#include <linux/linkage.h> #include <linux/sched.h> #include <asm/pmon.h> #include <asm/titan_dep.h> extern unsigned int (*mips_hpt_read)(void); extern void (*mips_hpt_init)(unsigned int); #define LAUNCHSTACK_SIZE 256 static spinlock_t launch_lock __initdata; static unsigned long secondary_sp __initdata; static unsigned long secondary_gp __initdata; static unsigned char launchstack[LAUNCHSTACK_SIZE] __initdata __attribute__((aligned(2 * sizeof(long)))); static void __init prom_smp_bootstrap(void) { local_irq_disable(); while (spin_is_locked(&launch_lock)); __asm__ __volatile__( " move $sp, %0 \n" " move $gp, %1 \n" " j smp_bootstrap \n" : : "r" (secondary_sp), "r" (secondary_gp)); } /* * PMON is a fragile beast. It'll blow up once the mappings it's littering * right into the middle of KSEG3 are blown away so we have to grab the slave * core early and keep it in a waiting loop. */ void __init prom_grab_secondary(void) { spin_lock(&launch_lock); pmon_cpustart(1, &prom_smp_bootstrap, launchstack + LAUNCHSTACK_SIZE, 0); } /* * Detect available CPUs, populate phys_cpu_present_map before smp_init * * We don't want to start the secondary CPU yet nor do we have a nice probing * feature in PMON so we just assume presence of the secondary core. */ static char maxcpus_string[] __initdata = KERN_WARNING "max_cpus set to 0; using 1 instead\n"; void __init prom_prepare_cpus(unsigned int max_cpus) { int enabled = 0, i; if (max_cpus == 0) { printk(maxcpus_string); max_cpus = 1; } cpus_clear(phys_cpu_present_map); for (i = 0; i < 2; i++) { if (i == max_cpus) break; /* * The boot CPU */ cpu_set(i, phys_cpu_present_map); __cpu_number_map[i] = i; __cpu_logical_map[i] = i; enabled++; } /* * Be paranoid. Enable the IPI only if we're really about to go SMP. */ if (enabled > 1) set_c0_status(STATUSF_IP5); } /* * Firmware CPU startup hook * Complicated by PMON's weird interface which tries to minimic the UNIX fork. * It launches the next * available CPU and copies some information on the * stack so the first thing we do is throw away that stuff and load useful * values into the registers ... */ void prom_boot_secondary(int cpu, struct task_struct *idle) { unsigned long gp = (unsigned long) idle->thread_info; unsigned long sp = gp + THREAD_SIZE - 32; secondary_sp = sp; secondary_gp = gp; spin_unlock(&launch_lock); } /* Hook for after all CPUs are online */ void prom_cpus_done(void) { } /* * After we've done initial boot, this function is called to allow the * board code to clean up state, if needed */ void prom_init_secondary(void) { mips_hpt_init(mips_hpt_read()); set_c0_status(ST0_CO | ST0_IE | ST0_IM); } void prom_smp_finish(void) { } asmlinkage void titan_mailbox_irq(struct pt_regs *regs) { int cpu = smp_processor_id(); unsigned long status; if (cpu == 0) { status = OCD_READ(RM9000x2_OCD_INTP0STATUS3); OCD_WRITE(RM9000x2_OCD_INTP0CLEAR3, status); } if (cpu == 1) { status = OCD_READ(RM9000x2_OCD_INTP1STATUS3); OCD_WRITE(RM9000x2_OCD_INTP1CLEAR3, status); } if (status & 0x2) smp_call_function_interrupt(); } /* * Send inter-processor interrupt */ void core_send_ipi(int cpu, unsigned int action) { /* * Generate an INTMSG so that it can be sent over to the * destination CPU. The INTMSG will put the STATUS bits * based on the action desired. An alternative strategy * is to write to the Interrupt Set register, read the * Interrupt Status register and clear the Interrupt * Clear register. The latter is preffered. */ switch (action) { case SMP_RESCHEDULE_YOURSELF: if (cpu == 1) OCD_WRITE(RM9000x2_OCD_INTP1SET3, 4); else OCD_WRITE(RM9000x2_OCD_INTP0SET3, 4); break; case SMP_CALL_FUNCTION: if (cpu == 1) OCD_WRITE(RM9000x2_OCD_INTP1SET3, 2); else OCD_WRITE(RM9000x2_OCD_INTP0SET3, 2); break; } }