/* * linux/arch/arm/vfp/vfpsingle.c * * This code is derived in part from John R. Housers softfloat library, which * carries the following notice: * * =========================================================================== * This C source file is part of the SoftFloat IEC/IEEE Floating-point * Arithmetic Package, Release 2. * * Written by John R. Hauser. This work was made possible in part by the * International Computer Science Institute, located at Suite 600, 1947 Center * Street, Berkeley, California 94704. Funding was partially provided by the * National Science Foundation under grant MIP-9311980. The original version * of this code was written as part of a project to build a fixed-point vector * processor in collaboration with the University of California at Berkeley, * overseen by Profs. Nelson Morgan and John Wawrzynek. More information * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ * arithmetic/softfloat.html'. * * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. * * Derivative works are acceptable, even for commercial purposes, so long as * (1) they include prominent notice that the work is derivative, and (2) they * include prominent notice akin to these three paragraphs for those parts of * this code that are retained. * =========================================================================== */ #include <linux/kernel.h> #include <linux/bitops.h> #include <asm/div64.h> #include <asm/ptrace.h> #include <asm/vfp.h> #include "vfpinstr.h" #include "vfp.h" static struct vfp_single vfp_single_default_qnan = { .exponent = 255, .sign = 0, .significand = VFP_SINGLE_SIGNIFICAND_QNAN, }; static void vfp_single_dump(const char *str, struct vfp_single *s) { pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n", str, s->sign != 0, s->exponent, s->significand); } static void vfp_single_normalise_denormal(struct vfp_single *vs) { int bits = 31 - fls(vs->significand); vfp_single_dump("normalise_denormal: in", vs); if (bits) { vs->exponent -= bits - 1; vs->significand <<= bits; } vfp_single_dump("normalise_denormal: out", vs); } #ifndef DEBUG #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions) #else u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func) #endif { u32 significand, incr, rmode; int exponent, shift, underflow; vfp_single_dump("pack: in", vs); /* * Infinities and NaNs are a special case. */ if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) goto pack; /* * Special-case zero. */ if (vs->significand == 0) { vs->exponent = 0; goto pack; } exponent = vs->exponent; significand = vs->significand; /* * Normalise first. Note that we shift the significand up to * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least * significant bit. */ shift = 32 - fls(significand); if (shift < 32 && shift) { exponent -= shift; significand <<= shift; } #ifdef DEBUG vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: normalised", vs); #endif /* * Tiny number? */ underflow = exponent < 0; if (underflow) { significand = vfp_shiftright32jamming(significand, -exponent); exponent = 0; #ifdef DEBUG vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: tiny number", vs); #endif if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) underflow = 0; } /* * Select rounding increment. */ incr = 0; rmode = fpscr & FPSCR_RMODE_MASK; if (rmode == FPSCR_ROUND_NEAREST) { incr = 1 << VFP_SINGLE_LOW_BITS; if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; pr_debug("VFP: rounding increment = 0x%08x\n", incr); /* * Is our rounding going to overflow? */ if ((significand + incr) < significand) { exponent += 1; significand = (significand >> 1) | (significand & 1); incr >>= 1; #ifdef DEBUG vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: overflow", vs); #endif } /* * If any of the low bits (which will be shifted out of the * number) are non-zero, the result is inexact. */ if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) exceptions |= FPSCR_IXC; /* * Do our rounding. */ significand += incr; /* * Infinity? */ if (exponent >= 254) { exceptions |= FPSCR_OFC | FPSCR_IXC; if (incr == 0) { vs->exponent = 253; vs->significand = 0x7fffffff; } else { vs->exponent = 255; /* infinity */ vs->significand = 0; } } else { if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) exponent = 0; if (exponent || significand > 0x80000000) underflow = 0; if (underflow) exceptions |= FPSCR_UFC; vs->exponent = exponent; vs->significand = significand >> 1; } pack: vfp_single_dump("pack: final", vs); { s32 d = vfp_single_pack(vs); #ifdef DEBUG pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func, sd, d, exceptions); #endif vfp_put_float(d, sd); } return exceptions; } /* * Propagate the NaN, setting exceptions if it is signalling. * 'n' is always a NaN. 'm' may be a number, NaN or infinity. */ static u32 vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { struct vfp_single *nan; int tn, tm = 0; tn = vfp_single_type(vsn); if (vsm) tm = vfp_single_type(vsm); if (fpscr & FPSCR_DEFAULT_NAN) /* * Default NaN mode - always returns a quiet NaN */ nan = &vfp_single_default_qnan; else { /* * Contemporary mode - select the first signalling * NAN, or if neither are signalling, the first * quiet NAN. */ if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) nan = vsn; else nan = vsm; /* * Make the NaN quiet. */ nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; } *vsd = *nan; /* * If one was a signalling NAN, raise invalid operation. */ return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; } /* * Extended operations */ static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(vfp_single_packed_abs(m), sd); return 0; } static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(m, sd); return 0; } static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(vfp_single_packed_negate(m), sd); return 0; } static const u16 sqrt_oddadjust[] = { 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67 }; static const u16 sqrt_evenadjust[] = { 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002 }; u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) { int index; u32 z, a; if ((significand & 0xc0000000) != 0x40000000) { printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n"); } a = significand << 1; index = (a >> 27) & 15; if (exponent & 1) { z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; z = ((a / z) << 14) + (z << 15); a >>= 1; } else { z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; z = a / z + z; z = (z >= 0x20000) ? 0xffff8000 : (z << 15); if (z <= a) return (s32)a >> 1; } { u64 v = (u64)a << 31; do_div(v, z); return v + (z >> 1); } } static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm, vsd; int ret, tm; vfp_single_unpack(&vsm, m); tm = vfp_single_type(&vsm); if (tm & (VFP_NAN|VFP_INFINITY)) { struct vfp_single *vsp = &vsd; if (tm & VFP_NAN) ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr); else if (vsm.sign == 0) { sqrt_copy: vsp = &vsm; ret = 0; } else { sqrt_invalid: vsp = &vfp_single_default_qnan; ret = FPSCR_IOC; } vfp_put_float(vfp_single_pack(vsp), sd); return ret; } /* * sqrt(+/- 0) == +/- 0 */ if (tm & VFP_ZERO) goto sqrt_copy; /* * Normalise a denormalised number */ if (tm & VFP_DENORMAL) vfp_single_normalise_denormal(&vsm); /* * sqrt(<0) = invalid */ if (vsm.sign) goto sqrt_invalid; vfp_single_dump("sqrt", &vsm); /* * Estimate the square root. */ vsd.sign = 0; vsd.exponent = ((vsm.exponent - 127) >> 1) + 127; vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2; vfp_single_dump("sqrt estimate", &vsd); /* * And now adjust. */ if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) { if (vsd.significand < 2) { vsd.significand = 0xffffffff; } else { u64 term; s64 rem; vsm.significand <<= !(vsm.exponent & 1); term = (u64)vsd.significand * vsd.significand; rem = ((u64)vsm.significand << 32) - term; pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem); while (rem < 0) { vsd.significand -= 1; rem += ((u64)vsd.significand << 1) | 1; } vsd.significand |= rem != 0; } } vsd.significand = vfp_shiftright32jamming(vsd.significand, 1); return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt"); } /* * Equal := ZC * Less than := N * Greater than := C * Unordered := CV */ static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr) { s32 d; u32 ret = 0; d = vfp_get_float(sd); if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { ret |= FPSCR_C | FPSCR_V; if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { ret |= FPSCR_C | FPSCR_V; if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } if (ret == 0) { if (d == m || vfp_single_packed_abs(d | m) == 0) { /* * equal */ ret |= FPSCR_Z | FPSCR_C; } else if (vfp_single_packed_sign(d ^ m)) { /* * different signs */ if (vfp_single_packed_sign(d)) /* * d is negative, so d < m */ ret |= FPSCR_N; else /* * d is positive, so d > m */ ret |= FPSCR_C; } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { /* * d < m */ ret |= FPSCR_N; } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { /* * d > m */ ret |= FPSCR_C; } } return ret; } static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(sd, 0, m, fpscr); } static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(sd, 1, m, fpscr); } static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(sd, 0, 0, fpscr); } static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(sd, 1, 0, fpscr); } static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm; struct vfp_double vdd; int tm; u32 exceptions = 0; vfp_single_unpack(&vsm, m); tm = vfp_single_type(&vsm); /* * If we have a signalling NaN, signal invalid operation. */ if (tm == VFP_SNAN) exceptions = FPSCR_IOC; if (tm & VFP_DENORMAL) vfp_single_normalise_denormal(&vsm); vdd.sign = vsm.sign; vdd.significand = (u64)vsm.significand << 32; /* * If we have an infinity or NaN, the exponent must be 2047. */ if (tm & (VFP_INFINITY|VFP_NAN)) { vdd.exponent = 2047; if (tm == VFP_QNAN) vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; goto pack_nan; } else if (tm & VFP_ZERO) vdd.exponent = 0; else vdd.exponent = vsm.exponent + (1023 - 127); return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd"); pack_nan: vfp_put_double(vfp_double_pack(&vdd), dd); return exceptions; } static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vs; vs.sign = 0; vs.exponent = 127 + 31 - 1; vs.significand = (u32)m; return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito"); } static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vs; vs.sign = (m & 0x80000000) >> 16; vs.exponent = 127 + 31 - 1; vs.significand = vs.sign ? -m : m; return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito"); } static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; vfp_single_unpack(&vsm, m); vfp_single_dump("VSM", &vsm); /* * Do we have a denormalised number? */ tm = vfp_single_type(&vsm); if (tm & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) vsm.sign = 0; if (vsm.exponent >= 127 + 32) { d = vsm.sign ? 0 : 0xffffffff; exceptions = FPSCR_IOC; } else if (vsm.exponent >= 127 - 1) { int shift = 127 + 31 - vsm.exponent; u32 rem, incr = 0; /* * 2^0 <= m < 2^32-2^8 */ d = (vsm.significand << 1) >> shift; rem = vsm.significand << (33 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x80000000; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { incr = ~0; } if ((rem + incr) < rem) { if (d < 0xffffffff) d += 1; else exceptions |= FPSCR_IOC; } if (d && vsm.sign) { d = 0; exceptions |= FPSCR_IOC; } else if (rem) exceptions |= FPSCR_IXC; } else { d = 0; if (vsm.exponent | vsm.significand) { exceptions |= FPSCR_IXC; if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) d = 1; else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) { d = 0; exceptions |= FPSCR_IOC; } } } pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); vfp_put_float(d, sd); return exceptions; } static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr) { return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO); } static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; vfp_single_unpack(&vsm, m); vfp_single_dump("VSM", &vsm); /* * Do we have a denormalised number? */ tm = vfp_single_type(&vsm); if (vfp_single_type(&vsm) & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) { d = 0; exceptions |= FPSCR_IOC; } else if (vsm.exponent >= 127 + 32) { /* * m >= 2^31-2^7: invalid */ d = 0x7fffffff; if (vsm.sign) d = ~d; exceptions |= FPSCR_IOC; } else if (vsm.exponent >= 127 - 1) { int shift = 127 + 31 - vsm.exponent; u32 rem, incr = 0; /* 2^0 <= m <= 2^31-2^7 */ d = (vsm.significand << 1) >> shift; rem = vsm.significand << (33 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x80000000; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { incr = ~0; } if ((rem + incr) < rem && d < 0xffffffff) d += 1; if (d > 0x7fffffff + (vsm.sign != 0)) { d = 0x7fffffff + (vsm.sign != 0); exceptions |= FPSCR_IOC; } else if (rem) exceptions |= FPSCR_IXC; if (vsm.sign) d = -d; } else { d = 0; if (vsm.exponent | vsm.significand) { exceptions |= FPSCR_IXC; if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) d = 1; else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) d = -1; } } pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); vfp_put_float((s32)d, sd); return exceptions; } static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr) { return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO); } static struct op fops_ext[32] = { [FEXT_TO_IDX(FEXT_FCPY)] = { vfp_single_fcpy, 0 }, [FEXT_TO_IDX(FEXT_FABS)] = { vfp_single_fabs, 0 }, [FEXT_TO_IDX(FEXT_FNEG)] = { vfp_single_fneg, 0 }, [FEXT_TO_IDX(FEXT_FSQRT)] = { vfp_single_fsqrt, 0 }, [FEXT_TO_IDX(FEXT_FCMP)] = { vfp_single_fcmp, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FCMPE)] = { vfp_single_fcmpe, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FCMPZ)] = { vfp_single_fcmpz, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FCMPEZ)] = { vfp_single_fcmpez, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FCVT)] = { vfp_single_fcvtd, OP_SCALAR|OP_DD }, [FEXT_TO_IDX(FEXT_FUITO)] = { vfp_single_fuito, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FSITO)] = { vfp_single_fsito, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FTOUI)] = { vfp_single_ftoui, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FTOUIZ)] = { vfp_single_ftouiz, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FTOSI)] = { vfp_single_ftosi, OP_SCALAR }, [FEXT_TO_IDX(FEXT_FTOSIZ)] = { vfp_single_ftosiz, OP_SCALAR }, }; static u32 vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { struct vfp_single *vsp; u32 exceptions = 0; int tn, tm; tn = vfp_single_type(vsn); tm = vfp_single_type(vsm); if (tn & tm & VFP_INFINITY) { /* * Two infinities. Are they different signs? */ if (vsn->sign ^ vsm->sign) { /* * different signs -> invalid */ exceptions = FPSCR_IOC; vsp = &vfp_single_default_qnan; } else { /* * same signs -> valid */ vsp = vsn; } } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { /* * One infinity and one number -> infinity */ vsp = vsn; } else { /* * 'n' is a NaN of some type */ return vfp_propagate_nan(vsd, vsn, vsm, fpscr); } *vsd = *vsp; return exceptions; } static u32 vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { u32 exp_diff, m_sig; if (vsn->significand & 0x80000000 || vsm->significand & 0x80000000) { pr_info("VFP: bad FP values in %s\n", __func__); vfp_single_dump("VSN", vsn); vfp_single_dump("VSM", vsm); } /* * Ensure that 'n' is the largest magnitude number. Note that * if 'n' and 'm' have equal exponents, we do not swap them. * This ensures that NaN propagation works correctly. */ if (vsn->exponent < vsm->exponent) { struct vfp_single *t = vsn; vsn = vsm; vsm = t; } /* * Is 'n' an infinity or a NaN? Note that 'm' may be a number, * infinity or a NaN here. */ if (vsn->exponent == 255) return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr); /* * We have two proper numbers, where 'vsn' is the larger magnitude. * * Copy 'n' to 'd' before doing the arithmetic. */ *vsd = *vsn; /* * Align both numbers. */ exp_diff = vsn->exponent - vsm->exponent; m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff); /* * If the signs are different, we are really subtracting. */ if (vsn->sign ^ vsm->sign) { m_sig = vsn->significand - m_sig; if ((s32)m_sig < 0) { vsd->sign = vfp_sign_negate(vsd->sign); m_sig = -m_sig; } else if (m_sig == 0) { vsd->sign = (fpscr & FPSCR_RMODE_MASK) == FPSCR_ROUND_MINUSINF ? 0x8000 : 0; } } else { m_sig = vsn->significand + m_sig; } vsd->significand = m_sig; return 0; } static u32 vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { vfp_single_dump("VSN", vsn); vfp_single_dump("VSM", vsm); /* * Ensure that 'n' is the largest magnitude number. Note that * if 'n' and 'm' have equal exponents, we do not swap them. * This ensures that NaN propagation works correctly. */ if (vsn->exponent < vsm->exponent) { struct vfp_single *t = vsn; vsn = vsm; vsm = t; pr_debug("VFP: swapping M <-> N\n"); } vsd->sign = vsn->sign ^ vsm->sign; /* * If 'n' is an infinity or NaN, handle it. 'm' may be anything. */ if (vsn->exponent == 255) { if (vsn->significand || (vsm->exponent == 255 && vsm->significand)) return vfp_propagate_nan(vsd, vsn, vsm, fpscr); if ((vsm->exponent | vsm->significand) == 0) { *vsd = vfp_single_default_qnan; return FPSCR_IOC; } vsd->exponent = vsn->exponent; vsd->significand = 0; return 0; } /* * If 'm' is zero, the result is always zero. In this case, * 'n' may be zero or a number, but it doesn't matter which. */ if ((vsm->exponent | vsm->significand) == 0) { vsd->exponent = 0; vsd->significand = 0; return 0; } /* * We add 2 to the destination exponent for the same reason as * the addition case - though this time we have +1 from each * input operand. */ vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2; vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand); vfp_single_dump("VSD", vsd); return 0; } #define NEG_MULTIPLY (1 << 0) #define NEG_SUBTRACT (1 << 1) static u32 vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func) { struct vfp_single vsd, vsp, vsn, vsm; u32 exceptions; s32 v; v = vfp_get_float(sn); pr_debug("VFP: s%u = %08x\n", sn, v); vfp_single_unpack(&vsn, v); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr); if (negate & NEG_MULTIPLY) vsp.sign = vfp_sign_negate(vsp.sign); v = vfp_get_float(sd); pr_debug("VFP: s%u = %08x\n", sd, v); vfp_single_unpack(&vsn, v); if (negate & NEG_SUBTRACT) vsn.sign = vfp_sign_negate(vsn.sign); exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr); return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func); } /* * Standard operations */ /* * sd = sd + (sn * sm) */ static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr) { return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac"); } /* * sd = sd - (sn * sm) */ static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr) { return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac"); } /* * sd = -sd + (sn * sm) */ static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr) { return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc"); } /* * sd = -sd - (sn * sm) */ static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr) { return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); } /* * sd = sn * sm */ static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions; s32 n = vfp_get_float(sn); pr_debug("VFP: s%u = %08x\n", sn, n); vfp_single_unpack(&vsn, n); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul"); } /* * sd = -(sn * sm) */ static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions; s32 n = vfp_get_float(sn); pr_debug("VFP: s%u = %08x\n", sn, n); vfp_single_unpack(&vsn, n); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); vsd.sign = vfp_sign_negate(vsd.sign); return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul"); } /* * sd = sn + sm */ static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions; s32 n = vfp_get_float(sn); pr_debug("VFP: s%u = %08x\n", sn, n); /* * Unpack and normalise denormals. */ vfp_single_unpack(&vsn, n); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr); return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd"); } /* * sd = sn - sm */ static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr) { /* * Subtraction is addition with one sign inverted. */ return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr); } /* * sd = sn / sm */ static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions = 0; s32 n = vfp_get_float(sn); int tm, tn; pr_debug("VFP: s%u = %08x\n", sn, n); vfp_single_unpack(&vsn, n); vfp_single_unpack(&vsm, m); vsd.sign = vsn.sign ^ vsm.sign; tn = vfp_single_type(&vsn); tm = vfp_single_type(&vsm); /* * Is n a NAN? */ if (tn & VFP_NAN) goto vsn_nan; /* * Is m a NAN? */ if (tm & VFP_NAN) goto vsm_nan; /* * If n and m are infinity, the result is invalid * If n and m are zero, the result is invalid */ if (tm & tn & (VFP_INFINITY|VFP_ZERO)) goto invalid; /* * If n is infinity, the result is infinity */ if (tn & VFP_INFINITY) goto infinity; /* * If m is zero, raise div0 exception */ if (tm & VFP_ZERO) goto divzero; /* * If m is infinity, or n is zero, the result is zero */ if (tm & VFP_INFINITY || tn & VFP_ZERO) goto zero; if (tn & VFP_DENORMAL) vfp_single_normalise_denormal(&vsn); if (tm & VFP_DENORMAL) vfp_single_normalise_denormal(&vsm); /* * Ok, we have two numbers, we can perform division. */ vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1; vsm.significand <<= 1; if (vsm.significand <= (2 * vsn.significand)) { vsn.significand >>= 1; vsd.exponent++; } { u64 significand = (u64)vsn.significand << 32; do_div(significand, vsm.significand); vsd.significand = significand; } if ((vsd.significand & 0x3f) == 0) vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32); return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv"); vsn_nan: exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); pack: vfp_put_float(vfp_single_pack(&vsd), sd); return exceptions; vsm_nan: exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr); goto pack; zero: vsd.exponent = 0; vsd.significand = 0; goto pack; divzero: exceptions = FPSCR_DZC; infinity: vsd.exponent = 255; vsd.significand = 0; goto pack; invalid: vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd); return FPSCR_IOC; } static struct op fops[16] = { [FOP_TO_IDX(FOP_FMAC)] = { vfp_single_fmac, 0 }, [FOP_TO_IDX(FOP_FNMAC)] = { vfp_single_fnmac, 0 }, [FOP_TO_IDX(FOP_FMSC)] = { vfp_single_fmsc, 0 }, [FOP_TO_IDX(FOP_FNMSC)] = { vfp_single_fnmsc, 0 }, [FOP_TO_IDX(FOP_FMUL)] = { vfp_single_fmul, 0 }, [FOP_TO_IDX(FOP_FNMUL)] = { vfp_single_fnmul, 0 }, [FOP_TO_IDX(FOP_FADD)] = { vfp_single_fadd, 0 }, [FOP_TO_IDX(FOP_FSUB)] = { vfp_single_fsub, 0 }, [FOP_TO_IDX(FOP_FDIV)] = { vfp_single_fdiv, 0 }, }; #define FREG_BANK(x) ((x) & 0x18) #define FREG_IDX(x) ((x) & 7) u32 vfp_single_cpdo(u32 inst, u32 fpscr) { u32 op = inst & FOP_MASK; u32 exceptions = 0; unsigned int dest; unsigned int sn = vfp_get_sn(inst); unsigned int sm = vfp_get_sm(inst); unsigned int vecitr, veclen, vecstride; struct op *fop; vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK); fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; /* * fcvtsd takes a dN register number as destination, not sN. * Technically, if bit 0 of dd is set, this is an invalid * instruction. However, we ignore this for efficiency. * It also only operates on scalars. */ if (fop->flags & OP_DD) dest = vfp_get_dd(inst); else dest = vfp_get_sd(inst); /* * If destination bank is zero, vector length is always '1'. * ARM DDI0100F C5.1.3, C5.3.2. */ if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0) veclen = 0; else veclen = fpscr & FPSCR_LENGTH_MASK; pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, (veclen >> FPSCR_LENGTH_BIT) + 1); if (!fop->fn) goto invalid; for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { s32 m = vfp_get_float(sm); u32 except; char type; type = fop->flags & OP_DD ? 'd' : 's'; if (op == FOP_EXT) pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n", vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, sm, m); else pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n", vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, FOP_TO_IDX(op), sm, m); except = fop->fn(dest, sn, m, fpscr); pr_debug("VFP: itr%d: exceptions=%08x\n", vecitr >> FPSCR_LENGTH_BIT, except); exceptions |= except; /* * CHECK: It appears to be undefined whether we stop when * we encounter an exception. We continue. */ dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7); sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7); if (FREG_BANK(sm) != 0) sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7); } return exceptions; invalid: return (u32)-1; }