/* * Instruction-patching support. * * Copyright (C) 2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> */ #include <linux/init.h> #include <linux/string.h> #include <asm/patch.h> #include <asm/processor.h> #include <asm/sections.h> #include <asm/system.h> #include <asm/unistd.h> /* * This was adapted from code written by Tony Luck: * * The 64-bit value in a "movl reg=value" is scattered between the two words of the bundle * like this: * * 6 6 5 4 3 2 1 * 3210987654321098765432109876543210987654321098765432109876543210 * ABBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCDEEEEEFFFFFFFFFGGGGGGG * * CCCCCCCCCCCCCCCCCCxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx * xxxxAFFFFFFFFFEEEEEDxGGGGGGGxxxxxxxxxxxxxBBBBBBBBBBBBBBBBBBBBBBB */ static u64 get_imm64 (u64 insn_addr) { u64 *p = (u64 *) (insn_addr & -16); /* mask out slot number */ return ( (p[1] & 0x0800000000000000UL) << 4) | /*A*/ ((p[1] & 0x00000000007fffffUL) << 40) | /*B*/ ((p[0] & 0xffffc00000000000UL) >> 24) | /*C*/ ((p[1] & 0x0000100000000000UL) >> 23) | /*D*/ ((p[1] & 0x0003e00000000000UL) >> 29) | /*E*/ ((p[1] & 0x07fc000000000000UL) >> 43) | /*F*/ ((p[1] & 0x000007f000000000UL) >> 36); /*G*/ } /* Patch instruction with "val" where "mask" has 1 bits. */ void ia64_patch (u64 insn_addr, u64 mask, u64 val) { u64 m0, m1, v0, v1, b0, b1, *b = (u64 *) (insn_addr & -16); # define insn_mask ((1UL << 41) - 1) unsigned long shift; b0 = b[0]; b1 = b[1]; shift = 5 + 41 * (insn_addr % 16); /* 5 bits of template, then 3 x 41-bit instructions */ if (shift >= 64) { m1 = mask << (shift - 64); v1 = val << (shift - 64); } else { m0 = mask << shift; m1 = mask >> (64 - shift); v0 = val << shift; v1 = val >> (64 - shift); b[0] = (b0 & ~m0) | (v0 & m0); } b[1] = (b1 & ~m1) | (v1 & m1); } void ia64_patch_imm64 (u64 insn_addr, u64 val) { /* The assembler may generate offset pointing to either slot 1 or slot 2 for a long (2-slot) instruction, occupying slots 1 and 2. */ insn_addr &= -16UL; ia64_patch(insn_addr + 2, 0x01fffefe000UL, ( ((val & 0x8000000000000000UL) >> 27) /* bit 63 -> 36 */ | ((val & 0x0000000000200000UL) << 0) /* bit 21 -> 21 */ | ((val & 0x00000000001f0000UL) << 6) /* bit 16 -> 22 */ | ((val & 0x000000000000ff80UL) << 20) /* bit 7 -> 27 */ | ((val & 0x000000000000007fUL) << 13) /* bit 0 -> 13 */)); ia64_patch(insn_addr + 1, 0x1ffffffffffUL, val >> 22); } void ia64_patch_imm60 (u64 insn_addr, u64 val) { /* The assembler may generate offset pointing to either slot 1 or slot 2 for a long (2-slot) instruction, occupying slots 1 and 2. */ insn_addr &= -16UL; ia64_patch(insn_addr + 2, 0x011ffffe000UL, ( ((val & 0x0800000000000000UL) >> 23) /* bit 59 -> 36 */ | ((val & 0x00000000000fffffUL) << 13) /* bit 0 -> 13 */)); ia64_patch(insn_addr + 1, 0x1fffffffffcUL, val >> 18); } /* * We need sometimes to load the physical address of a kernel * object. Often we can convert the virtual address to physical * at execution time, but sometimes (either for performance reasons * or during error recovery) we cannot to this. Patch the marked * bundles to load the physical address. */ void __init ia64_patch_vtop (unsigned long start, unsigned long end) { s32 *offp = (s32 *) start; u64 ip; while (offp < (s32 *) end) { ip = (u64) offp + *offp; /* replace virtual address with corresponding physical address: */ ia64_patch_imm64(ip, ia64_tpa(get_imm64(ip))); ia64_fc((void *) ip); ++offp; } ia64_sync_i(); ia64_srlz_i(); } void __init ia64_patch_mckinley_e9 (unsigned long start, unsigned long end) { static int first_time = 1; int need_workaround; s32 *offp = (s32 *) start; u64 *wp; need_workaround = (local_cpu_data->family == 0x1f && local_cpu_data->model == 0); if (first_time) { first_time = 0; if (need_workaround) printk(KERN_INFO "Leaving McKinley Errata 9 workaround enabled\n"); else printk(KERN_INFO "McKinley Errata 9 workaround not needed; " "disabling it\n"); } if (need_workaround) return; while (offp < (s32 *) end) { wp = (u64 *) ia64_imva((char *) offp + *offp); wp[0] = 0x0000000100000000UL; /* nop.m 0; nop.i 0; nop.i 0 */ wp[1] = 0x0004000000000200UL; wp[2] = 0x0000000100000011UL; /* nop.m 0; nop.i 0; br.ret.sptk.many b6 */ wp[3] = 0x0084006880000200UL; ia64_fc(wp); ia64_fc(wp + 2); ++offp; } ia64_sync_i(); ia64_srlz_i(); } static void __init patch_fsyscall_table (unsigned long start, unsigned long end) { extern unsigned long fsyscall_table[NR_syscalls]; s32 *offp = (s32 *) start; u64 ip; while (offp < (s32 *) end) { ip = (u64) ia64_imva((char *) offp + *offp); ia64_patch_imm64(ip, (u64) fsyscall_table); ia64_fc((void *) ip); ++offp; } ia64_sync_i(); ia64_srlz_i(); } static void __init patch_brl_fsys_bubble_down (unsigned long start, unsigned long end) { extern char fsys_bubble_down[]; s32 *offp = (s32 *) start; u64 ip; while (offp < (s32 *) end) { ip = (u64) offp + *offp; ia64_patch_imm60((u64) ia64_imva((void *) ip), (u64) (fsys_bubble_down - (ip & -16)) / 16); ia64_fc((void *) ip); ++offp; } ia64_sync_i(); ia64_srlz_i(); } void __init ia64_patch_gate (void) { # define START(name) ((unsigned long) __start_gate_##name##_patchlist) # define END(name) ((unsigned long)__end_gate_##name##_patchlist) patch_fsyscall_table(START(fsyscall), END(fsyscall)); patch_brl_fsys_bubble_down(START(brl_fsys_bubble_down), END(brl_fsys_bubble_down)); ia64_patch_vtop(START(vtop), END(vtop)); ia64_patch_mckinley_e9(START(mckinley_e9), END(mckinley_e9)); }