/* * Copyright (c) 2014-2019, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define QUSB2PHY_PLL_PWR_CTL 0x18 #define REF_BUF_EN BIT(0) #define REXT_EN BIT(1) #define PLL_BYPASSNL BIT(2) #define REXT_TRIM_0 BIT(4) #define QUSB2PHY_PLL_AUTOPGM_CTL1 0x1C #define PLL_RESET_N_CNT_5 0x5 #define PLL_RESET_N BIT(4) #define PLL_AUTOPGM_EN BIT(7) #define QUSB2PHY_PLL_STATUS 0x38 #define QUSB2PHY_PLL_LOCK BIT(5) #define QUSB2PHY_PORT_QC1 0x70 #define VDM_SRC_EN BIT(4) #define VDP_SRC_EN BIT(2) #define QUSB2PHY_PORT_QC2 0x74 #define RDM_UP_EN BIT(1) #define RDP_UP_EN BIT(3) #define RPUM_LOW_EN BIT(4) #define RPUP_LOW_EN BIT(5) #define QUSB2PHY_PORT_POWERDOWN 0xB4 #define CLAMP_N_EN BIT(5) #define FREEZIO_N BIT(1) #define POWER_DOWN BIT(0) #define QUSB2PHY_PORT_TEST_CTRL 0xB8 #define QUSB2PHY_PWR_CTRL1 0x210 #define PWR_CTRL1_CLAMP_N_EN BIT(1) #define PWR_CTRL1_POWR_DOWN BIT(0) #define QUSB2PHY_PLL_COMMON_STATUS_ONE 0x1A0 #define CORE_READY_STATUS BIT(0) #define QUSB2PHY_PORT_UTMI_CTRL1 0xC0 #define SUSPEND_N BIT(5) #define TERM_SELECT BIT(4) #define XCVR_SELECT_FS BIT(2) #define OP_MODE_NON_DRIVE BIT(0) #define QUSB2PHY_PORT_UTMI_CTRL2 0xC4 #define UTMI_ULPI_SEL BIT(7) #define UTMI_TEST_MUX_SEL BIT(6) #define QUSB2PHY_PLL_TEST 0x04 #define CLK_REF_SEL BIT(7) #define QUSB2PHY_PORT_TUNE1 0x80 #define QUSB2PHY_PORT_TUNE2 0x84 #define QUSB2PHY_PORT_TUNE3 0x88 #define QUSB2PHY_PORT_TUNE4 0x8C #define QUSB2PHY_PORT_TUNE5 0x90 /* Get TUNE2's high nibble value read from efuse */ #define TUNE2_HIGH_NIBBLE_VAL(val, pos, mask) ((val >> pos) & mask) #define QUSB2PHY_PORT_INTR_CTRL 0xBC #define CHG_DET_INTR_EN BIT(4) #define DMSE_INTR_HIGH_SEL BIT(3) #define DMSE_INTR_EN BIT(2) #define DPSE_INTR_HIGH_SEL BIT(1) #define DPSE_INTR_EN BIT(0) #define QUSB2PHY_PORT_UTMI_STATUS 0xF4 #define LINESTATE_DP BIT(0) #define LINESTATE_DM BIT(1) #define QUSB2PHY_1P8_VOL_MIN 1800000 /* uV */ #define QUSB2PHY_1P8_VOL_MAX 1800000 /* uV */ #define QUSB2PHY_1P8_HPM_LOAD 30000 /* uA */ #define QUSB2PHY_3P3_VOL_MIN 3075000 /* uV */ #define QUSB2PHY_3P3_VOL_MAX 3200000 /* uV */ #define QUSB2PHY_3P3_HPM_LOAD 30000 /* uA */ #define QUSB2PHY_REFCLK_ENABLE BIT(0) #define HSTX_TRIMSIZE 4 static unsigned int tune1; module_param(tune1, uint, 0644); MODULE_PARM_DESC(tune1, "QUSB PHY TUNE1"); static unsigned int tune2; module_param(tune2, uint, 0644); MODULE_PARM_DESC(tune2, "QUSB PHY TUNE2"); static unsigned int tune3; module_param(tune3, uint, 0644); MODULE_PARM_DESC(tune3, "QUSB PHY TUNE3"); static unsigned int tune4; module_param(tune4, uint, 0644); MODULE_PARM_DESC(tune4, "QUSB PHY TUNE4"); static unsigned int tune5; module_param(tune5, uint, 0644); MODULE_PARM_DESC(tune5, "QUSB PHY TUNE5"); static bool eud_connected; module_param(eud_connected, bool, 0644); MODULE_PARM_DESC(eud_connected, "EUD_CONNECTED"); struct qusb_phy { struct usb_phy phy; void __iomem *base; void __iomem *tune2_efuse_reg; void __iomem *ref_clk_base; void __iomem *tcsr_clamp_dig_n; void __iomem *tcsr_conn_box_spare; struct clk *ref_clk_src; struct clk *ref_clk; struct clk *cfg_ahb_clk; struct reset_control *phy_reset; struct clk *iface_clk; struct clk *core_clk; struct regulator *gdsc; struct regulator *vdd; struct regulator *vdda33; struct regulator *vdda18; int vdd_levels[3]; /* none, low, high */ int init_seq_len; int *qusb_phy_init_seq; #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE int host_init_seq_len; int *qusb_phy_host_init_seq; #endif u32 major_rev; u32 usb_hs_ac_bitmask; u32 usb_hs_ac_value; u32 tune2_val; #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE u32 tune2_efuse_val; int tune2_sync_val; int tune2_sync_host_val; #endif int tune2_efuse_bit_pos; int tune2_efuse_num_of_bits; int tune2_efuse_correction; bool cable_connected; bool suspended; bool ulpi_mode; bool dpdm_enable; bool is_se_clk; struct regulator_desc dpdm_rdesc; struct regulator_dev *dpdm_rdev; /* emulation targets specific */ void __iomem *emu_phy_base; bool emulation; int *emu_init_seq; int emu_init_seq_len; int *phy_pll_reset_seq; int phy_pll_reset_seq_len; int *emu_dcm_reset_seq; int emu_dcm_reset_seq_len; bool put_into_high_z_state; struct mutex phy_lock; }; #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE static ssize_t qphy_show_tune1(struct device *dev, struct device_attribute *attr, char *buf) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } return sprintf(buf, "0x%x\n", tune1); } static ssize_t qphy_store_tune1(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } sscanf(buf, "%x", &tune1); if (tune1) writel_relaxed(tune1, qphy->base + QUSB2PHY_PORT_TUNE1); pr_info("%s():set tune1 by adb :0x%x\n", __func__, (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE1) & 0xff)); return size; } static DEVICE_ATTR(tune1, 0664, qphy_show_tune1, qphy_store_tune1); static ssize_t qphy_show_tune2(struct device *dev, struct device_attribute *attr, char *buf) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } return sprintf(buf, "0x%x\n", tune2); } static ssize_t qphy_store_tune2(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } sscanf(buf, "%x", &tune2); if (tune2) writel_relaxed(tune2, qphy->base + QUSB2PHY_PORT_TUNE2); pr_info("%s():set tune2 by adb :0x%x\n", __func__, (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE2) & 0xff)); return size; } static DEVICE_ATTR(tune2, 0664, qphy_show_tune2, qphy_store_tune2); static ssize_t qphy_show_tune3(struct device *dev, struct device_attribute *attr, char *buf) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } return sprintf(buf, "0x%x\n", tune3); } static ssize_t qphy_store_tune3(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } sscanf(buf, "%x", &tune3); if (tune3) writel_relaxed(tune3, qphy->base + QUSB2PHY_PORT_TUNE3); pr_info("%s():set tune3 by adb :0x%x\n", __func__, (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE3) & 0xff)); return size; } static DEVICE_ATTR(tune3, 0664, qphy_show_tune3, qphy_store_tune3); static ssize_t qphy_show_tune4(struct device *dev, struct device_attribute *attr, char *buf) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } return sprintf(buf, "0x%x\n", tune4); } static ssize_t qphy_store_tune4(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } sscanf(buf, "%x", &tune4); if (tune4) writel_relaxed(tune4, qphy->base + QUSB2PHY_PORT_TUNE4); pr_info("%s():set tune4 by adb :0x%x\n", __func__, (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE4) & 0xff)); return size; } static DEVICE_ATTR(tune4, 0664, qphy_show_tune4, qphy_store_tune4); static ssize_t qphy_show_tune5(struct device *dev, struct device_attribute *attr, char *buf) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } return sprintf(buf, "0x%x\n", tune5); } static ssize_t qphy_store_tune5(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct qusb_phy *qphy = dev_get_drvdata(dev); if (!qphy) { pr_err("qphy is NULL\n"); return -ENODEV; } sscanf(buf, "%x", &tune5); if (tune5) writel_relaxed(tune5, qphy->base + QUSB2PHY_PORT_TUNE5); pr_info("%s():set tune5 by adb :0x%x\n", __func__, (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE5) & 0xff)); return size; } static DEVICE_ATTR(tune5, 0664, qphy_show_tune5, qphy_store_tune5); static struct attribute *qusb_attrs[] = { &dev_attr_tune1.attr, &dev_attr_tune2.attr, &dev_attr_tune3.attr, &dev_attr_tune4.attr, &dev_attr_tune5.attr, NULL, }; static struct attribute_group qusb_attr_grp = { .attrs = qusb_attrs, }; #endif static void qusb_phy_enable_clocks(struct qusb_phy *qphy, bool on) { dev_dbg(qphy->phy.dev, "%s(): on:%d\n", __func__, on); if (on) { clk_prepare_enable(qphy->ref_clk_src); clk_prepare_enable(qphy->ref_clk); clk_prepare_enable(qphy->iface_clk); clk_prepare_enable(qphy->core_clk); clk_prepare_enable(qphy->cfg_ahb_clk); } else { clk_disable_unprepare(qphy->cfg_ahb_clk); /* * FSM depedency beween iface_clk and core_clk. * Hence turned off core_clk before iface_clk. */ clk_disable_unprepare(qphy->core_clk); clk_disable_unprepare(qphy->iface_clk); clk_disable_unprepare(qphy->ref_clk); clk_disable_unprepare(qphy->ref_clk_src); } } static int qusb_phy_gdsc(struct qusb_phy *qphy, bool on) { int ret; if (IS_ERR_OR_NULL(qphy->gdsc)) return -EPERM; if (on) { dev_dbg(qphy->phy.dev, "TURNING ON GDSC\n"); ret = regulator_enable(qphy->gdsc); if (ret) { dev_err(qphy->phy.dev, "unable to enable gdsc\n"); return ret; } } else { dev_dbg(qphy->phy.dev, "TURNING OFF GDSC\n"); ret = regulator_disable(qphy->gdsc); if (ret) { dev_err(qphy->phy.dev, "unable to disable gdsc\n"); return ret; } } return ret; } static int qusb_phy_config_vdd(struct qusb_phy *qphy, int high) { int min, ret; min = high ? 1 : 0; /* low or none? */ ret = regulator_set_voltage(qphy->vdd, qphy->vdd_levels[min], qphy->vdd_levels[2]); if (ret) { dev_err(qphy->phy.dev, "unable to set voltage for qusb vdd\n"); return ret; } dev_dbg(qphy->phy.dev, "min_vol:%d max_vol:%d\n", qphy->vdd_levels[min], qphy->vdd_levels[2]); return ret; } static int qusb_phy_enable_power(struct qusb_phy *qphy, bool on) { int ret = 0; dev_dbg(qphy->phy.dev, "%s turn %s regulators\n", __func__, on ? "on" : "off"); if (!on) goto disable_vdda33; ret = qusb_phy_config_vdd(qphy, true); if (ret) { dev_err(qphy->phy.dev, "Unable to config VDD:%d\n", ret); goto err_vdd; } ret = regulator_enable(qphy->vdd); if (ret) { dev_err(qphy->phy.dev, "Unable to enable VDD\n"); goto unconfig_vdd; } ret = regulator_set_load(qphy->vdda18, QUSB2PHY_1P8_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret); goto disable_vdd; } ret = regulator_set_voltage(qphy->vdda18, QUSB2PHY_1P8_VOL_MIN, QUSB2PHY_1P8_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda18:%d\n", ret); goto put_vdda18_lpm; } ret = regulator_enable(qphy->vdda18); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda18:%d\n", ret); goto unset_vdda18; } ret = regulator_set_load(qphy->vdda33, QUSB2PHY_3P3_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret); goto disable_vdda18; } ret = regulator_set_voltage(qphy->vdda33, QUSB2PHY_3P3_VOL_MIN, QUSB2PHY_3P3_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda33:%d\n", ret); goto put_vdda33_lpm; } ret = regulator_enable(qphy->vdda33); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda33:%d\n", ret); goto unset_vdd33; } pr_info("%s(): QUSB PHY's regulators are turned ON.\n", __func__); return ret; disable_vdda33: ret = regulator_disable(qphy->vdda33); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret); unset_vdd33: ret = regulator_set_voltage(qphy->vdda33, 0, QUSB2PHY_3P3_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda33:%d\n", ret); put_vdda33_lpm: ret = regulator_set_load(qphy->vdda33, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n"); disable_vdda18: ret = regulator_disable(qphy->vdda18); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret); unset_vdda18: ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda18:%d\n", ret); put_vdda18_lpm: ret = regulator_set_load(qphy->vdda18, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n"); disable_vdd: ret = regulator_disable(qphy->vdd); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n", ret); unconfig_vdd: ret = qusb_phy_config_vdd(qphy, false); if (ret) dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n", ret); err_vdd: dev_dbg(qphy->phy.dev, "QUSB PHY's regulators are turned OFF.\n"); pr_info("%s(): QUSB PHY's regulators are turned OFF.\n", __func__); return ret; } #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE static void qusb_phy_update_tune2(struct qusb_phy *qphy) { int diff_tune2 = 0; u8 reg_val; if (qphy->phy.flags & PHY_HOST_MODE) { pr_info("%s(): read tune2 diff for USB Host: %d, efuse: %x", __func__, qphy->tune2_sync_host_val, qphy->tune2_efuse_val); diff_tune2 = qphy->tune2_sync_host_val; } else { pr_info("%s(): read tune2 diff for USB Device: %d, efuse: %x", __func__, qphy->tune2_sync_val, qphy->tune2_efuse_val); diff_tune2 = qphy->tune2_sync_val; } diff_tune2 += qphy->tune2_efuse_val; if (diff_tune2 <= 0) diff_tune2 = 1; else if (diff_tune2 > 0xf) diff_tune2 = 0xf; reg_val = readb_relaxed(qphy->base + QUSB2PHY_PORT_TUNE2); if (qphy->tune2_val) { reg_val &= 0x0f; reg_val |= (diff_tune2 << 4); } qphy->tune2_val = reg_val; } #endif static void qusb_phy_get_tune2_param(struct qusb_phy *qphy) { u32 bit_mask = 1; u8 reg_val; pr_debug("%s(): num_of_bits:%d bit_pos:%d\n", __func__, qphy->tune2_efuse_num_of_bits, qphy->tune2_efuse_bit_pos); /* get bit mask based on number of bits to use with efuse reg */ bit_mask = (bit_mask << qphy->tune2_efuse_num_of_bits) - 1; /* * Read EFUSE register having TUNE2 parameter's high nibble. * If efuse register shows value as 0x0, then use previous value * as it is. Otherwise use efuse register based value for this purpose. */ if (qphy->tune2_efuse_num_of_bits < HSTX_TRIMSIZE) { qphy->tune2_val = TUNE2_HIGH_NIBBLE_VAL(readl_relaxed(qphy->tune2_efuse_reg), qphy->tune2_efuse_bit_pos, bit_mask); bit_mask = (1 << (HSTX_TRIMSIZE - qphy->tune2_efuse_num_of_bits)) - 1; qphy->tune2_val |= TUNE2_HIGH_NIBBLE_VAL(readl_relaxed(qphy->tune2_efuse_reg + 4), 0, bit_mask) << qphy->tune2_efuse_num_of_bits; } else { qphy->tune2_val = readl_relaxed(qphy->tune2_efuse_reg); qphy->tune2_val = TUNE2_HIGH_NIBBLE_VAL(qphy->tune2_val, qphy->tune2_efuse_bit_pos, bit_mask); } pr_debug("%s(): efuse based tune2 value:%d\n", __func__, qphy->tune2_val); /* Update higher nibble of TUNE2 value for better rise/fall times */ if (qphy->tune2_efuse_correction && qphy->tune2_val) { if (qphy->tune2_efuse_correction > 5 || qphy->tune2_efuse_correction < -10) pr_warn("Correction value is out of range : %d\n", qphy->tune2_efuse_correction); else qphy->tune2_val = qphy->tune2_val + qphy->tune2_efuse_correction; } #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE pr_info("%s(): QC efuse value : 0x%x\n", __func__, qphy->tune2_val); qphy->tune2_efuse_val = qphy->tune2_val; #endif reg_val = readb_relaxed(qphy->base + QUSB2PHY_PORT_TUNE2); if (qphy->tune2_val) { reg_val &= 0x0f; reg_val |= (qphy->tune2_val << 4); } qphy->tune2_val = reg_val; } static void qusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt, unsigned long delay) { int i; pr_debug("Seq count:%d\n", cnt); for (i = 0; i < cnt; i = i+2) { pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]); writel_relaxed(seq[i], base + seq[i+1]); if (delay) usleep_range(delay, (delay + 2000)); } } static int qusb_phy_init(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int ret, reset_val = 0; u8 reg; bool pll_lock_fail = false; /* * If eud is enabled eud_connected parameter will be set to true. * Phy init will be called when spoof attach is done but it will * break the eud functionality by powering down the phy and * re-initializing it. Hence, bail out early from phy init when * eud_connected param is set to true. */ if (eud_connected) { pr_debug("eud_connected is true so bailing out early from %s\n", __func__); return 0; } dev_info(phy->dev, "%s\n", __func__); /* * ref clock is enabled by default after power on reset. Linux clock * driver will disable this clock as part of late init if peripheral * driver(s) does not explicitly votes for it. Linux clock driver also * does not disable the clock until late init even if peripheral * driver explicitly requests it and cannot defer the probe until late * init. Hence, Explicitly disable the clock using register write to * allow QUSB PHY PLL to lock properly. */ if (qphy->ref_clk_base) { writel_relaxed((readl_relaxed(qphy->ref_clk_base) & ~QUSB2PHY_REFCLK_ENABLE), qphy->ref_clk_base); /* Make sure that above write complete to get ref clk OFF */ wmb(); } /* Perform phy reset */ ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__); if (qphy->emulation) { if (qphy->emu_init_seq) qusb_phy_write_seq(qphy->emu_phy_base, qphy->emu_init_seq, qphy->emu_init_seq_len, 0); if (qphy->qusb_phy_init_seq) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq, qphy->init_seq_len, 0); /* Wait for 5ms as per QUSB2 RUMI sequence */ usleep_range(5000, 7000); if (qphy->phy_pll_reset_seq) qusb_phy_write_seq(qphy->base, qphy->phy_pll_reset_seq, qphy->phy_pll_reset_seq_len, 10000); if (qphy->emu_dcm_reset_seq) qusb_phy_write_seq(qphy->emu_phy_base, qphy->emu_dcm_reset_seq, qphy->emu_dcm_reset_seq_len, 10000); return 0; } /* Disable the PHY */ if (qphy->major_rev < 2) writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); else writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) | PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* configure for ULPI mode if requested */ if (qphy->ulpi_mode) writel_relaxed(0x0, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); /* save reset value to override based on clk scheme */ if (qphy->ref_clk_base) reset_val = readl_relaxed(qphy->base + QUSB2PHY_PLL_TEST); #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE if (qphy->qusb_phy_host_init_seq && qphy->phy.flags & PHY_HOST_MODE) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_host_init_seq, qphy->host_init_seq_len, 0); else #endif if (qphy->qusb_phy_init_seq) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq, qphy->init_seq_len, 0); /* * Check for EFUSE value only if tune2_efuse_reg is available * and try to read EFUSE value only once i.e. not every USB * cable connect case. */ if (qphy->tune2_efuse_reg && !tune2) { if (!qphy->tune2_val) qusb_phy_get_tune2_param(qphy); #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE qusb_phy_update_tune2(qphy); #endif pr_debug("%s(): Programming TUNE2 parameter as:%x\n", __func__, qphy->tune2_val); writel_relaxed(qphy->tune2_val, qphy->base + QUSB2PHY_PORT_TUNE2); } /* If tune modparam set, override tune value */ pr_debug("%s():userspecified modparams TUNEX val:0x%x %x %x %x %x\n", __func__, tune1, tune2, tune3, tune4, tune5); if (tune1) writel_relaxed(tune1, qphy->base + QUSB2PHY_PORT_TUNE1); if (tune2) writel_relaxed(tune2, qphy->base + QUSB2PHY_PORT_TUNE2); if (tune3) writel_relaxed(tune3, qphy->base + QUSB2PHY_PORT_TUNE3); if (tune4) writel_relaxed(tune4, qphy->base + QUSB2PHY_PORT_TUNE4); if (tune5) writel_relaxed(tune5, qphy->base + QUSB2PHY_PORT_TUNE5); /* ensure above writes are completed before re-enabling PHY */ wmb(); #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE pr_info("%s():set modparams TUNEX val:0x%x 0x%x 0x%x 0x%x 0x%x\n", __func__, (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE1) & 0xff), (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE2) & 0xff), (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE3) & 0xff), (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE4) & 0xff), (readl_relaxed(qphy->base + QUSB2PHY_PORT_TUNE5) & 0xff)); #endif /* Enable the PHY */ if (qphy->major_rev < 2) writel_relaxed(CLAMP_N_EN | FREEZIO_N, qphy->base + QUSB2PHY_PORT_POWERDOWN); else writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) & ~PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* Ensure above write is completed before turning ON ref clk */ wmb(); /* Require to get phy pll lock successfully */ usleep_range(150, 160); /* Turn on phy ref_clk if DIFF_CLK else select SE_CLK */ if (qphy->ref_clk_base) { if (!qphy->is_se_clk) { reset_val &= ~CLK_REF_SEL; writel_relaxed((readl_relaxed(qphy->ref_clk_base) | QUSB2PHY_REFCLK_ENABLE), qphy->ref_clk_base); } else { reset_val |= CLK_REF_SEL; writel_relaxed(reset_val, qphy->base + QUSB2PHY_PLL_TEST); } /* Make sure above write is completed to get PLL source clock */ wmb(); /* Required to get PHY PLL lock successfully */ usleep_range(100, 110); } if (qphy->major_rev < 2) { reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_STATUS); dev_dbg(phy->dev, "QUSB2PHY_PLL_STATUS:%x\n", reg); if (!(reg & QUSB2PHY_PLL_LOCK)) pll_lock_fail = true; } else { reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_COMMON_STATUS_ONE); dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg); if (!(reg & CORE_READY_STATUS)) pll_lock_fail = true; } if (pll_lock_fail) { dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg); } return 0; } static void qusb_phy_shutdown(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); dev_dbg(phy->dev, "%s\n", __func__); qusb_phy_enable_clocks(qphy, true); /* Disable the PHY */ if (qphy->major_rev < 2) writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); else writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) | PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* Make sure above write complete before turning off clocks */ wmb(); qusb_phy_enable_clocks(qphy, false); } /** * Performs QUSB2 PHY suspend/resume functionality. * * @uphy - usb phy pointer. * @suspend - to enable suspend or not. 1 - suspend, 0 - resume * */ static int qusb_phy_set_suspend(struct usb_phy *phy, int suspend) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); u32 linestate = 0, intr_mask = 0; if (qphy->suspended == suspend) { dev_dbg(phy->dev, "%s: USB PHY is already suspended\n", __func__); return 0; } if (suspend) { /* Bus suspend case */ if (qphy->cable_connected) { /* Clear all interrupts */ writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_INTR_CTRL); linestate = readl_relaxed(qphy->base + QUSB2PHY_PORT_UTMI_STATUS); /* * D+/D- interrupts are level-triggered, but we are * only interested if the line state changes, so enable * the high/low trigger based on current state. In * other words, enable the triggers _opposite_ of what * the current D+/D- levels are. * e.g. if currently D+ high, D- low (HS 'J'/Suspend), * configure the mask to trigger on D+ low OR D- high */ intr_mask = DPSE_INTR_EN | DMSE_INTR_EN; if (!(linestate & LINESTATE_DP)) /* D+ low */ intr_mask |= DPSE_INTR_HIGH_SEL; if (!(linestate & LINESTATE_DM)) /* D- low */ intr_mask |= DMSE_INTR_HIGH_SEL; writel_relaxed(intr_mask, qphy->base + QUSB2PHY_PORT_INTR_CTRL); if (linestate & (LINESTATE_DP | LINESTATE_DM)) { /* enable phy auto-resume */ writel_relaxed(0x0C, qphy->base + QUSB2PHY_PORT_TEST_CTRL); /* flush the previous write before next write */ wmb(); writel_relaxed(0x04, qphy->base + QUSB2PHY_PORT_TEST_CTRL); } dev_dbg(phy->dev, "%s: intr_mask = %x\n", __func__, intr_mask); /* Makes sure that above write goes through */ wmb(); qusb_phy_enable_clocks(qphy, false); } else { /* Disconnect case */ mutex_lock(&qphy->phy_lock); /* Disable all interrupts */ writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_INTR_CTRL); if (!eud_connected) { /* Disable PHY */ writel_relaxed(POWER_DOWN | readl_relaxed(qphy->base + QUSB2PHY_PORT_POWERDOWN), qphy->base + QUSB2PHY_PORT_POWERDOWN); /* Make sure that above write is completed */ wmb(); if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x0, qphy->tcsr_clamp_dig_n); } qusb_phy_enable_clocks(qphy, false); qusb_phy_enable_power(qphy, false); mutex_unlock(&qphy->phy_lock); /* * Set put_into_high_z_state to true so next USB * cable connect, DPF_DMF request performs PHY * reset and put it into high-z state. For bootup * with or without USB cable, it doesn't require * to put QUSB PHY into high-z state. */ qphy->put_into_high_z_state = true; } qphy->suspended = true; } else { /* Bus suspend case */ if (qphy->cable_connected) { qusb_phy_enable_clocks(qphy, true); /* Clear all interrupts on resume */ writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_INTR_CTRL); } else { qusb_phy_enable_power(qphy, true); if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x1, qphy->tcsr_clamp_dig_n); qusb_phy_enable_clocks(qphy, true); } qphy->suspended = false; } return 0; } static int qusb_phy_notify_connect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = true; dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } static int qusb_phy_notify_disconnect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = false; dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } static int qusb_phy_drive_dp_pulse(struct usb_phy *phy, unsigned int pulse_width) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int ret; dev_dbg(qphy->phy.dev, "connected to a CDP, drive DP up\n"); ret = qusb_phy_enable_power(qphy, true); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator enable failed:%d\n", ret); return ret; } qusb_phy_gdsc(qphy, true); qusb_phy_enable_clocks(qphy, true); ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "phyassert failed\n"); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "deassert failed\n"); /* Configure PHY to enable control on DP/DM lines */ writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); writel_relaxed(TERM_SELECT | XCVR_SELECT_FS | OP_MODE_NON_DRIVE | SUSPEND_N, qphy->base + QUSB2PHY_PORT_UTMI_CTRL1); writel_relaxed(UTMI_ULPI_SEL | UTMI_TEST_MUX_SEL, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); writel_relaxed(PLL_RESET_N_CNT_5, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(CLAMP_N_EN | FREEZIO_N, qphy->base + QUSB2PHY_PORT_POWERDOWN); writel_relaxed(REF_BUF_EN | REXT_EN | PLL_BYPASSNL | REXT_TRIM_0, qphy->base + QUSB2PHY_PLL_PWR_CTL); usleep_range(5, 10); writel_relaxed(0x15, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(PLL_RESET_N | PLL_RESET_N_CNT_5, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC2); usleep_range(50, 60); /* Enable Rdp_en to pull DP up to 3V */ writel_relaxed(RDP_UP_EN, qphy->base + QUSB2PHY_PORT_QC2); msleep(pulse_width); /* Put the PHY and DP back to normal state */ writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); /* 23 */ writel_relaxed(PLL_AUTOPGM_EN | PLL_RESET_N | PLL_RESET_N_CNT_5, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(UTMI_ULPI_SEL, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); writel_relaxed(TERM_SELECT, qphy->base + QUSB2PHY_PORT_UTMI_CTRL1); qusb_phy_enable_clocks(qphy, false); qusb_phy_gdsc(qphy, false); ret = qusb_phy_enable_power(qphy, false); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator disable failed:%d\n", ret); return ret; } return 0; } static int qusb_phy_dpdm_regulator_enable(struct regulator_dev *rdev) { int ret = 0; struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n", __func__, qphy->dpdm_enable); mutex_lock(&qphy->phy_lock); if (!qphy->dpdm_enable) { ret = qusb_phy_enable_power(qphy, true); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator enable failed:%d\n", ret); mutex_unlock(&qphy->phy_lock); return ret; } qphy->dpdm_enable = true; if (qphy->put_into_high_z_state) { if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x1, qphy->tcsr_clamp_dig_n); qusb_phy_gdsc(qphy, true); qusb_phy_enable_clocks(qphy, true); dev_dbg(qphy->phy.dev, "RESET QUSB PHY\n"); ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "phyassert failed\n"); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "deassert failed\n"); /* * Phy in non-driving mode leaves Dp and Dm * lines in high-Z state. Controller power * collapse is not switching phy to non-driving * mode causing charger detection failure. Bring * phy to non-driving mode by overriding * controller output via UTMI interface. */ writel_relaxed(TERM_SELECT | XCVR_SELECT_FS | OP_MODE_NON_DRIVE, qphy->base + QUSB2PHY_PORT_UTMI_CTRL1); writel_relaxed(UTMI_ULPI_SEL | UTMI_TEST_MUX_SEL, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); /* Disable PHY */ writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); /* Make sure that above write is completed */ wmb(); qusb_phy_enable_clocks(qphy, false); qusb_phy_gdsc(qphy, false); } } mutex_unlock(&qphy->phy_lock); return ret; } static int qusb_phy_dpdm_regulator_disable(struct regulator_dev *rdev) { int ret = 0; struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n", __func__, qphy->dpdm_enable); mutex_lock(&qphy->phy_lock); if (qphy->dpdm_enable) { /* If usb core is active, rely on set_suspend to clamp phy */ if (!qphy->cable_connected) { if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x0, qphy->tcsr_clamp_dig_n); } ret = qusb_phy_enable_power(qphy, false); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator disable failed:%d\n", ret); mutex_unlock(&qphy->phy_lock); return ret; } qphy->dpdm_enable = false; } mutex_unlock(&qphy->phy_lock); return ret; } static int qusb_phy_dpdm_regulator_is_enabled(struct regulator_dev *rdev) { struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s qphy->dpdm_enable = %d\n", __func__, qphy->dpdm_enable); return qphy->dpdm_enable; } static struct regulator_ops qusb_phy_dpdm_regulator_ops = { .enable = qusb_phy_dpdm_regulator_enable, .disable = qusb_phy_dpdm_regulator_disable, .is_enabled = qusb_phy_dpdm_regulator_is_enabled, }; static int qusb_phy_regulator_init(struct qusb_phy *qphy) { struct device *dev = qphy->phy.dev; struct regulator_config cfg = {}; struct regulator_init_data *init_data; init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL); if (!init_data) return -ENOMEM; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS; qphy->dpdm_rdesc.owner = THIS_MODULE; qphy->dpdm_rdesc.type = REGULATOR_VOLTAGE; qphy->dpdm_rdesc.ops = &qusb_phy_dpdm_regulator_ops; qphy->dpdm_rdesc.name = kbasename(dev->of_node->full_name); cfg.dev = dev; cfg.init_data = init_data; cfg.driver_data = qphy; cfg.of_node = dev->of_node; qphy->dpdm_rdev = devm_regulator_register(dev, &qphy->dpdm_rdesc, &cfg); if (IS_ERR(qphy->dpdm_rdev)) return PTR_ERR(qphy->dpdm_rdev); return 0; } static int qusb_phy_probe(struct platform_device *pdev) { struct qusb_phy *qphy; struct device *dev = &pdev->dev; struct resource *res; int ret = 0, size = 0; const char *phy_type; bool hold_phy_reset; u32 temp; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; qphy->phy.dev = dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qusb_phy_base"); qphy->base = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->base)) return PTR_ERR(qphy->base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "emu_phy_base"); if (res) { qphy->emu_phy_base = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->emu_phy_base)) { dev_dbg(dev, "couldn't ioremap emu_phy_base\n"); qphy->emu_phy_base = NULL; } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tune2_efuse_addr"); if (res) { qphy->tune2_efuse_reg = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (!IS_ERR_OR_NULL(qphy->tune2_efuse_reg)) { ret = of_property_read_u32(dev->of_node, "qcom,tune2-efuse-bit-pos", &qphy->tune2_efuse_bit_pos); if (!ret) { ret = of_property_read_u32(dev->of_node, "qcom,tune2-efuse-num-bits", &qphy->tune2_efuse_num_of_bits); } of_property_read_u32(dev->of_node, "qcom,tune2-efuse-correction", &qphy->tune2_efuse_correction); if (ret) { dev_err(dev, "DT Value for tune2 efuse is invalid.\n"); return -EINVAL; } } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ref_clk_addr"); if (res) { qphy->ref_clk_base = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (IS_ERR(qphy->ref_clk_base)) { dev_dbg(dev, "ref_clk_address is not available.\n"); return PTR_ERR(qphy->ref_clk_base); } ret = of_property_read_string(dev->of_node, "qcom,phy-clk-scheme", &phy_type); if (ret) { dev_err(dev, "error need qsub_phy_clk_scheme.\n"); return ret; } if (!strcasecmp(phy_type, "cml")) { qphy->is_se_clk = false; } else if (!strcasecmp(phy_type, "cmos")) { qphy->is_se_clk = true; } else { dev_err(dev, "erro invalid qusb_phy_clk_scheme\n"); return -EINVAL; } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcsr_clamp_dig_n_1p8"); if (res) { qphy->tcsr_clamp_dig_n = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (IS_ERR(qphy->tcsr_clamp_dig_n)) { dev_err(dev, "err reading tcsr_clamp_dig_n\n"); qphy->tcsr_clamp_dig_n = NULL; } } ret = of_property_read_u32(dev->of_node, "qcom,usb-hs-ac-bitmask", &qphy->usb_hs_ac_bitmask); if (!ret) { ret = of_property_read_u32(dev->of_node, "qcom,usb-hs-ac-value", &qphy->usb_hs_ac_value); if (ret) { dev_err(dev, "usb_hs_ac_value not passed\n"); return ret; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcsr_conn_box_spare_0"); if (!res) { dev_err(dev, "tcsr_conn_box_spare_0 not passed\n"); return -ENOENT; } qphy->tcsr_conn_box_spare = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (IS_ERR(qphy->tcsr_conn_box_spare)) { dev_err(dev, "err reading tcsr_conn_box_spare\n"); return PTR_ERR(qphy->tcsr_conn_box_spare); } } qphy->ref_clk_src = devm_clk_get(dev, "ref_clk_src"); if (IS_ERR(qphy->ref_clk_src)) dev_dbg(dev, "clk get failed for ref_clk_src\n"); /* ref_clk is needed only for DIFF_CLK case, hence make it optional. */ if (of_property_match_string(pdev->dev.of_node, "clock-names", "ref_clk") >= 0) { qphy->ref_clk = devm_clk_get(dev, "ref_clk"); if (IS_ERR(qphy->ref_clk)) { ret = PTR_ERR(qphy->ref_clk); if (ret != -EPROBE_DEFER) dev_dbg(dev, "clk get failed for ref_clk\n"); return ret; } clk_set_rate(qphy->ref_clk, 19200000); } qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk"); if (IS_ERR(qphy->cfg_ahb_clk)) return PTR_ERR(qphy->cfg_ahb_clk); qphy->phy_reset = devm_reset_control_get(dev, "phy_reset"); if (IS_ERR(qphy->phy_reset)) return PTR_ERR(qphy->phy_reset); if (of_property_match_string(dev->of_node, "clock-names", "iface_clk") >= 0) { qphy->iface_clk = devm_clk_get(dev, "iface_clk"); if (IS_ERR(qphy->iface_clk)) { ret = PTR_ERR(qphy->iface_clk); qphy->iface_clk = NULL; if (ret == -EPROBE_DEFER) return ret; dev_err(dev, "couldn't get iface_clk(%d)\n", ret); } } if (of_property_match_string(dev->of_node, "clock-names", "core_clk") >= 0) { qphy->core_clk = devm_clk_get(dev, "core_clk"); if (IS_ERR(qphy->core_clk)) { ret = PTR_ERR(qphy->core_clk); qphy->core_clk = NULL; if (ret == -EPROBE_DEFER) return ret; dev_err(dev, "couldn't get core_clk(%d)\n", ret); } } qphy->gdsc = devm_regulator_get(dev, "USB3_GDSC"); if (IS_ERR(qphy->gdsc)) qphy->gdsc = NULL; qphy->emulation = of_property_read_bool(dev->of_node, "qcom,emulation"); of_get_property(dev->of_node, "qcom,emu-init-seq", &size); if (size) { qphy->emu_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->emu_init_seq) { qphy->emu_init_seq_len = (size / sizeof(*qphy->emu_init_seq)); if (qphy->emu_init_seq_len % 2) { dev_err(dev, "invalid emu_init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,emu-init-seq", qphy->emu_init_seq, qphy->emu_init_seq_len); } else { dev_dbg(dev, "error allocating memory for emu_init_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,phy-pll-reset-seq", &size); if (size) { qphy->phy_pll_reset_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->phy_pll_reset_seq) { qphy->phy_pll_reset_seq_len = (size / sizeof(*qphy->phy_pll_reset_seq)); if (qphy->phy_pll_reset_seq_len % 2) { dev_err(dev, "invalid phy_pll_reset_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,phy-pll-reset-seq", qphy->phy_pll_reset_seq, qphy->phy_pll_reset_seq_len); } else { dev_dbg(dev, "error allocating memory for phy_pll_reset_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size); if (size) { qphy->emu_dcm_reset_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->emu_dcm_reset_seq) { qphy->emu_dcm_reset_seq_len = (size / sizeof(*qphy->emu_dcm_reset_seq)); if (qphy->emu_dcm_reset_seq_len % 2) { dev_err(dev, "invalid emu_dcm_reset_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,emu-dcm-reset-seq", qphy->emu_dcm_reset_seq, qphy->emu_dcm_reset_seq_len); } else { dev_dbg(dev, "error allocating memory for emu_dcm_reset_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,qusb-phy-init-seq", &size); if (size) { qphy->qusb_phy_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->qusb_phy_init_seq) { qphy->init_seq_len = (size / sizeof(*qphy->qusb_phy_init_seq)); if (qphy->init_seq_len % 2) { dev_err(dev, "invalid init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-init-seq", qphy->qusb_phy_init_seq, qphy->init_seq_len); } else { dev_err(dev, "error allocating memory for phy_init_seq\n"); } } #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE size = 0; of_get_property(dev->of_node, "qcom,qusb-phy-host-init-seq", &size); if (size) { qphy->qusb_phy_host_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->qusb_phy_host_init_seq) { qphy->host_init_seq_len = (size / sizeof(*qphy->qusb_phy_host_init_seq)); if (qphy->host_init_seq_len % 2) { dev_err(dev, "invalid host_init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-host-init-seq", qphy->qusb_phy_host_init_seq, qphy->host_init_seq_len); } else { dev_err(dev, "error allocating memory for phy_host_init_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,diff_tune2_host", &size); if (size) { ret = of_property_read_u32(dev->of_node, "qcom,diff_tune2_host", &qphy->tune2_sync_host_val); if (ret) qphy->tune2_sync_host_val = 0; } else { qphy->tune2_sync_host_val = 0; } size = 0; of_get_property(dev->of_node, "qcom,diff_tune2_device", &size); if (size) { ret = of_property_read_u32(dev->of_node, "qcom,diff_tune2_device", &qphy->tune2_sync_val); if (ret) qphy->tune2_sync_val = 0; } else { qphy->tune2_sync_val = 0; } #endif qphy->ulpi_mode = false; ret = of_property_read_string(dev->of_node, "phy_type", &phy_type); if (!ret) { if (!strcasecmp(phy_type, "ulpi")) qphy->ulpi_mode = true; } else { dev_err(dev, "error reading phy_type property\n"); return ret; } hold_phy_reset = of_property_read_bool(dev->of_node, "qcom,hold-reset"); /* use default major revision as 2 */ qphy->major_rev = 2; ret = of_property_read_u32(dev->of_node, "qcom,major-rev", &qphy->major_rev); ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level", (u32 *) qphy->vdd_levels, ARRAY_SIZE(qphy->vdd_levels)); if (ret) { dev_err(dev, "error reading qcom,vdd-voltage-level property\n"); return ret; } qphy->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(qphy->vdd)) { dev_err(dev, "unable to get vdd supply\n"); return PTR_ERR(qphy->vdd); } qphy->vdda33 = devm_regulator_get(dev, "vdda33"); if (IS_ERR(qphy->vdda33)) { dev_err(dev, "unable to get vdda33 supply\n"); return PTR_ERR(qphy->vdda33); } qphy->vdda18 = devm_regulator_get(dev, "vdda18"); if (IS_ERR(qphy->vdda18)) { dev_err(dev, "unable to get vdda18 supply\n"); return PTR_ERR(qphy->vdda18); } mutex_init(&qphy->phy_lock); platform_set_drvdata(pdev, qphy); qphy->phy.label = "msm-qusb-phy"; qphy->phy.init = qusb_phy_init; qphy->phy.set_suspend = qusb_phy_set_suspend; qphy->phy.shutdown = qusb_phy_shutdown; qphy->phy.type = USB_PHY_TYPE_USB2; qphy->phy.notify_connect = qusb_phy_notify_connect; qphy->phy.notify_disconnect = qusb_phy_notify_disconnect; qphy->phy.drive_dp_pulse = qusb_phy_drive_dp_pulse; #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE qphy->tune2_efuse_val = 0; #endif /* * On some platforms multiple QUSB PHYs are available. If QUSB PHY is * not used, there is leakage current seen with QUSB PHY related voltage * rail. Hence keep QUSB PHY into reset state explicitly here. */ if (hold_phy_reset) { ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(dev, "%s:phy_reset assert failed\n", __func__); } ret = usb_add_phy_dev(&qphy->phy); if (ret) return ret; ret = qusb_phy_regulator_init(qphy); if (ret) usb_remove_phy(&qphy->phy); /* de-assert clamp dig n to reduce leakage on 1p8 upon boot up */ if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x0, qphy->tcsr_clamp_dig_n); /* * Write the usb_hs_ac_value to usb_hs_ac_bitmask of tcsr_conn_box_spare * reg to enable AC/DC coupling */ if (qphy->tcsr_conn_box_spare) { temp = readl_relaxed(qphy->tcsr_conn_box_spare) & ~qphy->usb_hs_ac_bitmask; writel_relaxed(temp | qphy->usb_hs_ac_value, qphy->tcsr_conn_box_spare); } qphy->suspended = true; #ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE ret = sysfs_create_group(&pdev->dev.kobj, &qusb_attr_grp); if (ret) { pr_err("%s: qusb sysfs fail, ret %d", __func__, ret); return ret; } #endif return ret; } static int qusb_phy_remove(struct platform_device *pdev) { struct qusb_phy *qphy = platform_get_drvdata(pdev); usb_remove_phy(&qphy->phy); qphy->cable_connected = false; qusb_phy_set_suspend(&qphy->phy, true); return 0; } static const struct of_device_id qusb_phy_id_table[] = { { .compatible = "qcom,qusb2phy", }, { }, }; MODULE_DEVICE_TABLE(of, qusb_phy_id_table); static struct platform_driver qusb_phy_driver = { .probe = qusb_phy_probe, .remove = qusb_phy_remove, .driver = { .name = "msm-qusb-phy", .of_match_table = of_match_ptr(qusb_phy_id_table), }, }; module_platform_driver(qusb_phy_driver); MODULE_DESCRIPTION("MSM QUSB2 PHY driver"); MODULE_LICENSE("GPL v2");