/* * Based on arch/arm/include/asm/io.h * * Copyright (C) 1996-2000 Russell King * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef __ASM_IO_H #define __ASM_IO_H #ifdef __KERNEL__ #include #include #include #include #include #include #include #include #include #include /* * Generic IO read/write. These perform native-endian accesses. * that some architectures will want to re-define __raw_{read,write}w. */ static inline void __raw_writeb_no_log(u8 val, volatile void __iomem *addr) { asm volatile("strb %w0, [%1]" : : "rZ" (val), "r" (addr)); } static inline void __raw_writew_no_log(u16 val, volatile void __iomem *addr) { asm volatile("strh %w0, [%1]" : : "rZ" (val), "r" (addr)); } static inline void __raw_writel_no_log(u32 val, volatile void __iomem *addr) { asm volatile("str %w0, [%1]" : : "rZ" (val), "r" (addr)); } static inline void __raw_writeq_no_log(u64 val, volatile void __iomem *addr) { asm volatile("str %x0, [%1]" : : "rZ" (val), "r" (addr)); } static inline u8 __raw_readb_no_log(const volatile void __iomem *addr) { u8 val; asm volatile(ALTERNATIVE("ldrb %w0, [%1]", "ldarb %w0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } static inline u16 __raw_readw_no_log(const volatile void __iomem *addr) { u16 val; asm volatile(ALTERNATIVE("ldrh %w0, [%1]", "ldarh %w0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } static inline u32 __raw_readl_no_log(const volatile void __iomem *addr) { u32 val; asm volatile(ALTERNATIVE("ldr %w0, [%1]", "ldar %w0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } static inline u64 __raw_readq_no_log(const volatile void __iomem *addr) { u64 val; asm volatile(ALTERNATIVE("ldr %0, [%1]", "ldar %0, [%1]", ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) : "=r" (val) : "r" (addr)); return val; } /* * There may be cases when clients don't want to support or can't support the * logging, The appropriate functions can be used but clinets should carefully * consider why they can't support the logging */ #define __raw_write_logged(v, a, _t) ({ \ int _ret; \ volatile void __iomem *_a = (a); \ void *_addr = (void __force *)(_a); \ _ret = uncached_logk(LOGK_WRITEL, _addr); \ if (_ret) /* COFNIG_SEC_DEBUG */\ ETB_WAYPOINT; \ __raw_write##_t##_no_log((v), _a); \ if (_ret) \ LOG_BARRIER; \ }) #define __raw_writeb(v, a) __raw_write_logged((v), a, b) #define __raw_writew(v, a) __raw_write_logged((v), a, w) #define __raw_writel(v, a) __raw_write_logged((v), a, l) #define __raw_writeq(v, a) __raw_write_logged((v), a, q) #define __raw_read_logged(a, _l, _t) ({ \ _t __a; \ const volatile void __iomem *_a = (a); \ void *_addr = (void __force *)(_a); \ int _ret; \ _ret = uncached_logk(LOGK_READL, _addr); \ if (_ret) /* CONFIG_SEC_DEBUG */ \ ETB_WAYPOINT; \ __a = __raw_read##_l##_no_log(_a); \ if (_ret) \ LOG_BARRIER; \ __a; \ }) #define __raw_readb(a) __raw_read_logged((a), b, u8) #define __raw_readw(a) __raw_read_logged((a), w, u16) #define __raw_readl(a) __raw_read_logged((a), l, u32) #define __raw_readq(a) __raw_read_logged((a), q, u64) /* IO barriers */ #define __iormb(v) \ ({ \ unsigned long tmp; \ \ rmb(); \ \ /* \ * Create a dummy control dependency from the IO read to any \ * later instructions. This ensures that a subsequent call to \ * udelay() will be ordered due to the ISB in get_cycles(). \ */ \ asm volatile("eor %0, %1, %1\n" \ "cbnz %0, ." \ : "=r" (tmp) : "r" ((unsigned long)(v)) \ : "memory"); \ }) #define __iowmb() wmb() #define mmiowb() do { } while (0) /* * Relaxed I/O memory access primitives. These follow the Device memory * ordering rules but do not guarantee any ordering relative to Normal memory * accesses. */ #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; }) #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; }) #define readq_relaxed(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; }) #define writeb_relaxed(v,c) ((void)__raw_writeb((v),(c))) #define writew_relaxed(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c))) #define writel_relaxed(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c))) #define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c))) #define readb_relaxed_no_log(c) ({ u8 __v = __raw_readb_no_log(c); __v; }) #define readw_relaxed_no_log(c) \ ({ u16 __v = le16_to_cpu((__force __le16)__raw_readw_no_log(c)); __v; }) #define readl_relaxed_no_log(c) \ ({ u32 __v = le32_to_cpu((__force __le32)__raw_readl_no_log(c)); __v; }) #define readq_relaxed_no_log(c) \ ({ u64 __v = le64_to_cpu((__force __le64)__raw_readq_no_log(c)); __v; }) #define writeb_relaxed_no_log(v, c) ((void)__raw_writeb_no_log((v), (c))) #define writew_relaxed_no_log(v, c) \ ((void)__raw_writew_no_log((__force u16)cpu_to_le32(v), (c))) #define writel_relaxed_no_log(v, c) \ ((void)__raw_writel_no_log((__force u32)cpu_to_le32(v), (c))) #define writeq_relaxed_no_log(v, c) \ ((void)__raw_writeq_no_log((__force u64)cpu_to_le32(v), (c))) /* * I/O memory access primitives. Reads are ordered relative to any * following Normal memory access. Writes are ordered relative to any prior * Normal memory access. */ #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(__v); __v; }) #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(__v); __v; }) #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(__v); __v; }) #define readq(c) ({ u64 __v = readq_relaxed(c); __iormb(__v); __v; }) #define writeb(v,c) ({ __iowmb(); writeb_relaxed((v),(c)); }) #define writew(v,c) ({ __iowmb(); writew_relaxed((v),(c)); }) #define writel(v,c) ({ __iowmb(); writel_relaxed((v),(c)); }) #define writeq(v,c) ({ __iowmb(); writeq_relaxed((v),(c)); }) #define readb_no_log(c) \ ({ u8 __v = readb_relaxed_no_log(c); __iormb(__v); __v; }) #define readw_no_log(c) \ ({ u16 __v = readw_relaxed_no_log(c); __iormb(__v); __v; }) #define readl_no_log(c) \ ({ u32 __v = readl_relaxed_no_log(c); __iormb(__v); __v; }) #define readq_no_log(c) \ ({ u64 __v = readq_relaxed_no_log(c); __iormb(__v); __v; }) #define writeb_no_log(v, c) \ ({ __iowmb(); writeb_relaxed_no_log((v), (c)); }) #define writew_no_log(v, c) \ ({ __iowmb(); writew_relaxed_no_log((v), (c)); }) #define writel_no_log(v, c) \ ({ __iowmb(); writel_relaxed_no_log((v), (c)); }) #define writeq_no_log(v, c) \ ({ __iowmb(); writeq_relaxed_no_log((v), (c)); }) /* * I/O port access primitives. */ #define arch_has_dev_port() (1) #define IO_SPACE_LIMIT (PCI_IO_SIZE - 1) #define PCI_IOBASE ((void __iomem *)PCI_IO_START) /* * String version of I/O memory access operations. */ extern void __memcpy_fromio(void *, const volatile void __iomem *, size_t); extern void __memcpy_toio(volatile void __iomem *, const void *, size_t); extern void __memset_io(volatile void __iomem *, int, size_t); #define memset_io(c,v,l) __memset_io((c),(v),(l)) #define memcpy_fromio(a,c,l) __memcpy_fromio((a),(c),(l)) #define memcpy_toio(c,a,l) __memcpy_toio((c),(a),(l)) /* * I/O memory mapping functions. */ extern void __iomem *__ioremap(phys_addr_t phys_addr, size_t size, pgprot_t prot); extern void __iounmap(volatile void __iomem *addr); extern void __iomem *ioremap_cache(phys_addr_t phys_addr, size_t size); #define ioremap(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE)) #define ioremap_nocache(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE)) #define ioremap_wc(addr, size) __ioremap((addr), (size), __pgprot(PROT_NORMAL_NC)) #define ioremap_wt(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE)) #define iounmap __iounmap /* * PCI configuration space mapping function. * * The PCI specification disallows posted write configuration transactions. * Add an arch specific pci_remap_cfgspace() definition that is implemented * through nGnRnE device memory attribute as recommended by the ARM v8 * Architecture reference manual Issue A.k B2.8.2 "Device memory". */ #define pci_remap_cfgspace(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRnE)) /* * io{read,write}{16,32,64}be() macros */ #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(__v); __v; }) #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(__v); __v; }) #define ioread64be(p) ({ __u64 __v = be64_to_cpu((__force __be64)__raw_readq(p)); __iormb(__v); __v; }) #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) #define iowrite64be(v,p) ({ __iowmb(); __raw_writeq((__force __u64)cpu_to_be64(v), p); }) #include /* * More restrictive address range checking than the default implementation * (PHYS_OFFSET and PHYS_MASK taken into account). */ #define ARCH_HAS_VALID_PHYS_ADDR_RANGE extern int valid_phys_addr_range(phys_addr_t addr, size_t size); extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); extern int devmem_is_allowed(unsigned long pfn); struct bio_vec; extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1, const struct bio_vec *vec2); #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \ (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2))) #endif /* __KERNEL__ */ #endif /* __ASM_IO_H */