/* * Copyright (c) 2011 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* ***** SDIO interface chip backplane handle functions ***** */ #include #include #include #include #include #include #include #include #include #include #include "dhd_dbg.h" #include "sdio_host.h" #include "sdio_chip.h" /* chip core base & ramsize */ /* bcm4329 */ /* SDIO device core, ID 0x829 */ #define BCM4329_CORE_BUS_BASE 0x18011000 /* internal memory core, ID 0x80e */ #define BCM4329_CORE_SOCRAM_BASE 0x18003000 /* ARM Cortex M3 core, ID 0x82a */ #define BCM4329_CORE_ARM_BASE 0x18002000 #define BCM4329_RAMSIZE 0x48000 #define SBCOREREV(sbidh) \ ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \ ((sbidh) & SSB_IDHIGH_RCLO)) /* SOC Interconnect types (aka chip types) */ #define SOCI_SB 0 #define SOCI_AI 1 /* EROM CompIdentB */ #define CIB_REV_MASK 0xff000000 #define CIB_REV_SHIFT 24 #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu)) /* SDIO Pad drive strength to select value mappings */ struct sdiod_drive_str { u8 strength; /* Pad Drive Strength in mA */ u8 sel; /* Chip-specific select value */ }; /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */ static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = { {32, 0x6}, {26, 0x7}, {22, 0x4}, {16, 0x5}, {12, 0x2}, {8, 0x3}, {4, 0x0}, {0, 0x1} }; u8 brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid) { u8 idx; for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++) if (coreid == ci->c_inf[idx].id) return idx; return BRCMF_MAX_CORENUM; } static u32 brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbidhigh), 4); return SBCOREREV(regdata); } static u32 brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT; } static bool brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT | SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK); return (SSB_TMSLOW_CLOCK == regdata); } static bool brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; bool ret; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdcard_reg_read(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4); ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK; regdata = brcmf_sdcard_reg_read(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, 4); ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0); return ret; } static void brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); if (regdata & SSB_TMSLOW_RESET) return; regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); if ((regdata & SSB_TMSLOW_CLOCK) != 0) { /* * set target reject and spin until busy is clear * (preserve core-specific bits) */ regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4, regdata | SSB_TMSLOW_REJECT); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); udelay(1); SPINWAIT((brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4) & SSB_TMSHIGH_BUSY), 100000); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4); if (regdata & SSB_TMSHIGH_BUSY) brcmf_dbg(ERROR, "core state still busy\n"); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbidlow), 4); if (regdata & SSB_IDLOW_INITIATOR) { regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4) | SSB_IMSTATE_REJECT; brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4, regdata); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4); udelay(1); SPINWAIT((brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4) & SSB_IMSTATE_BUSY), 100000); } /* set reset and reject while enabling the clocks */ brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4, (SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET)); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); udelay(10); /* clear the initiator reject bit */ regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbidlow), 4); if (regdata & SSB_IDLOW_INITIATOR) { regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4) & ~SSB_IMSTATE_REJECT; brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4, regdata); } } /* leave reset and reject asserted */ brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4, (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET)); udelay(1); } static void brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u8 idx; u32 regdata; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* if core is already in reset, just return */ regdata = brcmf_sdcard_reg_read(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, 4); if ((regdata & BCMA_RESET_CTL_RESET) != 0) return; brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4, 0); regdata = brcmf_sdcard_reg_read(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4); udelay(10); brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, 4, BCMA_RESET_CTL_RESET); udelay(1); } static void brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* * Must do the disable sequence first to work for * arbitrary current core state. */ brcmf_sdio_sb_coredisable(sdiodev, ci, coreid); /* * Now do the initialization sequence. * set reset while enabling the clock and * forcing them on throughout the core */ brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4, SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); udelay(1); /* clear any serror */ regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4); if (regdata & SSB_TMSHIGH_SERR) brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4, 0); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4); if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), 4, regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO)); /* clear reset and allow it to propagate throughout the core */ brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4, SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); udelay(1); /* leave clock enabled */ brcmf_sdcard_reg_write(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4, SSB_TMSLOW_CLOCK); regdata = brcmf_sdcard_reg_read(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4); udelay(1); } static void brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u8 idx; u32 regdata; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* must disable first to work for arbitrary current core state */ brcmf_sdio_ai_coredisable(sdiodev, ci, coreid); /* now do initialization sequence */ brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4, BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); regdata = brcmf_sdcard_reg_read(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4); brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, 4, 0); udelay(1); brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4, BCMA_IOCTL_CLK); regdata = brcmf_sdcard_reg_read(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4); udelay(1); } static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u32 regs) { u32 regdata; /* * Get CC core rev * Chipid is assume to be at offset 0 from regs arg * For different chiptypes or old sdio hosts w/o chipcommon, * other ways of recognition should be added here. */ ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON; ci->c_inf[0].base = regs; regdata = brcmf_sdcard_reg_read(sdiodev, CORE_CC_REG(ci->c_inf[0].base, chipid), 4); ci->chip = regdata & CID_ID_MASK; ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT; ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT; brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev); /* Address of cores for new chips should be added here */ switch (ci->chip) { case BCM4329_CHIP_ID: ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = BCM4329_CORE_BUS_BASE; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = BCM4329_CORE_ARM_BASE; ci->ramsize = BCM4329_RAMSIZE; break; case BCM4330_CHIP_ID: ci->c_inf[0].wrapbase = 0x18100000; ci->c_inf[0].cib = 0x27004211; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = 0x18002000; ci->c_inf[1].wrapbase = 0x18102000; ci->c_inf[1].cib = 0x07004211; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = 0x18004000; ci->c_inf[2].wrapbase = 0x18104000; ci->c_inf[2].cib = 0x0d080401; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = 0x18003000; ci->c_inf[3].wrapbase = 0x18103000; ci->c_inf[3].cib = 0x03004211; ci->ramsize = 0x48000; break; default: brcmf_dbg(ERROR, "chipid 0x%x is not supported\n", ci->chip); return -ENODEV; } switch (ci->socitype) { case SOCI_SB: ci->iscoreup = brcmf_sdio_sb_iscoreup; ci->corerev = brcmf_sdio_sb_corerev; ci->coredisable = brcmf_sdio_sb_coredisable; ci->resetcore = brcmf_sdio_sb_resetcore; break; case SOCI_AI: ci->iscoreup = brcmf_sdio_ai_iscoreup; ci->corerev = brcmf_sdio_ai_corerev; ci->coredisable = brcmf_sdio_ai_coredisable; ci->resetcore = brcmf_sdio_ai_resetcore; break; default: brcmf_dbg(ERROR, "socitype %u not supported\n", ci->socitype); return -ENODEV; } return 0; } static int brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev) { int err = 0; u8 clkval, clkset; /* Try forcing SDIO core to do ALPAvail request only */ clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ; brcmf_sdcard_cfg_write(sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); if (err) { brcmf_dbg(ERROR, "error writing for HT off\n"); return err; } /* If register supported, wait for ALPAvail and then force ALP */ /* This may take up to 15 milliseconds */ clkval = brcmf_sdcard_cfg_read(sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL); if ((clkval & ~SBSDIO_AVBITS) != clkset) { brcmf_dbg(ERROR, "ChipClkCSR access: wrote 0x%02x read 0x%02x\n", clkset, clkval); return -EACCES; } SPINWAIT(((clkval = brcmf_sdcard_cfg_read(sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)), PMU_MAX_TRANSITION_DLY); if (!SBSDIO_ALPAV(clkval)) { brcmf_dbg(ERROR, "timeout on ALPAV wait, clkval 0x%02x\n", clkval); return -EBUSY; } clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP; brcmf_sdcard_cfg_write(sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); udelay(65); /* Also, disable the extra SDIO pull-ups */ brcmf_sdcard_cfg_write(sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL); return 0; } static void brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci) { /* get chipcommon rev */ ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id); /* get chipcommon capabilites */ ci->c_inf[0].caps = brcmf_sdcard_reg_read(sdiodev, CORE_CC_REG(ci->c_inf[0].base, capabilities), 4); /* get pmu caps & rev */ if (ci->c_inf[0].caps & CC_CAP_PMU) { ci->pmucaps = brcmf_sdcard_reg_read(sdiodev, CORE_CC_REG(ci->c_inf[0].base, pmucapabilities), 4); ci->pmurev = ci->pmucaps & PCAP_REV_MASK; } ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id); brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n", ci->c_inf[0].rev, ci->pmurev, ci->c_inf[1].rev, ci->c_inf[1].id); /* * Make sure any on-chip ARM is off (in case strapping is wrong), * or downloaded code was already running. */ ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3); } int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev, struct chip_info **ci_ptr, u32 regs) { int ret; struct chip_info *ci; brcmf_dbg(TRACE, "Enter\n"); /* alloc chip_info_t */ ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC); if (!ci) return -ENOMEM; ret = brcmf_sdio_chip_buscoreprep(sdiodev); if (ret != 0) goto err; ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs); if (ret != 0) goto err; brcmf_sdio_chip_buscoresetup(sdiodev, ci); brcmf_sdcard_reg_write(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopullup), 4, 0); brcmf_sdcard_reg_write(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopulldown), 4, 0); *ci_ptr = ci; return 0; err: kfree(ci); return ret; } void brcmf_sdio_chip_detach(struct chip_info **ci_ptr) { brcmf_dbg(TRACE, "Enter\n"); kfree(*ci_ptr); *ci_ptr = NULL; } static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len) { const char *fmt; fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x"; snprintf(buf, len, fmt, chipid); return buf; } void brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u32 drivestrength) { struct sdiod_drive_str *str_tab = NULL; u32 str_mask = 0; u32 str_shift = 0; char chn[8]; if (!(ci->c_inf[0].caps & CC_CAP_PMU)) return; switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) { case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12): str_tab = (struct sdiod_drive_str *)&sdiod_drvstr_tab1_1v8; str_mask = 0x00003800; str_shift = 11; break; default: brcmf_dbg(ERROR, "No SDIO Drive strength init done for chip %s rev %d pmurev %d\n", brcmf_sdio_chip_name(ci->chip, chn, 8), ci->chiprev, ci->pmurev); break; } if (str_tab != NULL) { u32 drivestrength_sel = 0; u32 cc_data_temp; int i; for (i = 0; str_tab[i].strength != 0; i++) { if (drivestrength >= str_tab[i].strength) { drivestrength_sel = str_tab[i].sel; break; } } brcmf_sdcard_reg_write(sdiodev, CORE_CC_REG(ci->c_inf[0].base, chipcontrol_addr), 4, 1); cc_data_temp = brcmf_sdcard_reg_read(sdiodev, CORE_CC_REG(ci->c_inf[0].base, chipcontrol_addr), 4); cc_data_temp &= ~str_mask; drivestrength_sel <<= str_shift; cc_data_temp |= drivestrength_sel; brcmf_sdcard_reg_write(sdiodev, CORE_CC_REG(ci->c_inf[0].base, chipcontrol_addr), 4, cc_data_temp); brcmf_dbg(INFO, "SDIO: %dmA drive strength selected, set to 0x%08x\n", drivestrength, cc_data_temp); } }