/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Generic socket support routines. Memory allocators, socket lock/release * handler for protocols to use and generic option handler. * * * Authors: Ross Biro * Fred N. van Kempen, * Florian La Roche, * Alan Cox, * * Fixes: * Alan Cox : Numerous verify_area() problems * Alan Cox : Connecting on a connecting socket * now returns an error for tcp. * Alan Cox : sock->protocol is set correctly. * and is not sometimes left as 0. * Alan Cox : connect handles icmp errors on a * connect properly. Unfortunately there * is a restart syscall nasty there. I * can't match BSD without hacking the C * library. Ideas urgently sought! * Alan Cox : Disallow bind() to addresses that are * not ours - especially broadcast ones!! * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, * instead they leave that for the DESTROY timer. * Alan Cox : Clean up error flag in accept * Alan Cox : TCP ack handling is buggy, the DESTROY timer * was buggy. Put a remove_sock() in the handler * for memory when we hit 0. Also altered the timer * code. The ACK stuff can wait and needs major * TCP layer surgery. * Alan Cox : Fixed TCP ack bug, removed remove sock * and fixed timer/inet_bh race. * Alan Cox : Added zapped flag for TCP * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... * Rick Sladkey : Relaxed UDP rules for matching packets. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support * Pauline Middelink : identd support * Alan Cox : Fixed connect() taking signals I think. * Alan Cox : SO_LINGER supported * Alan Cox : Error reporting fixes * Anonymous : inet_create tidied up (sk->reuse setting) * Alan Cox : inet sockets don't set sk->type! * Alan Cox : Split socket option code * Alan Cox : Callbacks * Alan Cox : Nagle flag for Charles & Johannes stuff * Alex : Removed restriction on inet fioctl * Alan Cox : Splitting INET from NET core * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code * Alan Cox : Split IP from generic code * Alan Cox : New kfree_skbmem() * Alan Cox : Make SO_DEBUG superuser only. * Alan Cox : Allow anyone to clear SO_DEBUG * (compatibility fix) * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. * Alan Cox : Allocator for a socket is settable. * Alan Cox : SO_ERROR includes soft errors. * Alan Cox : Allow NULL arguments on some SO_ opts * Alan Cox : Generic socket allocation to make hooks * easier (suggested by Craig Metz). * Michael Pall : SO_ERROR returns positive errno again * Steve Whitehouse: Added default destructor to free * protocol private data. * Steve Whitehouse: Added various other default routines * common to several socket families. * Chris Evans : Call suser() check last on F_SETOWN * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() * Andi Kleen : Fix write_space callback * Chris Evans : Security fixes - signedness again * Arnaldo C. Melo : cleanups, use skb_queue_purge * * To Fix: * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* START_OF_KNOX_NPA */ #include #include #include /* END_OF_KNOX_NPA */ static DEFINE_MUTEX(proto_list_mutex); static LIST_HEAD(proto_list); /** * sk_ns_capable - General socket capability test * @sk: Socket to use a capability on or through * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket had when the socket was * created and the current process has the capability @cap in the user * namespace @user_ns. */ bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap) { return file_ns_capable(sk->sk_socket->file, user_ns, cap) && ns_capable(user_ns, cap); } EXPORT_SYMBOL(sk_ns_capable); /** * sk_capable - Socket global capability test * @sk: Socket to use a capability on or through * @cap: The global capability to use * * Test to see if the opener of the socket had when the socket was * created and the current process has the capability @cap in all user * namespaces. */ bool sk_capable(const struct sock *sk, int cap) { return sk_ns_capable(sk, &init_user_ns, cap); } EXPORT_SYMBOL(sk_capable); /** * sk_net_capable - Network namespace socket capability test * @sk: Socket to use a capability on or through * @cap: The capability to use * * Test to see if the opener of the socket had when the socket was created * and the current process has the capability @cap over the network namespace * the socket is a member of. */ bool sk_net_capable(const struct sock *sk, int cap) { return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); } EXPORT_SYMBOL(sk_net_capable); /* * Each address family might have different locking rules, so we have * one slock key per address family and separate keys for internal and * userspace sockets. */ static struct lock_class_key af_family_keys[AF_MAX]; static struct lock_class_key af_family_kern_keys[AF_MAX]; static struct lock_class_key af_family_slock_keys[AF_MAX]; static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; /* * Make lock validator output more readable. (we pre-construct these * strings build-time, so that runtime initialization of socket * locks is fast): */ #define _sock_locks(x) \ x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ x "27" , x "28" , x "AF_CAN" , \ x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX" static const char *const af_family_key_strings[AF_MAX+1] = { _sock_locks("sk_lock-") }; static const char *const af_family_slock_key_strings[AF_MAX+1] = { _sock_locks("slock-") }; static const char *const af_family_clock_key_strings[AF_MAX+1] = { _sock_locks("clock-") }; static const char *const af_family_kern_key_strings[AF_MAX+1] = { _sock_locks("k-sk_lock-") }; static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { _sock_locks("k-slock-") }; static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { _sock_locks("k-clock-") }; static const char *const af_family_rlock_key_strings[AF_MAX+1] = { "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" , "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK", "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" , "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" , "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" , "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" , "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" , "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" , "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" , "rlock-27" , "rlock-28" , "rlock-AF_CAN" , "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" , "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" , "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" , "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" , "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX" }; static const char *const af_family_wlock_key_strings[AF_MAX+1] = { "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" , "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK", "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" , "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" , "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" , "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" , "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" , "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" , "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" , "wlock-27" , "wlock-28" , "wlock-AF_CAN" , "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" , "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" , "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" , "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" , "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX" }; static const char *const af_family_elock_key_strings[AF_MAX+1] = { "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" , "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK", "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" , "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" , "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" , "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" , "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" , "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" , "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" , "elock-27" , "elock-28" , "elock-AF_CAN" , "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" , "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" , "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" , "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" , "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX" }; /* * sk_callback_lock and sk queues locking rules are per-address-family, * so split the lock classes by using a per-AF key: */ static struct lock_class_key af_callback_keys[AF_MAX]; static struct lock_class_key af_rlock_keys[AF_MAX]; static struct lock_class_key af_wlock_keys[AF_MAX]; static struct lock_class_key af_elock_keys[AF_MAX]; static struct lock_class_key af_kern_callback_keys[AF_MAX]; /* Run time adjustable parameters. */ __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; EXPORT_SYMBOL(sysctl_wmem_max); __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; EXPORT_SYMBOL(sysctl_rmem_max); __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; /* Maximal space eaten by iovec or ancillary data plus some space */ int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); EXPORT_SYMBOL(sysctl_optmem_max); int sysctl_tstamp_allow_data __read_mostly = 1; struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; EXPORT_SYMBOL_GPL(memalloc_socks); /** * sk_set_memalloc - sets %SOCK_MEMALLOC * @sk: socket to set it on * * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. * It's the responsibility of the admin to adjust min_free_kbytes * to meet the requirements */ void sk_set_memalloc(struct sock *sk) { sock_set_flag(sk, SOCK_MEMALLOC); sk->sk_allocation |= __GFP_MEMALLOC; static_key_slow_inc(&memalloc_socks); } EXPORT_SYMBOL_GPL(sk_set_memalloc); void sk_clear_memalloc(struct sock *sk) { sock_reset_flag(sk, SOCK_MEMALLOC); sk->sk_allocation &= ~__GFP_MEMALLOC; static_key_slow_dec(&memalloc_socks); /* * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward * progress of swapping. SOCK_MEMALLOC may be cleared while * it has rmem allocations due to the last swapfile being deactivated * but there is a risk that the socket is unusable due to exceeding * the rmem limits. Reclaim the reserves and obey rmem limits again. */ sk_mem_reclaim(sk); } EXPORT_SYMBOL_GPL(sk_clear_memalloc); int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { int ret; unsigned int noreclaim_flag; /* these should have been dropped before queueing */ BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); noreclaim_flag = memalloc_noreclaim_save(); ret = sk->sk_backlog_rcv(sk, skb); memalloc_noreclaim_restore(noreclaim_flag); return ret; } EXPORT_SYMBOL(__sk_backlog_rcv); static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) { struct timeval tv; if (optlen < sizeof(tv)) return -EINVAL; if (copy_from_user(&tv, optval, sizeof(tv))) return -EFAULT; if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) return -EDOM; if (tv.tv_sec < 0) { static int warned __read_mostly; *timeo_p = 0; if (warned < 10 && net_ratelimit()) { warned++; pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", __func__, current->comm, task_pid_nr(current)); } return 0; } *timeo_p = MAX_SCHEDULE_TIMEOUT; if (tv.tv_sec == 0 && tv.tv_usec == 0) return 0; if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ); return 0; } static void sock_warn_obsolete_bsdism(const char *name) { static int warned; static char warncomm[TASK_COMM_LEN]; if (strcmp(warncomm, current->comm) && warned < 5) { strcpy(warncomm, current->comm); pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", warncomm, name); warned++; } } static bool sock_needs_netstamp(const struct sock *sk) { switch (sk->sk_family) { case AF_UNSPEC: case AF_UNIX: return false; default: return true; } } static void sock_disable_timestamp(struct sock *sk, unsigned long flags) { if (sk->sk_flags & flags) { sk->sk_flags &= ~flags; if (sock_needs_netstamp(sk) && !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) net_disable_timestamp(); } } int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { unsigned long flags; struct sk_buff_head *list = &sk->sk_receive_queue; if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { atomic_inc(&sk->sk_drops); trace_sock_rcvqueue_full(sk, skb); return -ENOMEM; } if (!sk_rmem_schedule(sk, skb, skb->truesize)) { atomic_inc(&sk->sk_drops); return -ENOBUFS; } skb->dev = NULL; skb_set_owner_r(skb, sk); /* we escape from rcu protected region, make sure we dont leak * a norefcounted dst */ skb_dst_force(skb); spin_lock_irqsave(&list->lock, flags); sock_skb_set_dropcount(sk, skb); __skb_queue_tail(list, skb); spin_unlock_irqrestore(&list->lock, flags); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return 0; } EXPORT_SYMBOL(__sock_queue_rcv_skb); int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int err; err = sk_filter(sk, skb); if (err) return err; return __sock_queue_rcv_skb(sk, skb); } EXPORT_SYMBOL(sock_queue_rcv_skb); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted) { int rc = NET_RX_SUCCESS; if (sk_filter_trim_cap(sk, skb, trim_cap)) goto discard_and_relse; skb->dev = NULL; if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { atomic_inc(&sk->sk_drops); goto discard_and_relse; } if (nested) bh_lock_sock_nested(sk); else bh_lock_sock(sk); if (!sock_owned_by_user(sk)) { /* * trylock + unlock semantics: */ mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); rc = sk_backlog_rcv(sk, skb); mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { bh_unlock_sock(sk); atomic_inc(&sk->sk_drops); goto discard_and_relse; } bh_unlock_sock(sk); out: if (refcounted) sock_put(sk); return rc; discard_and_relse: kfree_skb(skb); goto out; } EXPORT_SYMBOL(__sk_receive_skb); struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = __sk_dst_get(sk); if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; RCU_INIT_POINTER(sk->sk_dst_cache, NULL); dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(__sk_dst_check); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = sk_dst_get(sk); if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { sk_dst_reset(sk); dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(sk_dst_check); static int sock_setbindtodevice(struct sock *sk, char __user *optval, int optlen) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); char devname[IFNAMSIZ]; int index; /* Sorry... */ ret = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_RAW)) goto out; ret = -EINVAL; if (optlen < 0) goto out; /* Bind this socket to a particular device like "eth0", * as specified in the passed interface name. If the * name is "" or the option length is zero the socket * is not bound. */ if (optlen > IFNAMSIZ - 1) optlen = IFNAMSIZ - 1; memset(devname, 0, sizeof(devname)); ret = -EFAULT; if (copy_from_user(devname, optval, optlen)) goto out; index = 0; if (devname[0] != '\0') { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_name_rcu(net, devname); if (dev) index = dev->ifindex; rcu_read_unlock(); ret = -ENODEV; if (!dev) goto out; } lock_sock(sk); sk->sk_bound_dev_if = index; sk_dst_reset(sk); release_sock(sk); ret = 0; out: #endif return ret; } static int sock_getbindtodevice(struct sock *sk, char __user *optval, int __user *optlen, int len) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); char devname[IFNAMSIZ]; if (sk->sk_bound_dev_if == 0) { len = 0; goto zero; } ret = -EINVAL; if (len < IFNAMSIZ) goto out; ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); if (ret) goto out; len = strlen(devname) + 1; ret = -EFAULT; if (copy_to_user(optval, devname, len)) goto out; zero: ret = -EFAULT; if (put_user(len, optlen)) goto out; ret = 0; out: #endif return ret; } /* START_OF_KNOX_NPA */ /** The function sets the domain name associated with the socket. **/ static int sock_set_domain_name(struct sock *sk, char __user *optval, int optlen) { int ret = -EADDRNOTAVAIL; char domain[DOMAIN_NAME_LEN_NAP]; ret = -EINVAL; if (optlen < 0) goto out; if (optlen > DOMAIN_NAME_LEN_NAP - 1) optlen = DOMAIN_NAME_LEN_NAP - 1; memset(domain, 0, sizeof(domain)); ret = -EFAULT; if (copy_from_user(domain, optval, optlen)) goto out; memcpy(sk->domain_name, domain, sizeof(sk->domain_name) - 1); ret = 0; out: return ret; } /** The function sets the uid associated with the dns socket. **/ static int sock_set_dns_uid(struct sock *sk, char __user *optval, int optlen) { int ret = -EADDRNOTAVAIL; if (optlen < 0) goto out; if (optlen == sizeof(uid_t)) { uid_t dns_uid; ret = -EFAULT; if (copy_from_user(&dns_uid, optval, sizeof(dns_uid))) goto out; memcpy(&sk->knox_dns_uid, &dns_uid, sizeof(sk->knox_dns_uid)); ret = 0; } out: return ret; } /** The function sets the pid and the process name associated with the dns socket. **/ static int sock_set_dns_pid(struct sock *sk, char __user *optval, int optlen) { int ret = -EADDRNOTAVAIL; struct pid *pid_struct = NULL; struct task_struct *task = NULL; int process_returnValue = -1; char full_process_name[PROCESS_NAME_LEN_NAP] = {0}; if (optlen < 0) goto out; if (optlen == sizeof(pid_t)) { pid_t dns_pid; ret = -EFAULT; if (copy_from_user(&dns_pid, optval, sizeof(dns_pid))) goto out; memcpy(&sk->knox_dns_pid, &dns_pid, sizeof(sk->knox_dns_pid)); if(check_ncm_flag()) { pid_struct = find_get_pid(dns_pid); if (pid_struct != NULL) { task = pid_task(pid_struct,PIDTYPE_PID); if (task != NULL) { process_returnValue = get_cmdline(task, full_process_name, sizeof(full_process_name)-1); if (process_returnValue > 0) { memcpy(sk->dns_process_name, full_process_name, sizeof(sk->dns_process_name)-1); } else { memcpy(sk->dns_process_name, task->comm, sizeof(task->comm)-1); } } } } ret = 0; } out: return ret; } /* END_OF_KNOX_NPA */ static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) { if (valbool) sock_set_flag(sk, bit); else sock_reset_flag(sk, bit); } bool sk_mc_loop(struct sock *sk) { if (dev_recursion_level()) return false; if (!sk) return true; switch (sk->sk_family) { case AF_INET: return inet_sk(sk)->mc_loop; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: return inet6_sk(sk)->mc_loop; #endif } WARN_ON(1); return true; } EXPORT_SYMBOL(sk_mc_loop); /* * This is meant for all protocols to use and covers goings on * at the socket level. Everything here is generic. */ int sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; int val; int valbool; struct linger ling; int ret = 0; /* * Options without arguments */ if (optname == SO_BINDTODEVICE) return sock_setbindtodevice(sk, optval, optlen); /* START_OF_KNOX_NPA */ if (optname == SO_SET_DOMAIN_NAME) return sock_set_domain_name(sk, optval, optlen); if (optname == SO_SET_DNS_UID) return sock_set_dns_uid(sk, optval, optlen); if (optname == SO_SET_DNS_PID) return sock_set_dns_pid(sk, optval, optlen); /* END_OF_KNOX_NPA */ if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; valbool = val ? 1 : 0; lock_sock(sk); switch (optname) { case SO_DEBUG: if (val && !capable(CAP_NET_ADMIN)) ret = -EACCES; else sock_valbool_flag(sk, SOCK_DBG, valbool); break; case SO_REUSEADDR: sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); break; case SO_REUSEPORT: sk->sk_reuseport = valbool; break; case SO_TYPE: case SO_PROTOCOL: case SO_DOMAIN: case SO_ERROR: ret = -ENOPROTOOPT; break; case SO_DONTROUTE: sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); sk_dst_reset(sk); break; case SO_BROADCAST: sock_valbool_flag(sk, SOCK_BROADCAST, valbool); break; case SO_SNDBUF: /* Don't error on this BSD doesn't and if you think * about it this is right. Otherwise apps have to * play 'guess the biggest size' games. RCVBUF/SNDBUF * are treated in BSD as hints */ val = min_t(u32, val, sysctl_wmem_max); set_sndbuf: sk->sk_userlocks |= SOCK_SNDBUF_LOCK; sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); /* Wake up sending tasks if we upped the value. */ sk->sk_write_space(sk); break; case SO_SNDBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } goto set_sndbuf; case SO_RCVBUF: /* Don't error on this BSD doesn't and if you think * about it this is right. Otherwise apps have to * play 'guess the biggest size' games. RCVBUF/SNDBUF * are treated in BSD as hints */ val = min_t(u32, val, sysctl_rmem_max); set_rcvbuf: sk->sk_userlocks |= SOCK_RCVBUF_LOCK; /* * We double it on the way in to account for * "struct sk_buff" etc. overhead. Applications * assume that the SO_RCVBUF setting they make will * allow that much actual data to be received on that * socket. * * Applications are unaware that "struct sk_buff" and * other overheads allocate from the receive buffer * during socket buffer allocation. * * And after considering the possible alternatives, * returning the value we actually used in getsockopt * is the most desirable behavior. */ sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); break; case SO_RCVBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } goto set_rcvbuf; case SO_KEEPALIVE: if (sk->sk_prot->keepalive) sk->sk_prot->keepalive(sk, valbool); sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); break; case SO_OOBINLINE: sock_valbool_flag(sk, SOCK_URGINLINE, valbool); break; case SO_NO_CHECK: sk->sk_no_check_tx = valbool; break; case SO_PRIORITY: if ((val >= 0 && val <= 6) || ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) sk->sk_priority = val; else ret = -EPERM; break; case SO_LINGER: if (optlen < sizeof(ling)) { ret = -EINVAL; /* 1003.1g */ break; } if (copy_from_user(&ling, optval, sizeof(ling))) { ret = -EFAULT; break; } if (!ling.l_onoff) sock_reset_flag(sk, SOCK_LINGER); else { #if (BITS_PER_LONG == 32) if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; else #endif sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; sock_set_flag(sk, SOCK_LINGER); } break; case SO_BSDCOMPAT: sock_warn_obsolete_bsdism("setsockopt"); break; case SO_PASSCRED: if (valbool) set_bit(SOCK_PASSCRED, &sock->flags); else clear_bit(SOCK_PASSCRED, &sock->flags); break; case SO_TIMESTAMP: case SO_TIMESTAMPNS: if (valbool) { if (optname == SO_TIMESTAMP) sock_reset_flag(sk, SOCK_RCVTSTAMPNS); else sock_set_flag(sk, SOCK_RCVTSTAMPNS); sock_set_flag(sk, SOCK_RCVTSTAMP); sock_enable_timestamp(sk, SOCK_TIMESTAMP); } else { sock_reset_flag(sk, SOCK_RCVTSTAMP); sock_reset_flag(sk, SOCK_RCVTSTAMPNS); } break; case SO_TIMESTAMPING: if (val & ~SOF_TIMESTAMPING_MASK) { ret = -EINVAL; break; } if (val & SOF_TIMESTAMPING_OPT_ID && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { if (sk->sk_protocol == IPPROTO_TCP && sk->sk_type == SOCK_STREAM) { if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) { ret = -EINVAL; break; } sk->sk_tskey = tcp_sk(sk)->snd_una; } else { sk->sk_tskey = 0; } } if (val & SOF_TIMESTAMPING_OPT_STATS && !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { ret = -EINVAL; break; } sk->sk_tsflags = val; if (val & SOF_TIMESTAMPING_RX_SOFTWARE) sock_enable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); else sock_disable_timestamp(sk, (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); break; case SO_RCVLOWAT: if (val < 0) val = INT_MAX; sk->sk_rcvlowat = val ? : 1; break; case SO_RCVTIMEO: ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); break; case SO_SNDTIMEO: ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); break; case SO_ATTACH_FILTER: ret = -EINVAL; if (optlen == sizeof(struct sock_fprog)) { struct sock_fprog fprog; ret = -EFAULT; if (copy_from_user(&fprog, optval, sizeof(fprog))) break; ret = sk_attach_filter(&fprog, sk); } break; case SO_ATTACH_BPF: ret = -EINVAL; if (optlen == sizeof(u32)) { u32 ufd; ret = -EFAULT; if (copy_from_user(&ufd, optval, sizeof(ufd))) break; ret = sk_attach_bpf(ufd, sk); } break; case SO_ATTACH_REUSEPORT_CBPF: ret = -EINVAL; if (optlen == sizeof(struct sock_fprog)) { struct sock_fprog fprog; ret = -EFAULT; if (copy_from_user(&fprog, optval, sizeof(fprog))) break; ret = sk_reuseport_attach_filter(&fprog, sk); } break; case SO_ATTACH_REUSEPORT_EBPF: ret = -EINVAL; if (optlen == sizeof(u32)) { u32 ufd; ret = -EFAULT; if (copy_from_user(&ufd, optval, sizeof(ufd))) break; ret = sk_reuseport_attach_bpf(ufd, sk); } break; case SO_DETACH_FILTER: ret = sk_detach_filter(sk); break; case SO_LOCK_FILTER: if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) ret = -EPERM; else sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); break; case SO_PASSSEC: if (valbool) set_bit(SOCK_PASSSEC, &sock->flags); else clear_bit(SOCK_PASSSEC, &sock->flags); break; case SO_MARK: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) ret = -EPERM; else sk->sk_mark = val; break; case SO_RXQ_OVFL: sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); break; case SO_WIFI_STATUS: sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); break; case SO_PEEK_OFF: if (sock->ops->set_peek_off) ret = sock->ops->set_peek_off(sk, val); else ret = -EOPNOTSUPP; break; case SO_NOFCS: sock_valbool_flag(sk, SOCK_NOFCS, valbool); break; case SO_SELECT_ERR_QUEUE: sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); break; #ifdef CONFIG_NET_RX_BUSY_POLL case SO_BUSY_POLL: /* allow unprivileged users to decrease the value */ if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) ret = -EPERM; else { if (val < 0) ret = -EINVAL; else sk->sk_ll_usec = val; } break; #endif case SO_MAX_PACING_RATE: if (val != ~0U) cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED); sk->sk_max_pacing_rate = val; sk->sk_pacing_rate = min(sk->sk_pacing_rate, sk->sk_max_pacing_rate); break; case SO_INCOMING_CPU: WRITE_ONCE(sk->sk_incoming_cpu, val); break; case SO_CNX_ADVICE: if (val == 1) dst_negative_advice(sk); break; case SO_ZEROCOPY: if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6) ret = -ENOTSUPP; else if (sk->sk_protocol != IPPROTO_TCP) ret = -ENOTSUPP; else if (sk->sk_state != TCP_CLOSE) ret = -EBUSY; else if (val < 0 || val > 1) ret = -EINVAL; else sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); break; default: ret = -ENOPROTOOPT; break; } release_sock(sk); return ret; } EXPORT_SYMBOL(sock_setsockopt); static void cred_to_ucred(struct pid *pid, const struct cred *cred, struct ucred *ucred) { ucred->pid = pid_vnr(pid); ucred->uid = ucred->gid = -1; if (cred) { struct user_namespace *current_ns = current_user_ns(); ucred->uid = from_kuid_munged(current_ns, cred->euid); ucred->gid = from_kgid_munged(current_ns, cred->egid); } } static int groups_to_user(gid_t __user *dst, const struct group_info *src) { struct user_namespace *user_ns = current_user_ns(); int i; for (i = 0; i < src->ngroups; i++) if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) return -EFAULT; return 0; } int sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; union { int val; u64 val64; struct linger ling; struct timeval tm; } v; int lv = sizeof(int); int len; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; memset(&v, 0, sizeof(v)); switch (optname) { case SO_DEBUG: v.val = sock_flag(sk, SOCK_DBG); break; case SO_DONTROUTE: v.val = sock_flag(sk, SOCK_LOCALROUTE); break; case SO_BROADCAST: v.val = sock_flag(sk, SOCK_BROADCAST); break; case SO_SNDBUF: v.val = sk->sk_sndbuf; break; case SO_RCVBUF: v.val = sk->sk_rcvbuf; break; case SO_REUSEADDR: v.val = sk->sk_reuse; break; case SO_REUSEPORT: v.val = sk->sk_reuseport; break; case SO_KEEPALIVE: v.val = sock_flag(sk, SOCK_KEEPOPEN); break; case SO_TYPE: v.val = sk->sk_type; break; case SO_PROTOCOL: v.val = sk->sk_protocol; break; case SO_DOMAIN: v.val = sk->sk_family; break; case SO_ERROR: v.val = -sock_error(sk); if (v.val == 0) v.val = xchg(&sk->sk_err_soft, 0); break; case SO_OOBINLINE: v.val = sock_flag(sk, SOCK_URGINLINE); break; case SO_NO_CHECK: v.val = sk->sk_no_check_tx; break; case SO_PRIORITY: v.val = sk->sk_priority; break; case SO_LINGER: lv = sizeof(v.ling); v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); v.ling.l_linger = sk->sk_lingertime / HZ; break; case SO_BSDCOMPAT: sock_warn_obsolete_bsdism("getsockopt"); break; case SO_TIMESTAMP: v.val = sock_flag(sk, SOCK_RCVTSTAMP) && !sock_flag(sk, SOCK_RCVTSTAMPNS); break; case SO_TIMESTAMPNS: v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); break; case SO_TIMESTAMPING: v.val = sk->sk_tsflags; break; case SO_RCVTIMEO: lv = sizeof(struct timeval); if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { v.tm.tv_sec = 0; v.tm.tv_usec = 0; } else { v.tm.tv_sec = sk->sk_rcvtimeo / HZ; v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ; } break; case SO_SNDTIMEO: lv = sizeof(struct timeval); if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { v.tm.tv_sec = 0; v.tm.tv_usec = 0; } else { v.tm.tv_sec = sk->sk_sndtimeo / HZ; v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ; } break; case SO_RCVLOWAT: v.val = sk->sk_rcvlowat; break; case SO_SNDLOWAT: v.val = 1; break; case SO_PASSCRED: v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); break; case SO_PEERCRED: { struct ucred peercred; if (len > sizeof(peercred)) len = sizeof(peercred); cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); if (copy_to_user(optval, &peercred, len)) return -EFAULT; goto lenout; } case SO_PEERGROUPS: { int ret, n; if (!sk->sk_peer_cred) return -ENODATA; n = sk->sk_peer_cred->group_info->ngroups; if (len < n * sizeof(gid_t)) { len = n * sizeof(gid_t); return put_user(len, optlen) ? -EFAULT : -ERANGE; } len = n * sizeof(gid_t); ret = groups_to_user((gid_t __user *)optval, sk->sk_peer_cred->group_info); if (ret) return ret; goto lenout; } case SO_PEERNAME: { char address[128]; if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) return -ENOTCONN; if (lv < len) return -EINVAL; if (copy_to_user(optval, address, len)) return -EFAULT; goto lenout; } /* Dubious BSD thing... Probably nobody even uses it, but * the UNIX standard wants it for whatever reason... -DaveM */ case SO_ACCEPTCONN: v.val = sk->sk_state == TCP_LISTEN; break; case SO_PASSSEC: v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); break; case SO_PEERSEC: return security_socket_getpeersec_stream(sock, optval, optlen, len); case SO_MARK: v.val = sk->sk_mark; break; case SO_RXQ_OVFL: v.val = sock_flag(sk, SOCK_RXQ_OVFL); break; case SO_WIFI_STATUS: v.val = sock_flag(sk, SOCK_WIFI_STATUS); break; case SO_PEEK_OFF: if (!sock->ops->set_peek_off) return -EOPNOTSUPP; v.val = sk->sk_peek_off; break; case SO_NOFCS: v.val = sock_flag(sk, SOCK_NOFCS); break; case SO_BINDTODEVICE: return sock_getbindtodevice(sk, optval, optlen, len); case SO_GET_FILTER: len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); if (len < 0) return len; goto lenout; case SO_LOCK_FILTER: v.val = sock_flag(sk, SOCK_FILTER_LOCKED); break; case SO_BPF_EXTENSIONS: v.val = bpf_tell_extensions(); break; case SO_SELECT_ERR_QUEUE: v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); break; #ifdef CONFIG_NET_RX_BUSY_POLL case SO_BUSY_POLL: v.val = sk->sk_ll_usec; break; #endif case SO_MAX_PACING_RATE: v.val = sk->sk_max_pacing_rate; break; case SO_INCOMING_CPU: v.val = READ_ONCE(sk->sk_incoming_cpu); break; case SO_MEMINFO: { u32 meminfo[SK_MEMINFO_VARS]; sk_get_meminfo(sk, meminfo); len = min_t(unsigned int, len, sizeof(meminfo)); if (copy_to_user(optval, &meminfo, len)) return -EFAULT; goto lenout; } #ifdef CONFIG_NET_RX_BUSY_POLL case SO_INCOMING_NAPI_ID: v.val = READ_ONCE(sk->sk_napi_id); /* aggregate non-NAPI IDs down to 0 */ if (v.val < MIN_NAPI_ID) v.val = 0; break; #endif case SO_COOKIE: lv = sizeof(u64); if (len < lv) return -EINVAL; v.val64 = sock_gen_cookie(sk); break; case SO_ZEROCOPY: v.val = sock_flag(sk, SOCK_ZEROCOPY); break; default: /* We implement the SO_SNDLOWAT etc to not be settable * (1003.1g 7). */ return -ENOPROTOOPT; } if (len > lv) len = lv; if (copy_to_user(optval, &v, len)) return -EFAULT; lenout: if (put_user(len, optlen)) return -EFAULT; return 0; } /* * Initialize an sk_lock. * * (We also register the sk_lock with the lock validator.) */ static inline void sock_lock_init(struct sock *sk) { if (sk->sk_kern_sock) sock_lock_init_class_and_name( sk, af_family_kern_slock_key_strings[sk->sk_family], af_family_kern_slock_keys + sk->sk_family, af_family_kern_key_strings[sk->sk_family], af_family_kern_keys + sk->sk_family); else sock_lock_init_class_and_name( sk, af_family_slock_key_strings[sk->sk_family], af_family_slock_keys + sk->sk_family, af_family_key_strings[sk->sk_family], af_family_keys + sk->sk_family); } /* * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, * even temporarly, because of RCU lookups. sk_node should also be left as is. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end */ static void sock_copy(struct sock *nsk, const struct sock *osk) { #ifdef CONFIG_SECURITY_NETWORK void *sptr = nsk->sk_security; #endif memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); #ifdef CONFIG_SECURITY_NETWORK nsk->sk_security = sptr; security_sk_clone(osk, nsk); #endif } static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, int family) { struct sock *sk; struct kmem_cache *slab; slab = prot->slab; if (slab != NULL) { sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); if (!sk) return sk; if (want_init_on_alloc(priority)) sk_prot_clear_nulls(sk, prot->obj_size); } else sk = kmalloc(prot->obj_size, priority); if (sk != NULL) { if (security_sk_alloc(sk, family, priority)) goto out_free; if (!try_module_get(prot->owner)) goto out_free_sec; sk_tx_queue_clear(sk); } return sk; out_free_sec: security_sk_free(sk); out_free: if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); return NULL; } static void sk_prot_free(struct proto *prot, struct sock *sk) { struct kmem_cache *slab; struct module *owner; owner = prot->owner; slab = prot->slab; cgroup_sk_free(&sk->sk_cgrp_data); mem_cgroup_sk_free(sk); security_sk_free(sk); if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); module_put(owner); } /** * sk_alloc - All socket objects are allocated here * @net: the applicable net namespace * @family: protocol family * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * @prot: struct proto associated with this new sock instance * @kern: is this to be a kernel socket? */ struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern) { struct sock *sk; /* START_OF_KNOX_NPA */ struct pid *pid_struct = NULL; struct task_struct *task = NULL; int process_returnValue = -1; char full_process_name[PROCESS_NAME_LEN_NAP] = {0}; struct pid *parent_pid_struct = NULL; struct task_struct *parent_task = NULL; int parent_returnValue = -1; char full_parent_process_name[PROCESS_NAME_LEN_NAP] = {0}; /* END_OF_KNOX_NPA */ sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); if (sk) { sk->sk_family = family; /* START_OF_KNOX_NPA */ /* assign values to members of sock structure when npa flag is present */ sk->knox_uid = current->cred->uid.val; sk->knox_pid = current->tgid; sk->knox_puid = 0; sk->knox_ppid = 0; sk->knox_dns_uid = 0; sk->knox_dns_pid = 0; memset(sk->process_name,'\0',sizeof(sk->process_name)); memset(sk->parent_process_name,'\0',sizeof(sk->parent_process_name)); memset(sk->dns_process_name,'\0',sizeof(sk->dns_process_name)); memset(sk->domain_name,'\0',sizeof(sk->domain_name)); if (check_ncm_flag()) { pid_struct = find_get_pid(current->tgid); if (pid_struct != NULL) { task = pid_task(pid_struct, PIDTYPE_PID); if (task != NULL) { process_returnValue = get_cmdline(task, full_process_name, sizeof(full_process_name)-1); if (process_returnValue > 0) { memcpy(sk->process_name, full_process_name, sizeof(sk->process_name)-1); } else { memcpy(sk->process_name, task->comm, sizeof(task->comm)-1); } if (task->parent != NULL) { parent_pid_struct = find_get_pid(task->parent->tgid); if (parent_pid_struct != NULL) { parent_task = pid_task(parent_pid_struct, PIDTYPE_PID); if (parent_task != NULL) { parent_returnValue = get_cmdline(parent_task, full_parent_process_name, sizeof(full_parent_process_name)-1); if (parent_returnValue > 0) { memcpy(sk->parent_process_name, full_parent_process_name, sizeof(sk->parent_process_name)-1); } else { memcpy(sk->parent_process_name, parent_task->comm, sizeof(parent_task->comm)-1); } sk->knox_puid = parent_task->cred->uid.val; sk->knox_ppid = parent_task->tgid; } } } } } } /* END_OF_KNOX_NPA */ sk->sk_prot = sk->sk_prot_creator = prot; sk->sk_kern_sock = kern; sock_lock_init(sk); sk->sk_net_refcnt = kern ? 0 : 1; if (likely(sk->sk_net_refcnt)) get_net(net); sock_net_set(sk, net); refcount_set(&sk->sk_wmem_alloc, 1); mem_cgroup_sk_alloc(sk); cgroup_sk_alloc(&sk->sk_cgrp_data); sock_update_classid(&sk->sk_cgrp_data); sock_update_netprioidx(&sk->sk_cgrp_data); sk_tx_queue_clear(sk); } return sk; } EXPORT_SYMBOL(sk_alloc); /* Sockets having SOCK_RCU_FREE will call this function after one RCU * grace period. This is the case for UDP sockets and TCP listeners. */ static void __sk_destruct(struct rcu_head *head) { struct sock *sk = container_of(head, struct sock, sk_rcu); struct sk_filter *filter; if (sk->sk_destruct) sk->sk_destruct(sk); filter = rcu_dereference_check(sk->sk_filter, refcount_read(&sk->sk_wmem_alloc) == 0); if (filter) { sk_filter_uncharge(sk, filter); RCU_INIT_POINTER(sk->sk_filter, NULL); } sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); if (atomic_read(&sk->sk_omem_alloc)) pr_debug("%s: optmem leakage (%d bytes) detected\n", __func__, atomic_read(&sk->sk_omem_alloc)); if (sk->sk_frag.page) { put_page(sk->sk_frag.page); sk->sk_frag.page = NULL; } if (sk->sk_peer_cred) put_cred(sk->sk_peer_cred); put_pid(sk->sk_peer_pid); if (likely(sk->sk_net_refcnt)) put_net(sock_net(sk)); sk_prot_free(sk->sk_prot_creator, sk); } void sk_destruct(struct sock *sk) { bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); if (rcu_access_pointer(sk->sk_reuseport_cb)) { reuseport_detach_sock(sk); use_call_rcu = true; } if (use_call_rcu) call_rcu(&sk->sk_rcu, __sk_destruct); else __sk_destruct(&sk->sk_rcu); } static void __sk_free(struct sock *sk) { if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) sock_diag_broadcast_destroy(sk); else sk_destruct(sk); } void sk_free(struct sock *sk) { /* * We subtract one from sk_wmem_alloc and can know if * some packets are still in some tx queue. * If not null, sock_wfree() will call __sk_free(sk) later */ if (refcount_dec_and_test(&sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sk_free); static void sk_init_common(struct sock *sk) { skb_queue_head_init(&sk->sk_receive_queue); skb_queue_head_init(&sk->sk_write_queue); skb_queue_head_init(&sk->sk_error_queue); rwlock_init(&sk->sk_callback_lock); lockdep_set_class_and_name(&sk->sk_receive_queue.lock, af_rlock_keys + sk->sk_family, af_family_rlock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_write_queue.lock, af_wlock_keys + sk->sk_family, af_family_wlock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_error_queue.lock, af_elock_keys + sk->sk_family, af_family_elock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_callback_lock, af_callback_keys + sk->sk_family, af_family_clock_key_strings[sk->sk_family]); } /** * sk_clone_lock - clone a socket, and lock its clone * @sk: the socket to clone * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) */ struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) { struct sock *newsk; bool is_charged = true; newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); if (newsk != NULL) { struct sk_filter *filter; sock_copy(newsk, sk); newsk->sk_prot_creator = sk->sk_prot; /* SANITY */ if (likely(newsk->sk_net_refcnt)) get_net(sock_net(newsk)); sk_node_init(&newsk->sk_node); sock_lock_init(newsk); bh_lock_sock(newsk); newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; newsk->sk_backlog.len = 0; atomic_set(&newsk->sk_rmem_alloc, 0); /* * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ refcount_set(&newsk->sk_wmem_alloc, 1); atomic_set(&newsk->sk_omem_alloc, 0); sk_init_common(newsk); newsk->sk_dst_cache = NULL; newsk->sk_dst_pending_confirm = 0; newsk->sk_wmem_queued = 0; newsk->sk_forward_alloc = 0; atomic_set(&newsk->sk_drops, 0); newsk->sk_send_head = NULL; newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; atomic_set(&newsk->sk_zckey, 0); sock_reset_flag(newsk, SOCK_DONE); /* sk->sk_memcg will be populated at accept() time */ newsk->sk_memcg = NULL; cgroup_sk_clone(&newsk->sk_cgrp_data); rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter != NULL) /* though it's an empty new sock, the charging may fail * if sysctl_optmem_max was changed between creation of * original socket and cloning */ is_charged = sk_filter_charge(newsk, filter); RCU_INIT_POINTER(newsk->sk_filter, filter); rcu_read_unlock(); if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { /* We need to make sure that we don't uncharge the new * socket if we couldn't charge it in the first place * as otherwise we uncharge the parent's filter. */ if (!is_charged) RCU_INIT_POINTER(newsk->sk_filter, NULL); sk_free_unlock_clone(newsk); newsk = NULL; goto out; } RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); newsk->sk_err = 0; newsk->sk_err_soft = 0; newsk->sk_priority = 0; newsk->sk_incoming_cpu = raw_smp_processor_id(); atomic64_set(&newsk->sk_cookie, 0); /* * Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.txt for details) */ smp_wmb(); refcount_set(&newsk->sk_refcnt, 2); /* * Increment the counter in the same struct proto as the master * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that * is the same as sk->sk_prot->socks, as this field was copied * with memcpy). * * This _changes_ the previous behaviour, where * tcp_create_openreq_child always was incrementing the * equivalent to tcp_prot->socks (inet_sock_nr), so this have * to be taken into account in all callers. -acme */ sk_refcnt_debug_inc(newsk); sk_set_socket(newsk, NULL); sk_tx_queue_clear(newsk); newsk->sk_wq = NULL; if (newsk->sk_prot->sockets_allocated) sk_sockets_allocated_inc(newsk); if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) net_enable_timestamp(); } out: return newsk; } EXPORT_SYMBOL_GPL(sk_clone_lock); void sk_free_unlock_clone(struct sock *sk) { /* It is still raw copy of parent, so invalidate * destructor and make plain sk_free() */ sk->sk_destruct = NULL; bh_unlock_sock(sk); sk_free(sk); } EXPORT_SYMBOL_GPL(sk_free_unlock_clone); void sk_setup_caps(struct sock *sk, struct dst_entry *dst) { u32 max_segs = 1; sk_dst_set(sk, dst); sk->sk_route_caps = dst->dev->features; if (sk->sk_route_caps & NETIF_F_GSO) sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; sk->sk_route_caps &= ~sk->sk_route_nocaps; if (sk_can_gso(sk)) { if (dst->header_len && !xfrm_dst_offload_ok(dst)) { sk->sk_route_caps &= ~NETIF_F_GSO_MASK; } else { sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; sk->sk_gso_max_size = dst->dev->gso_max_size; max_segs = max_t(u32, dst->dev->gso_max_segs, 1); } } sk->sk_gso_max_segs = max_segs; } EXPORT_SYMBOL_GPL(sk_setup_caps); /* * Simple resource managers for sockets. */ /* * Write buffer destructor automatically called from kfree_skb. */ void sock_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; unsigned int len = skb->truesize; if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { /* * Keep a reference on sk_wmem_alloc, this will be released * after sk_write_space() call */ WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); sk->sk_write_space(sk); len = 1; } /* * if sk_wmem_alloc reaches 0, we must finish what sk_free() * could not do because of in-flight packets */ if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sock_wfree); /* This variant of sock_wfree() is used by TCP, * since it sets SOCK_USE_WRITE_QUEUE. */ void __sock_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) __sk_free(sk); } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; #ifdef CONFIG_INET if (unlikely(!sk_fullsock(sk))) { skb->destructor = sock_edemux; sock_hold(sk); return; } #endif skb->destructor = sock_wfree; skb_set_hash_from_sk(skb, sk); /* * We used to take a refcount on sk, but following operation * is enough to guarantee sk_free() wont free this sock until * all in-flight packets are completed */ refcount_add(skb->truesize, &sk->sk_wmem_alloc); } EXPORT_SYMBOL(skb_set_owner_w); /* This helper is used by netem, as it can hold packets in its * delay queue. We want to allow the owner socket to send more * packets, as if they were already TX completed by a typical driver. * But we also want to keep skb->sk set because some packet schedulers * rely on it (sch_fq for example). */ void skb_orphan_partial(struct sk_buff *skb) { if (skb_is_tcp_pure_ack(skb)) return; if (skb->destructor == sock_wfree #ifdef CONFIG_INET || skb->destructor == tcp_wfree #endif ) { struct sock *sk = skb->sk; if (refcount_inc_not_zero(&sk->sk_refcnt)) { WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); skb->destructor = sock_efree; } } else { skb_orphan(skb); } } EXPORT_SYMBOL(skb_orphan_partial); /* * Read buffer destructor automatically called from kfree_skb. */ void sock_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; unsigned int len = skb->truesize; atomic_sub(len, &sk->sk_rmem_alloc); sk_mem_uncharge(sk, len); } EXPORT_SYMBOL(sock_rfree); /* * Buffer destructor for skbs that are not used directly in read or write * path, e.g. for error handler skbs. Automatically called from kfree_skb. */ void sock_efree(struct sk_buff *skb) { sock_put(skb->sk); } EXPORT_SYMBOL(sock_efree); kuid_t sock_i_uid(struct sock *sk) { kuid_t uid; read_lock_bh(&sk->sk_callback_lock); uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; read_unlock_bh(&sk->sk_callback_lock); return uid; } EXPORT_SYMBOL(sock_i_uid); unsigned long sock_i_ino(struct sock *sk) { unsigned long ino; read_lock_bh(&sk->sk_callback_lock); ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; read_unlock_bh(&sk->sk_callback_lock); return ino; } EXPORT_SYMBOL(sock_i_ino); /* * Allocate a skb from the socket's send buffer. */ struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority) { if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { struct sk_buff *skb = alloc_skb(size, priority); if (skb) { skb_set_owner_w(skb, sk); return skb; } } return NULL; } EXPORT_SYMBOL(sock_wmalloc); static void sock_ofree(struct sk_buff *skb) { struct sock *sk = skb->sk; atomic_sub(skb->truesize, &sk->sk_omem_alloc); } struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority) { struct sk_buff *skb; /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > sysctl_optmem_max) return NULL; skb = alloc_skb(size, priority); if (!skb) return NULL; atomic_add(skb->truesize, &sk->sk_omem_alloc); skb->sk = sk; skb->destructor = sock_ofree; return skb; } /* * Allocate a memory block from the socket's option memory buffer. */ void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) { if ((unsigned int)size <= sysctl_optmem_max && atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { void *mem; /* First do the add, to avoid the race if kmalloc * might sleep. */ atomic_add(size, &sk->sk_omem_alloc); mem = kmalloc(size, priority); if (mem) return mem; atomic_sub(size, &sk->sk_omem_alloc); } return NULL; } EXPORT_SYMBOL(sock_kmalloc); /* Free an option memory block. Note, we actually want the inline * here as this allows gcc to detect the nullify and fold away the * condition entirely. */ static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, const bool nullify) { if (WARN_ON_ONCE(!mem)) return; if (nullify) kzfree(mem); else kfree(mem); atomic_sub(size, &sk->sk_omem_alloc); } void sock_kfree_s(struct sock *sk, void *mem, int size) { __sock_kfree_s(sk, mem, size, false); } EXPORT_SYMBOL(sock_kfree_s); void sock_kzfree_s(struct sock *sk, void *mem, int size) { __sock_kfree_s(sk, mem, size, true); } EXPORT_SYMBOL(sock_kzfree_s); /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. I think, these locks should be removed for datagram sockets. */ static long sock_wait_for_wmem(struct sock *sk, long timeo) { DEFINE_WAIT(wait); sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); for (;;) { if (!timeo) break; if (signal_pending(current)) break; set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) break; if (sk->sk_shutdown & SEND_SHUTDOWN) break; if (sk->sk_err) break; timeo = schedule_timeout(timeo); } finish_wait(sk_sleep(sk), &wait); return timeo; } /* * Generic send/receive buffer handlers */ struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order) { struct sk_buff *skb; long timeo; int err; timeo = sock_sndtimeo(sk, noblock); for (;;) { err = sock_error(sk); if (err != 0) goto failure; err = -EPIPE; if (sk->sk_shutdown & SEND_SHUTDOWN) goto failure; if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) break; sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); err = -EAGAIN; if (!timeo) goto failure; if (signal_pending(current)) goto interrupted; timeo = sock_wait_for_wmem(sk, timeo); } skb = alloc_skb_with_frags(header_len, data_len, max_page_order, errcode, sk->sk_allocation); if (skb) skb_set_owner_w(skb, sk); return skb; interrupted: err = sock_intr_errno(timeo); failure: *errcode = err; return NULL; } EXPORT_SYMBOL(sock_alloc_send_pskb); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode) { return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); } EXPORT_SYMBOL(sock_alloc_send_skb); int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, struct sockcm_cookie *sockc) { u32 tsflags; switch (cmsg->cmsg_type) { case SO_MARK: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) return -EINVAL; sockc->mark = *(u32 *)CMSG_DATA(cmsg); break; case SO_TIMESTAMPING: if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) return -EINVAL; tsflags = *(u32 *)CMSG_DATA(cmsg); if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) return -EINVAL; sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; sockc->tsflags |= tsflags; break; /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ case SCM_RIGHTS: case SCM_CREDENTIALS: break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL(__sock_cmsg_send); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc) { struct cmsghdr *cmsg; int ret; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_SOCKET) continue; ret = __sock_cmsg_send(sk, msg, cmsg, sockc); if (ret) return ret; } return 0; } EXPORT_SYMBOL(sock_cmsg_send); static void sk_enter_memory_pressure(struct sock *sk) { if (!sk->sk_prot->enter_memory_pressure) return; sk->sk_prot->enter_memory_pressure(sk); } static void sk_leave_memory_pressure(struct sock *sk) { if (sk->sk_prot->leave_memory_pressure) { sk->sk_prot->leave_memory_pressure(sk); } else { unsigned long *memory_pressure = sk->sk_prot->memory_pressure; if (memory_pressure && READ_ONCE(*memory_pressure)) WRITE_ONCE(*memory_pressure, 0); } } /* On 32bit arches, an skb frag is limited to 2^15 */ #define SKB_FRAG_PAGE_ORDER get_order(32768) /** * skb_page_frag_refill - check that a page_frag contains enough room * @sz: minimum size of the fragment we want to get * @pfrag: pointer to page_frag * @gfp: priority for memory allocation * * Note: While this allocator tries to use high order pages, there is * no guarantee that allocations succeed. Therefore, @sz MUST be * less or equal than PAGE_SIZE. */ bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) { if (pfrag->page) { if (page_ref_count(pfrag->page) == 1) { pfrag->offset = 0; return true; } if (pfrag->offset + sz <= pfrag->size) return true; put_page(pfrag->page); } pfrag->offset = 0; if (SKB_FRAG_PAGE_ORDER) { /* Avoid direct reclaim but allow kswapd to wake */ pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY, SKB_FRAG_PAGE_ORDER); if (likely(pfrag->page)) { pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; return true; } } pfrag->page = alloc_page(gfp); if (likely(pfrag->page)) { pfrag->size = PAGE_SIZE; return true; } return false; } EXPORT_SYMBOL(skb_page_frag_refill); bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) { if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) return true; sk_enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); return false; } EXPORT_SYMBOL(sk_page_frag_refill); static void __lock_sock(struct sock *sk) __releases(&sk->sk_lock.slock) __acquires(&sk->sk_lock.slock) { DEFINE_WAIT(wait); for (;;) { prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&sk->sk_lock.slock); schedule(); spin_lock_bh(&sk->sk_lock.slock); if (!sock_owned_by_user(sk)) break; } finish_wait(&sk->sk_lock.wq, &wait); } void __release_sock(struct sock *sk) __releases(&sk->sk_lock.slock) __acquires(&sk->sk_lock.slock) { struct sk_buff *skb, *next; while ((skb = sk->sk_backlog.head) != NULL) { sk->sk_backlog.head = sk->sk_backlog.tail = NULL; spin_unlock_bh(&sk->sk_lock.slock); do { next = skb->next; prefetch(next); WARN_ON_ONCE(skb_dst_is_noref(skb)); skb->next = NULL; sk_backlog_rcv(sk, skb); cond_resched(); skb = next; } while (skb != NULL); spin_lock_bh(&sk->sk_lock.slock); } /* * Doing the zeroing here guarantee we can not loop forever * while a wild producer attempts to flood us. */ sk->sk_backlog.len = 0; } void __sk_flush_backlog(struct sock *sk) { spin_lock_bh(&sk->sk_lock.slock); __release_sock(sk); spin_unlock_bh(&sk->sk_lock.slock); } /** * sk_wait_data - wait for data to arrive at sk_receive_queue * @sk: sock to wait on * @timeo: for how long * @skb: last skb seen on sk_receive_queue * * Now socket state including sk->sk_err is changed only under lock, * hence we may omit checks after joining wait queue. * We check receive queue before schedule() only as optimization; * it is very likely that release_sock() added new data. */ int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) { DEFINE_WAIT_FUNC(wait, woken_wake_function); int rc; add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); return rc; } EXPORT_SYMBOL(sk_wait_data); /** * __sk_mem_raise_allocated - increase memory_allocated * @sk: socket * @size: memory size to allocate * @amt: pages to allocate * @kind: allocation type * * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) { struct proto *prot = sk->sk_prot; long allocated = sk_memory_allocated_add(sk, amt); if (mem_cgroup_sockets_enabled && sk->sk_memcg && !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) goto suppress_allocation; /* Under limit. */ if (allocated <= sk_prot_mem_limits(sk, 0)) { sk_leave_memory_pressure(sk); return 1; } /* Under pressure. */ if (allocated > sk_prot_mem_limits(sk, 1)) sk_enter_memory_pressure(sk); /* Over hard limit. */ if (allocated > sk_prot_mem_limits(sk, 2)) goto suppress_allocation; /* guarantee minimum buffer size under pressure */ if (kind == SK_MEM_RECV) { if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) return 1; } else { /* SK_MEM_SEND */ if (sk->sk_type == SOCK_STREAM) { if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) return 1; } else if (refcount_read(&sk->sk_wmem_alloc) < prot->sysctl_wmem[0]) return 1; } if (sk_has_memory_pressure(sk)) { u64 alloc; if (!sk_under_memory_pressure(sk)) return 1; alloc = sk_sockets_allocated_read_positive(sk); if (sk_prot_mem_limits(sk, 2) > alloc * sk_mem_pages(sk->sk_wmem_queued + atomic_read(&sk->sk_rmem_alloc) + sk->sk_forward_alloc)) return 1; } suppress_allocation: if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { sk_stream_moderate_sndbuf(sk); /* Fail only if socket is _under_ its sndbuf. * In this case we cannot block, so that we have to fail. */ if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) return 1; } trace_sock_exceed_buf_limit(sk, prot, allocated); sk_memory_allocated_sub(sk, amt); if (mem_cgroup_sockets_enabled && sk->sk_memcg) mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); return 0; } EXPORT_SYMBOL(__sk_mem_raise_allocated); /** * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated * @sk: socket * @size: memory size to allocate * @kind: allocation type * * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means * rmem allocation. This function assumes that protocols which have * memory_pressure use sk_wmem_queued as write buffer accounting. */ int __sk_mem_schedule(struct sock *sk, int size, int kind) { int ret, amt = sk_mem_pages(size); sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; ret = __sk_mem_raise_allocated(sk, size, amt, kind); if (!ret) sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; return ret; } EXPORT_SYMBOL(__sk_mem_schedule); /** * __sk_mem_reduce_allocated - reclaim memory_allocated * @sk: socket * @amount: number of quanta * * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc */ void __sk_mem_reduce_allocated(struct sock *sk, int amount) { sk_memory_allocated_sub(sk, amount); if (mem_cgroup_sockets_enabled && sk->sk_memcg) mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); if (sk_under_memory_pressure(sk) && (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) sk_leave_memory_pressure(sk); } EXPORT_SYMBOL(__sk_mem_reduce_allocated); /** * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated * @sk: socket * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) */ void __sk_mem_reclaim(struct sock *sk, int amount) { amount >>= SK_MEM_QUANTUM_SHIFT; sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; __sk_mem_reduce_allocated(sk, amount); } EXPORT_SYMBOL(__sk_mem_reclaim); int sk_set_peek_off(struct sock *sk, int val) { sk->sk_peek_off = val; return 0; } EXPORT_SYMBOL_GPL(sk_set_peek_off); /* * Set of default routines for initialising struct proto_ops when * the protocol does not support a particular function. In certain * cases where it makes no sense for a protocol to have a "do nothing" * function, some default processing is provided. */ int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_bind); int sock_no_connect(struct socket *sock, struct sockaddr *saddr, int len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_connect); int sock_no_socketpair(struct socket *sock1, struct socket *sock2) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_socketpair); int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_accept); int sock_no_getname(struct socket *sock, struct sockaddr *saddr, int *len, int peer) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_getname); unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) { return 0; } EXPORT_SYMBOL(sock_no_poll); int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_ioctl); int sock_no_listen(struct socket *sock, int backlog) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_listen); int sock_no_shutdown(struct socket *sock, int how) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_shutdown); int sock_no_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_setsockopt); int sock_no_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_getsockopt); int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_sendmsg); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_sendmsg_locked); int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_recvmsg); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { /* Mirror missing mmap method error code */ return -ENODEV; } EXPORT_SYMBOL(sock_no_mmap); ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) { ssize_t res; struct msghdr msg = {.msg_flags = flags}; struct kvec iov; char *kaddr = kmap(page); iov.iov_base = kaddr + offset; iov.iov_len = size; res = kernel_sendmsg(sock, &msg, &iov, 1, size); kunmap(page); return res; } EXPORT_SYMBOL(sock_no_sendpage); ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags) { ssize_t res; struct msghdr msg = {.msg_flags = flags}; struct kvec iov; char *kaddr = kmap(page); iov.iov_base = kaddr + offset; iov.iov_len = size; res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); kunmap(page); return res; } EXPORT_SYMBOL(sock_no_sendpage_locked); /* * Default Socket Callbacks */ static void sock_def_wakeup(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_all(&wq->wait); rcu_read_unlock(); } static void sock_def_error_report(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_poll(&wq->wait, POLLERR); sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); rcu_read_unlock(); } static void sock_def_readable(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND); sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); rcu_read_unlock(); } static void sock_def_write_space(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); /* Do not wake up a writer until he can make "significant" * progress. --DaveM */ if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | POLLWRNORM | POLLWRBAND); /* Should agree with poll, otherwise some programs break */ if (sock_writeable(sk)) sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } static void sock_def_destruct(struct sock *sk) { } void sk_send_sigurg(struct sock *sk) { if (sk->sk_socket && sk->sk_socket->file) if (send_sigurg(&sk->sk_socket->file->f_owner)) sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); } EXPORT_SYMBOL(sk_send_sigurg); void sk_reset_timer(struct sock *sk, struct timer_list* timer, unsigned long expires) { if (!mod_timer(timer, expires)) sock_hold(sk); } EXPORT_SYMBOL(sk_reset_timer); void sk_stop_timer(struct sock *sk, struct timer_list* timer) { if (del_timer(timer)) __sock_put(sk); } EXPORT_SYMBOL(sk_stop_timer); void sock_init_data(struct socket *sock, struct sock *sk) { sk_init_common(sk); sk->sk_send_head = NULL; init_timer(&sk->sk_timer); sk->sk_allocation = GFP_KERNEL; sk->sk_rcvbuf = sysctl_rmem_default; sk->sk_sndbuf = sysctl_wmem_default; sk->sk_state = TCP_CLOSE; sk_set_socket(sk, sock); sock_set_flag(sk, SOCK_ZAPPED); if (sock) { sk->sk_type = sock->type; sk->sk_wq = sock->wq; sock->sk = sk; sk->sk_uid = SOCK_INODE(sock)->i_uid; } else { sk->sk_wq = NULL; sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); } rwlock_init(&sk->sk_callback_lock); if (sk->sk_kern_sock) lockdep_set_class_and_name( &sk->sk_callback_lock, af_kern_callback_keys + sk->sk_family, af_family_kern_clock_key_strings[sk->sk_family]); else lockdep_set_class_and_name( &sk->sk_callback_lock, af_callback_keys + sk->sk_family, af_family_clock_key_strings[sk->sk_family]); sk->sk_state_change = sock_def_wakeup; sk->sk_data_ready = sock_def_readable; sk->sk_write_space = sock_def_write_space; sk->sk_error_report = sock_def_error_report; sk->sk_destruct = sock_def_destruct; sk->sk_frag.page = NULL; sk->sk_frag.offset = 0; sk->sk_peek_off = -1; sk->sk_peer_pid = NULL; sk->sk_peer_cred = NULL; sk->sk_write_pending = 0; sk->sk_rcvlowat = 1; sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_stamp = SK_DEFAULT_STAMP; #if BITS_PER_LONG==32 seqlock_init(&sk->sk_stamp_seq); #endif atomic_set(&sk->sk_zckey, 0); #ifdef CONFIG_NET_RX_BUSY_POLL sk->sk_napi_id = 0; sk->sk_ll_usec = sysctl_net_busy_read; #endif sk->sk_max_pacing_rate = ~0U; sk->sk_pacing_rate = ~0U; sk->sk_pacing_shift = 10; sk->sk_incoming_cpu = -1; /* * Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.txt for details) */ smp_wmb(); refcount_set(&sk->sk_refcnt, 1); atomic_set(&sk->sk_drops, 0); } EXPORT_SYMBOL(sock_init_data); void lock_sock_nested(struct sock *sk, int subclass) { might_sleep(); spin_lock_bh(&sk->sk_lock.slock); if (sk->sk_lock.owned) __lock_sock(sk); sk->sk_lock.owned = 1; spin_unlock(&sk->sk_lock.slock); /* * The sk_lock has mutex_lock() semantics here: */ mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); local_bh_enable(); } EXPORT_SYMBOL(lock_sock_nested); void release_sock(struct sock *sk) { spin_lock_bh(&sk->sk_lock.slock); if (sk->sk_backlog.tail) __release_sock(sk); /* Warning : release_cb() might need to release sk ownership, * ie call sock_release_ownership(sk) before us. */ if (sk->sk_prot->release_cb) sk->sk_prot->release_cb(sk); sock_release_ownership(sk); if (waitqueue_active(&sk->sk_lock.wq)) wake_up(&sk->sk_lock.wq); spin_unlock_bh(&sk->sk_lock.slock); } EXPORT_SYMBOL(release_sock); /** * lock_sock_fast - fast version of lock_sock * @sk: socket * * This version should be used for very small section, where process wont block * return false if fast path is taken: * * sk_lock.slock locked, owned = 0, BH disabled * * return true if slow path is taken: * * sk_lock.slock unlocked, owned = 1, BH enabled */ bool lock_sock_fast(struct sock *sk) { might_sleep(); spin_lock_bh(&sk->sk_lock.slock); if (!sk->sk_lock.owned) /* * Note : We must disable BH */ return false; __lock_sock(sk); sk->sk_lock.owned = 1; spin_unlock(&sk->sk_lock.slock); /* * The sk_lock has mutex_lock() semantics here: */ mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); local_bh_enable(); return true; } EXPORT_SYMBOL(lock_sock_fast); int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) { struct timeval tv; if (!sock_flag(sk, SOCK_TIMESTAMP)) sock_enable_timestamp(sk, SOCK_TIMESTAMP); tv = ktime_to_timeval(sk->sk_stamp); if (tv.tv_sec == -1) return -ENOENT; if (tv.tv_sec == 0) { sk->sk_stamp = ktime_get_real(); tv = ktime_to_timeval(sk->sk_stamp); } return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; } EXPORT_SYMBOL(sock_get_timestamp); int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) { struct timespec ts; if (!sock_flag(sk, SOCK_TIMESTAMP)) sock_enable_timestamp(sk, SOCK_TIMESTAMP); ts = ktime_to_timespec(sk->sk_stamp); if (ts.tv_sec == -1) return -ENOENT; if (ts.tv_sec == 0) { sk->sk_stamp = ktime_get_real(); ts = ktime_to_timespec(sk->sk_stamp); } return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; } EXPORT_SYMBOL(sock_get_timestampns); void sock_enable_timestamp(struct sock *sk, int flag) { if (!sock_flag(sk, flag)) { unsigned long previous_flags = sk->sk_flags; sock_set_flag(sk, flag); /* * we just set one of the two flags which require net * time stamping, but time stamping might have been on * already because of the other one */ if (sock_needs_netstamp(sk) && !(previous_flags & SK_FLAGS_TIMESTAMP)) net_enable_timestamp(); } } int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type) { struct sock_exterr_skb *serr; struct sk_buff *skb; int copied, err; err = -EAGAIN; skb = sock_dequeue_err_skb(sk); if (skb == NULL) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto out_free_skb; sock_recv_timestamp(msg, sk, skb); serr = SKB_EXT_ERR(skb); put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); msg->msg_flags |= MSG_ERRQUEUE; err = copied; out_free_skb: kfree_skb(skb); out: return err; } EXPORT_SYMBOL(sock_recv_errqueue); /* * Get a socket option on an socket. * * FIX: POSIX 1003.1g is very ambiguous here. It states that * asynchronous errors should be reported by getsockopt. We assume * this means if you specify SO_ERROR (otherwise whats the point of it). */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_getsockopt); #ifdef CONFIG_COMPAT int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; if (sk->sk_prot->compat_getsockopt != NULL) return sk->sk_prot->compat_getsockopt(sk, level, optname, optval, optlen); return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(compat_sock_common_getsockopt); #endif int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int addr_len = 0; int err; err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, flags & ~MSG_DONTWAIT, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } EXPORT_SYMBOL(sock_common_recvmsg); /* * Set socket options on an inet socket. */ int sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_setsockopt); #ifdef CONFIG_COMPAT int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; if (sk->sk_prot->compat_setsockopt != NULL) return sk->sk_prot->compat_setsockopt(sk, level, optname, optval, optlen); return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(compat_sock_common_setsockopt); #endif void sk_common_release(struct sock *sk) { if (sk->sk_prot->destroy) sk->sk_prot->destroy(sk); /* * Observation: when sock_common_release is called, processes have * no access to socket. But net still has. * Step one, detach it from networking: * * A. Remove from hash tables. */ sk->sk_prot->unhash(sk); /* * In this point socket cannot receive new packets, but it is possible * that some packets are in flight because some CPU runs receiver and * did hash table lookup before we unhashed socket. They will achieve * receive queue and will be purged by socket destructor. * * Also we still have packets pending on receive queue and probably, * our own packets waiting in device queues. sock_destroy will drain * receive queue, but transmitted packets will delay socket destruction * until the last reference will be released. */ sock_orphan(sk); xfrm_sk_free_policy(sk); sk_refcnt_debug_release(sk); sock_put(sk); } EXPORT_SYMBOL(sk_common_release); void sk_get_meminfo(const struct sock *sk, u32 *mem) { memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); } #ifdef CONFIG_PROC_FS #define PROTO_INUSE_NR 64 /* should be enough for the first time */ struct prot_inuse { int val[PROTO_INUSE_NR]; }; static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); #ifdef CONFIG_NET_NS void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) { __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); } EXPORT_SYMBOL_GPL(sock_prot_inuse_add); int sock_prot_inuse_get(struct net *net, struct proto *prot) { int cpu, idx = prot->inuse_idx; int res = 0; for_each_possible_cpu(cpu) res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; return res >= 0 ? res : 0; } EXPORT_SYMBOL_GPL(sock_prot_inuse_get); static int __net_init sock_inuse_init_net(struct net *net) { net->core.inuse = alloc_percpu(struct prot_inuse); return net->core.inuse ? 0 : -ENOMEM; } static void __net_exit sock_inuse_exit_net(struct net *net) { free_percpu(net->core.inuse); } static struct pernet_operations net_inuse_ops = { .init = sock_inuse_init_net, .exit = sock_inuse_exit_net, }; static __init int net_inuse_init(void) { if (register_pernet_subsys(&net_inuse_ops)) panic("Cannot initialize net inuse counters"); return 0; } core_initcall(net_inuse_init); #else static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) { __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); } EXPORT_SYMBOL_GPL(sock_prot_inuse_add); int sock_prot_inuse_get(struct net *net, struct proto *prot) { int cpu, idx = prot->inuse_idx; int res = 0; for_each_possible_cpu(cpu) res += per_cpu(prot_inuse, cpu).val[idx]; return res >= 0 ? res : 0; } EXPORT_SYMBOL_GPL(sock_prot_inuse_get); #endif static void assign_proto_idx(struct proto *prot) { prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { pr_err("PROTO_INUSE_NR exhausted\n"); return; } set_bit(prot->inuse_idx, proto_inuse_idx); } static void release_proto_idx(struct proto *prot) { if (prot->inuse_idx != PROTO_INUSE_NR - 1) clear_bit(prot->inuse_idx, proto_inuse_idx); } #else static inline void assign_proto_idx(struct proto *prot) { } static inline void release_proto_idx(struct proto *prot) { } #endif static void req_prot_cleanup(struct request_sock_ops *rsk_prot) { if (!rsk_prot) return; kfree(rsk_prot->slab_name); rsk_prot->slab_name = NULL; kmem_cache_destroy(rsk_prot->slab); rsk_prot->slab = NULL; } static int req_prot_init(const struct proto *prot) { struct request_sock_ops *rsk_prot = prot->rsk_prot; if (!rsk_prot) return 0; rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name); if (!rsk_prot->slab_name) return -ENOMEM; rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, rsk_prot->obj_size, 0, prot->slab_flags, NULL); if (!rsk_prot->slab) { pr_crit("%s: Can't create request sock SLAB cache!\n", prot->name); return -ENOMEM; } return 0; } int proto_register(struct proto *prot, int alloc_slab) { if (alloc_slab) { prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, SLAB_HWCACHE_ALIGN | prot->slab_flags, NULL); if (prot->slab == NULL) { pr_crit("%s: Can't create sock SLAB cache!\n", prot->name); goto out; } if (req_prot_init(prot)) goto out_free_request_sock_slab; if (prot->twsk_prot != NULL) { prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); if (prot->twsk_prot->twsk_slab_name == NULL) goto out_free_request_sock_slab; prot->twsk_prot->twsk_slab = kmem_cache_create(prot->twsk_prot->twsk_slab_name, prot->twsk_prot->twsk_obj_size, 0, prot->slab_flags, NULL); if (prot->twsk_prot->twsk_slab == NULL) goto out_free_timewait_sock_slab_name; } } mutex_lock(&proto_list_mutex); list_add(&prot->node, &proto_list); assign_proto_idx(prot); mutex_unlock(&proto_list_mutex); return 0; out_free_timewait_sock_slab_name: kfree(prot->twsk_prot->twsk_slab_name); out_free_request_sock_slab: req_prot_cleanup(prot->rsk_prot); kmem_cache_destroy(prot->slab); prot->slab = NULL; out: return -ENOBUFS; } EXPORT_SYMBOL(proto_register); void proto_unregister(struct proto *prot) { mutex_lock(&proto_list_mutex); release_proto_idx(prot); list_del(&prot->node); mutex_unlock(&proto_list_mutex); kmem_cache_destroy(prot->slab); prot->slab = NULL; req_prot_cleanup(prot->rsk_prot); if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { kmem_cache_destroy(prot->twsk_prot->twsk_slab); kfree(prot->twsk_prot->twsk_slab_name); prot->twsk_prot->twsk_slab = NULL; } } EXPORT_SYMBOL(proto_unregister); #ifdef CONFIG_PROC_FS static void *proto_seq_start(struct seq_file *seq, loff_t *pos) __acquires(proto_list_mutex) { mutex_lock(&proto_list_mutex); return seq_list_start_head(&proto_list, *pos); } static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return seq_list_next(v, &proto_list, pos); } static void proto_seq_stop(struct seq_file *seq, void *v) __releases(proto_list_mutex) { mutex_unlock(&proto_list_mutex); } static char proto_method_implemented(const void *method) { return method == NULL ? 'n' : 'y'; } static long sock_prot_memory_allocated(struct proto *proto) { return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; } static char *sock_prot_memory_pressure(struct proto *proto) { return proto->memory_pressure != NULL ? proto_memory_pressure(proto) ? "yes" : "no" : "NI"; } static void proto_seq_printf(struct seq_file *seq, struct proto *proto) { seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", proto->name, proto->obj_size, sock_prot_inuse_get(seq_file_net(seq), proto), sock_prot_memory_allocated(proto), sock_prot_memory_pressure(proto), proto->max_header, proto->slab == NULL ? "no" : "yes", module_name(proto->owner), proto_method_implemented(proto->close), proto_method_implemented(proto->connect), proto_method_implemented(proto->disconnect), proto_method_implemented(proto->accept), proto_method_implemented(proto->ioctl), proto_method_implemented(proto->init), proto_method_implemented(proto->destroy), proto_method_implemented(proto->shutdown), proto_method_implemented(proto->setsockopt), proto_method_implemented(proto->getsockopt), proto_method_implemented(proto->sendmsg), proto_method_implemented(proto->recvmsg), proto_method_implemented(proto->sendpage), proto_method_implemented(proto->bind), proto_method_implemented(proto->backlog_rcv), proto_method_implemented(proto->hash), proto_method_implemented(proto->unhash), proto_method_implemented(proto->get_port), proto_method_implemented(proto->enter_memory_pressure)); } static int proto_seq_show(struct seq_file *seq, void *v) { if (v == &proto_list) seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", "protocol", "size", "sockets", "memory", "press", "maxhdr", "slab", "module", "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); else proto_seq_printf(seq, list_entry(v, struct proto, node)); return 0; } static const struct seq_operations proto_seq_ops = { .start = proto_seq_start, .next = proto_seq_next, .stop = proto_seq_stop, .show = proto_seq_show, }; static int proto_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &proto_seq_ops, sizeof(struct seq_net_private)); } static const struct file_operations proto_seq_fops = { .owner = THIS_MODULE, .open = proto_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; static __net_init int proto_init_net(struct net *net) { if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) return -ENOMEM; return 0; } static __net_exit void proto_exit_net(struct net *net) { remove_proc_entry("protocols", net->proc_net); } static __net_initdata struct pernet_operations proto_net_ops = { .init = proto_init_net, .exit = proto_exit_net, }; static int __init proto_init(void) { return register_pernet_subsys(&proto_net_ops); } subsys_initcall(proto_init); #endif /* PROC_FS */ #ifdef CONFIG_NET_RX_BUSY_POLL bool sk_busy_loop_end(void *p, unsigned long start_time) { struct sock *sk = p; return !skb_queue_empty_lockless(&sk->sk_receive_queue) || sk_busy_loop_timeout(sk, start_time); } EXPORT_SYMBOL(sk_busy_loop_end); #endif /* CONFIG_NET_RX_BUSY_POLL */