reg_addr_list = phys_reg_addr_list; mem_acc_vreg->remap_reg_addr_list = remap_reg_addr_list; return rc; } static int mem_acc_reg_config_init(struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = mem_acc_vreg->dev->of_node; struct acc_reg_value *reg_config_list; int len, size, rc, i, num_corners; struct property *prop; char prop_str[30]; struct corner_acc_reg_config *corner_acc_reg_config; rc = of_property_read_u32(of_node, "qcom,num-acc-corners", &num_corners); if (rc) { pr_err("could not read qcom,num-acc-corners: rc=%d\n", rc); return rc; } mem_acc_vreg->num_corners = num_corners; rc = of_property_read_u32(of_node, "qcom,boot-acc-corner", &mem_acc_vreg->corner); if (rc) { pr_err("could not read qcom,boot-acc-corner: rc=%d\n", rc); return rc; } pr_debug("boot acc corner = %d\n", mem_acc_vreg->corner); corner_acc_reg_config = devm_kcalloc(mem_acc_vreg->dev, num_corners + 1, sizeof(*corner_acc_reg_config), GFP_KERNEL); if (!corner_acc_reg_config) return -ENOMEM; for (i = 1; i <= num_corners; i++) { snprintf(prop_str, sizeof(prop_str), "qcom,corner%d-reg-config", i); prop = of_find_property(of_node, prop_str, &len); size = len / sizeof(u32); if ((!prop) || (!size) || size < (num_corners * 2)) { pr_err("%s property is missed or invalid length: len=%d\n", prop_str, len); return -EINVAL; } reg_config_list = devm_kcalloc(mem_acc_vreg->dev, size / 2, sizeof(*reg_config_list), GFP_KERNEL); if (!reg_config_list) return -ENOMEM; rc = mem_acc_get_reg_addr_val(of_node, prop_str, reg_config_list, 0, size, mem_acc_vreg->num_acc_reg); if (rc) { pr_err("Failed to read %s property: rc=%d\n", prop_str, rc); return rc; } corner_acc_reg_config[i].max_reg_config_len = size / (num_corners * 2); corner_acc_reg_config[i].reg_config_list = reg_config_list; rc = mem_acc_reg_addr_val_dump(mem_acc_vreg, &corner_acc_reg_config[i], i); if (rc) { pr_err("could not dump acc address-value dump for corner=%d: rc=%d\n", i, rc); return rc; } } mem_acc_vreg->corner_acc_reg_config = corner_acc_reg_config; mem_acc_vreg->flags |= MEM_ACC_USE_ADDR_VAL_MAP; return rc; } #define MEM_TYPE_STRING_LEN 20 static int mem_acc_init(struct platform_device *pdev, struct mem_acc_regulator *mem_acc_vreg) { struct device_node *of_node = pdev->dev.of_node; struct resource *res; int len, rc, i, j; bool acc_type_present = false; char tmps[MEM_TYPE_STRING_LEN]; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-en"); if (!res || !res->start) { pr_debug("'acc-en' resource missing or not used.\n"); } else { mem_acc_vreg->acc_en_addr = res->start; len = res->end - res->start + 1; pr_debug("'acc_en_addr' = %pa (len=0x%x)\n", &res->start, len); mem_acc_vreg->acc_en_base = devm_ioremap(mem_acc_vreg->dev, mem_acc_vreg->acc_en_addr, len); if (!mem_acc_vreg->acc_en_base) { pr_err("Unable to map 'acc_en_addr' %pa\n", &mem_acc_vreg->acc_en_addr); return -EINVAL; } rc = populate_acc_data(mem_acc_vreg, "qcom,acc-en-bit-pos", &mem_acc_vreg->acc_en_bit_pos, &mem_acc_vreg->num_acc_en); if (rc) { pr_err("Unable to populate 'qcom,acc-en-bit-pos' rc=%d\n", rc); return rc; } } rc = mem_acc_efuse_init(pdev, mem_acc_vreg); if (rc) { pr_err("Wrong eFuse address specified: rc=%d\n", rc); return rc; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l1"); if (!res || !res->start) { pr_debug("'acc-sel-l1' resource missing or not used.\n"); } else { rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L1); if (rc) { pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n", MEMORY_L1, rc); return rc; } mem_acc_vreg->mem_acc_supported[MEMORY_L1] = true; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l2"); if (!res || !res->start) { pr_debug("'acc-sel-l2' resource missing or not used.\n"); } else { rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L2); if (rc) { pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n", MEMORY_L2, rc); return rc; } mem_acc_vreg->mem_acc_supported[MEMORY_L2] = true; } for (i = 0; i < MEM_ACC_TYPE_MAX; i++) { snprintf(tmps, MEM_TYPE_STRING_LEN, "mem-acc-type%d", i + 1); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, tmps); if (!res || !res->start) { pr_debug("'%s' resource missing or not used.\n", tmps); } else { mem_acc_vreg->mem_acc_type_addr[i] = res->start; acc_type_present = true; } } rc = mem_acc_get_reg_addr(mem_acc_vreg); if (rc) { pr_err("Unable to get acc register addresses: rc=%d\n", rc); return rc; } if (mem_acc_vreg->phys_reg_addr_list) { rc = mem_acc_reg_config_init(mem_acc_vreg); if (rc) { pr_err("acc register address-value map failed: rc=%d\n", rc); return rc; } } if (of_find_property(of_node, "qcom,corner-acc-map", NULL)) { rc = populate_acc_data(mem_acc_vreg, "qcom,corner-acc-map", &mem_acc_vreg->corner_acc_map, &mem_acc_vreg->num_corners); /* Check if at least one valid mem-acc config. is specified */ for (i = 0; i < MEMORY_MAX; i++) { if (mem_acc_vreg->mem_acc_supported[i]) break; } if (i == MEMORY_MAX && !acc_type_present) { pr_err("No mem-acc configuration specified\n"); return -EINVAL; } mem_acc_vreg->flags |= MEM_ACC_USE_CORNER_ACC_MAP; } if ((mem_acc_vreg->flags & MEM_ACC_USE_CORNER_ACC_MAP) && (mem_acc_vreg->flags & MEM_ACC_USE_ADDR_VAL_MAP)) { pr_err("Invalid configuration, both qcom,corner-acc-map and qcom,cornerX-addr-val-map specified\n"); return -EINVAL; } pr_debug("num_corners = %d\n", mem_acc_vreg->num_corners); if (mem_acc_vreg->num_acc_en) mem_acc_en_init(mem_acc_vreg); if (mem_acc_vreg->phys_reg_addr_list) { rc = mem_acc_init_reg_config(mem_acc_vreg); if (rc) { pr_err("acc initial register configuration failed: rc=%d\n", rc); return rc; } } rc = mem_acc_sel_init(mem_acc_vreg); if (rc) { pr_err("Unable to initialize mem_acc_sel reg rc=%d\n", rc); return rc; } for (i = 0; i < MEMORY_MAX; i++) { rc = mem_acc_custom_data_init(pdev, mem_acc_vreg, i); if (rc) { pr_err("Unable to initialize custom data for mem_type=%d rc=%d\n", i, rc); return rc; } } rc = mem_acc_parse_override_config(mem_acc_vreg); if (rc) { pr_err("Unable to parse mem acc override configuration, rc=%d\n", rc); return rc; } if (acc_type_present) { mem_acc_vreg->mem_acc_type_data = devm_kzalloc( mem_acc_vreg->dev, mem_acc_vreg->num_corners * MEM_ACC_TYPE_MAX * sizeof(u32), GFP_KERNEL); if (!mem_acc_vreg->mem_acc_type_data) { pr_err("Unable to allocate memory for mem_acc_type\n"); return -ENOMEM; } for (i = 0; i < MEM_ACC_TYPE_MAX; i++) { if (mem_acc_vreg->mem_acc_type_addr[i]) { snprintf(tmps, MEM_TYPE_STRING_LEN, "qcom,mem-acc-type%d", i + 1); j = i * mem_acc_vreg->num_corners; rc = of_property_read_u32_array( mem_acc_vreg->dev->of_node, tmps, &mem_acc_vreg->mem_acc_type_data[j], mem_acc_vreg->num_corners); if (rc) { pr_err("Unable to get property %s rc=%d\n", tmps, rc); return rc; } } } } return 0; } static int mem_acc_regulator_probe(struct platform_device *pdev) { struct regulator_config reg_config = {}; struct mem_acc_regulator *mem_acc_vreg; struct regulator_desc *rdesc; struct regulator_init_data *init_data; int rc; if (!pdev->dev.of_node) { pr_err("Device tree node is missing\n"); return -EINVAL; } init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node, NULL); if (!init_data) { pr_err("regulator init data is missing\n"); return -EINVAL; } init_data->constraints.input_uV = init_data->constraints.max_uV; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; mem_acc_vreg = devm_kzalloc(&pdev->dev, sizeof(*mem_acc_vreg), GFP_KERNEL); if (!mem_acc_vreg) return -ENOMEM; mem_acc_vreg->dev = &pdev->dev; rc = mem_acc_init(pdev, mem_acc_vreg); if (rc) { pr_err("Unable to initialize mem_acc configuration rc=%d\n", rc); return rc; } rdesc = &mem_acc_vreg->rdesc; rdesc->owner = THIS_MODULE; rdesc->type = REGULATOR_VOLTAGE; rdesc->ops = &mem_acc_corner_ops; rdesc->name = init_data->constraints.name; reg_config.dev = &pdev->dev; reg_config.init_data = init_data; reg_config.driver_data = mem_acc_vreg; reg_config.of_node = pdev->dev.of_node; mem_acc_vreg->rdev = regulator_register(rdesc, ®_config); if (IS_ERR(mem_acc_vreg->rdev)) { rc = PTR_ERR(mem_acc_vreg->rdev); if (rc != -EPROBE_DEFER) pr_err("regulator_register failed: rc=%d\n", rc); return rc; } platform_set_drvdata(pdev, mem_acc_vreg); return 0; } static int mem_acc_regulator_remove(struct platform_device *pdev) { struct mem_acc_regulator *mem_acc_vreg = platform_get_drvdata(pdev); regulator_unregister(mem_acc_vreg->rdev); return 0; } static const struct of_device_id mem_acc_regulator_match_table[] = { { .compatible = "qcom,mem-acc-regulator", }, {} }; static struct platform_driver mem_acc_regulator_driver = { .probe = mem_acc_regulator_probe, .remove = mem_acc_regulator_remove, .driver = { .name = "qcom,mem-acc-regulator", .of_match_table = mem_acc_regulator_match_table, .owner = THIS_MODULE, }, }; int __init mem_acc_regulator_init(void) { return platform_driver_register(&mem_acc_regulator_driver); } postcore_initcall(mem_acc_regulator_init); static void __exit mem_acc_regulator_exit(void) { platform_driver_unregister(&mem_acc_regulator_driver); } module_exit(mem_acc_regulator_exit); MODULE_DESCRIPTION("MEM-ACC-SEL regulator driver"); MODULE_LICENSE("GPL v2");