/* * linux/init/main.c * * Copyright (C) 1991, 1992 Linus Torvalds * * GK 2/5/95 - Changed to support mounting root fs via NFS * Added initrd & change_root: Werner Almesberger & Hans Lermen, Feb '96 * Moan early if gcc is old, avoiding bogus kernels - Paul Gortmaker, May '96 * Simplified starting of init: Michael A. Griffith */ #define DEBUG /* Enable initcall_debug */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "do_mounts.h" #include #ifdef CONFIG_SEC_GPIO_DVS #include #endif #ifdef CONFIG_UH #include #endif #ifdef CONFIG_UH_RKP #include #endif #include #ifdef CONFIG_SECURITY_DEFEX #include void __init __weak defex_load_rules(void) { } #endif static int kernel_init(void *); extern void init_IRQ(void); extern void radix_tree_init(void); #ifdef CONFIG_DEFERRED_INITCALLS extern initcall_t __deferred_initcall_start[], __deferred_initcall_end[]; /* call deferred init routines */ static void __ref do_deferred_initcalls(struct work_struct *work) { initcall_t *call; static bool already_run; if (already_run) { pr_warn("%s() has already run\n", __func__); return; } already_run = true; pr_err("Running %s()\n", __func__); for (call = __deferred_initcall_start; call < __deferred_initcall_end; call++) do_one_initcall(*call); ftrace_free_init_mem(); free_initmem(); #ifdef CONFIG_UH_RKP rkp_deferred_init(); #endif } static DECLARE_WORK(deferred_initcall_work, do_deferred_initcalls); #endif /* * Debug helper: via this flag we know that we are in 'early bootup code' * where only the boot processor is running with IRQ disabled. This means * two things - IRQ must not be enabled before the flag is cleared and some * operations which are not allowed with IRQ disabled are allowed while the * flag is set. */ bool early_boot_irqs_disabled __read_mostly; enum system_states system_state __read_mostly; EXPORT_SYMBOL(system_state); /* * Boot command-line arguments */ #define MAX_INIT_ARGS CONFIG_INIT_ENV_ARG_LIMIT #define MAX_INIT_ENVS CONFIG_INIT_ENV_ARG_LIMIT extern void time_init(void); /* Default late time init is NULL. archs can override this later. */ void (*__initdata late_time_init)(void); /* Untouched command line saved by arch-specific code. */ char __initdata boot_command_line[COMMAND_LINE_SIZE]; /* Untouched saved command line (eg. for /proc) */ char *saved_command_line; /* Command line for parameter parsing */ static char *static_command_line; /* Command line for per-initcall parameter parsing */ static char *initcall_command_line; static char *execute_command; static char *ramdisk_execute_command; /* * Used to generate warnings if static_key manipulation functions are used * before jump_label_init is called. */ bool static_key_initialized __read_mostly; EXPORT_SYMBOL_GPL(static_key_initialized); /* * If set, this is an indication to the drivers that reset the underlying * device before going ahead with the initialization otherwise driver might * rely on the BIOS and skip the reset operation. * * This is useful if kernel is booting in an unreliable environment. * For ex. kdump situation where previous kernel has crashed, BIOS has been * skipped and devices will be in unknown state. */ unsigned int reset_devices; EXPORT_SYMBOL(reset_devices); static int __init set_reset_devices(char *str) { reset_devices = 1; return 1; } __setup("reset_devices", set_reset_devices); static const char *argv_init[MAX_INIT_ARGS+2] = { "init", NULL, }; const char *envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, }; static const char *panic_later, *panic_param; extern const struct obs_kernel_param __setup_start[], __setup_end[]; static bool __init obsolete_checksetup(char *line) { const struct obs_kernel_param *p; bool had_early_param = false; p = __setup_start; do { int n = strlen(p->str); if (parameqn(line, p->str, n)) { if (p->early) { /* Already done in parse_early_param? * (Needs exact match on param part). * Keep iterating, as we can have early * params and __setups of same names 8( */ if (line[n] == '\0' || line[n] == '=') had_early_param = true; } else if (!p->setup_func) { pr_warn("Parameter %s is obsolete, ignored\n", p->str); had_early_param = true; goto fail; } else { set_memsize_reserved_name(p->str); if (p->setup_func(line + n)) { had_early_param = true; goto fail; } } } p++; } while (p < __setup_end); fail: unset_memsize_reserved_name(); return had_early_param; } /* * This should be approx 2 Bo*oMips to start (note initial shift), and will * still work even if initially too large, it will just take slightly longer */ unsigned long loops_per_jiffy = (1<<12); EXPORT_SYMBOL(loops_per_jiffy); static int __init debug_kernel(char *str) { console_loglevel = CONSOLE_LOGLEVEL_DEBUG; return 0; } static int __init quiet_kernel(char *str) { console_loglevel = CONSOLE_LOGLEVEL_QUIET; return 0; } early_param("debug", debug_kernel); early_param("quiet", quiet_kernel); static int __init loglevel(char *str) { int newlevel; /* * Only update loglevel value when a correct setting was passed, * to prevent blind crashes (when loglevel being set to 0) that * are quite hard to debug */ if (get_option(&str, &newlevel)) { console_loglevel = newlevel; return 0; } return -EINVAL; } early_param("loglevel", loglevel); #ifdef CONFIG_RTC_AUTO_PWRON_PARAM unsigned int sapa_param_time; EXPORT_SYMBOL(sapa_param_time); static int __init read_sapa_param(char *str) { int temp = 0; if (get_option(&str, &temp)) { sapa_param_time = (unsigned int)temp; pr_info("sapa: %s param_time:%u\n", __func__, sapa_param_time); return 0; } return -EINVAL; } early_param("sapa", read_sapa_param); #endif unsigned int reboot_fail_in_bl; EXPORT_SYMBOL(reboot_fail_in_bl); static int __init read_rbfib_param(char *str) { int temp = 0; if (get_option(&str, &temp)) { reboot_fail_in_bl = (unsigned int)temp; pr_info("PON: rbfib=%u\n", reboot_fail_in_bl); return 0; } return -EINVAL; } early_param("rbfib", read_rbfib_param); /* Change NUL term back to "=", to make "param" the whole string. */ static int __init repair_env_string(char *param, char *val, const char *unused, void *arg) { if (val) { /* param=val or param="val"? */ if (val == param+strlen(param)+1) val[-1] = '='; else if (val == param+strlen(param)+2) { val[-2] = '='; memmove(val-1, val, strlen(val)+1); val--; } else BUG(); } return 0; } /* Anything after -- gets handed straight to init. */ static int __init set_init_arg(char *param, char *val, const char *unused, void *arg) { unsigned int i; if (panic_later) return 0; repair_env_string(param, val, unused, NULL); for (i = 0; argv_init[i]; i++) { if (i == MAX_INIT_ARGS) { panic_later = "init"; panic_param = param; return 0; } } argv_init[i] = param; return 0; } /* * Unknown boot options get handed to init, unless they look like * unused parameters (modprobe will find them in /proc/cmdline). */ static int __init unknown_bootoption(char *param, char *val, const char *unused, void *arg) { repair_env_string(param, val, unused, NULL); /* Handle obsolete-style parameters */ if (obsolete_checksetup(param)) return 0; /* Unused module parameter. */ if (strchr(param, '.') && (!val || strchr(param, '.') < val)) return 0; if (panic_later) return 0; if (val) { /* Environment option */ unsigned int i; for (i = 0; envp_init[i]; i++) { if (i == MAX_INIT_ENVS) { panic_later = "env"; panic_param = param; } if (!strncmp(param, envp_init[i], val - param)) break; } envp_init[i] = param; } else { /* Command line option */ unsigned int i; for (i = 0; argv_init[i]; i++) { if (i == MAX_INIT_ARGS) { panic_later = "init"; panic_param = param; } } argv_init[i] = param; } return 0; } static int __init init_setup(char *str) { unsigned int i; execute_command = str; /* * In case LILO is going to boot us with default command line, * it prepends "auto" before the whole cmdline which makes * the shell think it should execute a script with such name. * So we ignore all arguments entered _before_ init=... [MJ] */ for (i = 1; i < MAX_INIT_ARGS; i++) argv_init[i] = NULL; return 1; } __setup("init=", init_setup); static int __init rdinit_setup(char *str) { unsigned int i; ramdisk_execute_command = str; /* See "auto" comment in init_setup */ for (i = 1; i < MAX_INIT_ARGS; i++) argv_init[i] = NULL; return 1; } __setup("rdinit=", rdinit_setup); #ifndef CONFIG_SMP static const unsigned int setup_max_cpus = NR_CPUS; static inline void setup_nr_cpu_ids(void) { } static inline void smp_prepare_cpus(unsigned int maxcpus) { } #endif /* * We need to store the untouched command line for future reference. * We also need to store the touched command line since the parameter * parsing is performed in place, and we should allow a component to * store reference of name/value for future reference. */ static void __init setup_command_line(char *command_line) { saved_command_line = memblock_virt_alloc(strlen(boot_command_line) + 1, 0); initcall_command_line = memblock_virt_alloc(strlen(boot_command_line) + 1, 0); static_command_line = memblock_virt_alloc(strlen(command_line) + 1, 0); strcpy(saved_command_line, boot_command_line); strcpy(static_command_line, command_line); sec_debug_get_erased_command_line(); } /* * We need to finalize in a non-__init function or else race conditions * between the root thread and the init thread may cause start_kernel to * be reaped by free_initmem before the root thread has proceeded to * cpu_idle. * * gcc-3.4 accidentally inlines this function, so use noinline. */ static __initdata DECLARE_COMPLETION(kthreadd_done); static noinline void __ref rest_init(void) { struct task_struct *tsk; int pid; rcu_scheduler_starting(); /* * We need to spawn init first so that it obtains pid 1, however * the init task will end up wanting to create kthreads, which, if * we schedule it before we create kthreadd, will OOPS. */ pid = kernel_thread(kernel_init, NULL, CLONE_FS); /* * Pin init on the boot CPU. Task migration is not properly working * until sched_init_smp() has been run. It will set the allowed * CPUs for init to the non isolated CPUs. */ rcu_read_lock(); tsk = find_task_by_pid_ns(pid, &init_pid_ns); set_cpus_allowed_ptr(tsk, cpumask_of(smp_processor_id())); rcu_read_unlock(); numa_default_policy(); pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES); rcu_read_lock(); kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns); rcu_read_unlock(); /* * Enable might_sleep() and smp_processor_id() checks. * They cannot be enabled earlier because with CONFIG_PRREMPT=y * kernel_thread() would trigger might_sleep() splats. With * CONFIG_PREEMPT_VOLUNTARY=y the init task might have scheduled * already, but it's stuck on the kthreadd_done completion. */ system_state = SYSTEM_SCHEDULING; complete(&kthreadd_done); /* * The boot idle thread must execute schedule() * at least once to get things moving: */ schedule_preempt_disabled(); /* Call into cpu_idle with preempt disabled */ cpu_startup_entry(CPUHP_ONLINE); } #ifdef CONFIG_RKP_KDP int is_recovery __kdp_ro = 0; #endif /* Check for early params. */ static int __init do_early_param(char *param, char *val, const char *unused, void *arg) { const struct obs_kernel_param *p; for (p = __setup_start; p < __setup_end; p++) { if ((p->early && parameq(param, p->str)) || (strcmp(param, "console") == 0 && strcmp(p->str, "earlycon") == 0) ) { set_memsize_reserved_name(p->str); if (p->setup_func(val) != 0) pr_warn("Malformed early option '%s'\n", param); } } /* We accept everything at this stage. */ unset_memsize_reserved_name(); #ifdef CONFIG_RKP_KDP if ((strncmp(param, "bootmode", 9) == 0)) { //printk("\n RKP22 In Recovery Mode= %d\n",*val); if ((strncmp(val, "2", 2) == 0)) { is_recovery = 1; } } #endif return 0; } void __init parse_early_options(char *cmdline) { parse_args("early options", cmdline, NULL, 0, 0, 0, NULL, do_early_param); } /* Arch code calls this early on, or if not, just before other parsing. */ void __init parse_early_param(void) { static int done __initdata; static char tmp_cmdline[COMMAND_LINE_SIZE] __initdata; if (done) return; /* All fall through to do_early_param. */ strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE); parse_early_options(tmp_cmdline); done = 1; } void __init __weak arch_post_acpi_subsys_init(void) { } void __init __weak smp_setup_processor_id(void) { } # if THREAD_SIZE >= PAGE_SIZE void __init __weak thread_stack_cache_init(void) { } #endif void __init __weak mem_encrypt_init(void) { } /* Report memory auto-initialization states for this boot. */ static void __init report_meminit(void) { const char *stack; if (IS_ENABLED(CONFIG_INIT_STACK_ALL)) stack = "all"; else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) stack = "byref_all"; else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) stack = "byref"; else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) stack = "__user"; else stack = "off"; pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", want_init_on_free() ? "on" : "off"); if (want_init_on_free()) pr_info("mem auto-init: clearing system memory may take some time...\n"); } /* * Set up kernel memory allocators */ static void __init mm_init(void) { set_memsize_kernel_type(MEMSIZE_KERNEL_MM_INIT); /* * page_ext requires contiguous pages, * bigger than MAX_ORDER unless SPARSEMEM. */ page_ext_init_flatmem(); report_meminit(); mem_init(); set_memsize_kernel_type(MEMSIZE_KERNEL_STOP); kmem_cache_init(); pgtable_init(); vmalloc_init(); ioremap_huge_init(); /* Should be run before the first non-init thread is created */ init_espfix_bsp(); /* Should be run after espfix64 is set up. */ pti_init(); } #ifdef CONFIG_UH_RKP rkp_init_t rkp_init_data __rkp_ro = { .magic = RKP_INIT_MAGIC, .vmalloc_start = VMALLOC_START, .no_fimc_verify = 1, .fimc_phys_addr = 0, ._text = (u64)_text, ._etext = (u64)_etext, ._srodata = (u64)__start_rodata, ._erodata = (u64)__end_rodata, .large_memory = 0, }; u8 rkp_started __rkp_ro = 0; /* 0 initialized by c standard */ sparse_bitmap_for_kernel_t* rkp_s_bitmap_ro __rkp_ro = 0; sparse_bitmap_for_kernel_t* rkp_s_bitmap_dbl __rkp_ro = 0; sparse_bitmap_for_kernel_t* rkp_s_bitmap_buffer __rkp_ro = 0; static void __init rkp_init(void) { rkp_init_data.vmalloc_end = (u64)high_memory; rkp_init_data.init_mm_pgd = (u64)__pa(swapper_pg_dir); rkp_init_data.id_map_pgd = (u64)__pa(idmap_pg_dir); rkp_init_data.zero_pg_addr = (u64)__pa(empty_zero_page); #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 rkp_init_data.tramp_pgd = (u64)__pa(tramp_pg_dir); rkp_init_data.tramp_valias = (u64)TRAMP_VALIAS; #endif uh_call(UH_APP_RKP, RKP_GET_RO_BITMAP, (u64)&rkp_s_bitmap_ro, 0, 0, 0); uh_call(UH_APP_RKP, RKP_GET_DBL_BITMAP, (u64)&rkp_s_bitmap_dbl, 0, 0, 0); uh_call(UH_APP_RKP, RKP_START, (u64)&rkp_init_data, (u64)kimage_voffset, 0, (u64)memstart_addr); rkp_started = 1; } #endif #ifdef CONFIG_RKP_KDP #define VERITY_PARAM_LENGTH 20 static char verifiedbootstate[VERITY_PARAM_LENGTH]; int __check_verifiedboot __kdp_ro = 0; #ifdef CONFIG_SAMSUNG_PRODUCT_SHIP extern int ss_initialized __kdp_ro; #endif static int __init verifiedboot_state_setup(char *str) { strlcpy(verifiedbootstate, str, sizeof(verifiedbootstate)); if(!strncmp(verifiedbootstate, "orange", sizeof("orange"))) __check_verifiedboot = 1; return 0; } __setup("androidboot.verifiedbootstate=", verifiedboot_state_setup); void kdp_init(void) { kdp_init_t cred; cred.credSize = sizeof(struct cred); cred.sp_size = rkp_get_task_sec_size(); cred.pgd_mm = offsetof(struct mm_struct,pgd); cred.uid_cred = offsetof(struct cred,uid); cred.euid_cred = offsetof(struct cred,euid); cred.gid_cred = offsetof(struct cred,gid); cred.egid_cred = offsetof(struct cred,egid); cred.bp_pgd_cred = offsetof(struct cred,bp_pgd); cred.bp_task_cred = offsetof(struct cred,bp_task); cred.type_cred = offsetof(struct cred,type); cred.security_cred = offsetof(struct cred,security); cred.usage_cred = offsetof(struct cred,use_cnt); cred.cred_task = offsetof(struct task_struct,cred); cred.mm_task = offsetof(struct task_struct,mm); cred.pid_task = offsetof(struct task_struct,pid); cred.rp_task = offsetof(struct task_struct,real_parent); cred.comm_task = offsetof(struct task_struct,comm); cred.bp_cred_secptr = rkp_get_offset_bp_cred(); cred.verifiedbootstate = (u64)verifiedbootstate; #ifdef CONFIG_SAMSUNG_PRODUCT_SHIP cred.selinux.ss_initialized_va = (u64)&ss_initialized; #endif uh_call(UH_APP_RKP, RKP_KDP_X40, (u64)&cred, 0, 0, 0); } #endif /* CONFIG_RKP_KDP */ asmlinkage __visible void __init start_kernel(void) { char *command_line; char *after_dashes; set_memsize_kernel_type(MEMSIZE_KERNEL_OTHERS); set_task_stack_end_magic(&init_task); smp_setup_processor_id(); debug_objects_early_init(); cgroup_init_early(); local_irq_disable(); early_boot_irqs_disabled = true; /* * Interrupts are still disabled. Do necessary setups, then * enable them. */ boot_cpu_init(); page_address_init(); pr_notice("%s", linux_banner); setup_arch(&command_line); /* * Set up the the initial canary and entropy after arch * and after adding latent and command line entropy. */ add_latent_entropy(); add_device_randomness(command_line, strlen(command_line)); boot_init_stack_canary(); mm_init_cpumask(&init_mm); setup_command_line(command_line); setup_nr_cpu_ids(); setup_per_cpu_areas(); smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */ boot_cpu_hotplug_init(); build_all_zonelists(NULL); page_alloc_init(); pr_notice("Kernel command line: %s\n", !IS_ENABLED(CONFIG_SAMSUNG_PRODUCT_SHIP) ? boot_command_line : sec_debug_get_erased_command_line()); /* parameters may set static keys */ jump_label_init(); parse_early_param(); after_dashes = parse_args("Booting kernel", static_command_line, __start___param, __stop___param - __start___param, -1, -1, NULL, &unknown_bootoption); if (!IS_ERR_OR_NULL(after_dashes)) parse_args("Setting init args", after_dashes, NULL, 0, -1, -1, NULL, set_init_arg); /* * These use large bootmem allocations and must precede * kmem_cache_init() */ setup_log_buf(0); pidhash_init(); vfs_caches_init_early(); sort_main_extable(); trap_init(); mm_init(); #ifdef CONFIG_UH_RKP rkp_init(); #endif #ifdef CONFIG_RKP_KDP rkp_cred_enable = 1; #endif /*CONFIG_RKP_KDP*/ ftrace_init(); /* trace_printk can be enabled here */ early_trace_init(); /* * Set up the scheduler prior starting any interrupts (such as the * timer interrupt). Full topology setup happens at smp_init() * time - but meanwhile we still have a functioning scheduler. */ sched_init(); /* * Disable preemption - early bootup scheduling is extremely * fragile until we cpu_idle() for the first time. */ preempt_disable(); if (WARN(!irqs_disabled(), "Interrupts were enabled *very* early, fixing it\n")) local_irq_disable(); radix_tree_init(); /* * Allow workqueue creation and work item queueing/cancelling * early. Work item execution depends on kthreads and starts after * workqueue_init(). */ workqueue_init_early(); rcu_init(); /* Trace events are available after this */ trace_init(); context_tracking_init(); /* init some links before init_ISA_irqs() */ early_irq_init(); init_IRQ(); tick_init(); rcu_init_nohz(); init_timers(); hrtimers_init(); softirq_init(); timekeeping_init(); time_init(); sched_clock_postinit(); printk_safe_init(); perf_event_init(); profile_init(); call_function_init(); WARN(!irqs_disabled(), "Interrupts were enabled early\n"); early_boot_irqs_disabled = false; local_irq_enable(); kmem_cache_init_late(); /* * HACK ALERT! This is early. We're enabling the console before * we've done PCI setups etc, and console_init() must be aware of * this. But we do want output early, in case something goes wrong. */ console_init(); if (panic_later) panic("Too many boot %s vars at `%s'", panic_later, panic_param); lockdep_info(); /* * Need to run this when irqs are enabled, because it wants * to self-test [hard/soft]-irqs on/off lock inversion bugs * too: */ locking_selftest(); /* * This needs to be called before any devices perform DMA * operations that might use the SWIOTLB bounce buffers. It will * mark the bounce buffers as decrypted so that their usage will * not cause "plain-text" data to be decrypted when accessed. */ mem_encrypt_init(); #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) { pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n", page_to_pfn(virt_to_page((void *)initrd_start)), min_low_pfn); initrd_start = 0; } #endif kmemleak_init(); debug_objects_mem_init(); setup_per_cpu_pageset(); numa_policy_init(); if (late_time_init) late_time_init(); calibrate_delay(); pidmap_init(); anon_vma_init(); acpi_early_init(); #ifdef CONFIG_X86 if (efi_enabled(EFI_RUNTIME_SERVICES)) efi_enter_virtual_mode(); #endif thread_stack_cache_init(); #ifdef CONFIG_RKP_KDP if (rkp_cred_enable) kdp_init(); #endif /*CONFIG_RKP_KDP*/ cred_init(); fork_init(); proc_caches_init(); buffer_init(); key_init(); security_init(); dbg_late_init(); vfs_caches_init(); pagecache_init(); signals_init(); proc_root_init(); nsfs_init(); cpuset_init(); cgroup_init(); taskstats_init_early(); delayacct_init(); check_bugs(); acpi_subsystem_init(); arch_post_acpi_subsys_init(); sfi_init_late(); if (efi_enabled(EFI_RUNTIME_SERVICES)) { efi_free_boot_services(); } /* Do the rest non-__init'ed, we're now alive */ rest_init(); prevent_tail_call_optimization(); } /* Call all constructor functions linked into the kernel. */ static void __init do_ctors(void) { #ifdef CONFIG_CONSTRUCTORS ctor_fn_t *fn = (ctor_fn_t *) __ctors_start; for (; fn < (ctor_fn_t *) __ctors_end; fn++) (*fn)(); #endif } bool initcall_debug; core_param(initcall_debug, initcall_debug, bool, 0644); #ifdef CONFIG_KALLSYMS struct blacklist_entry { struct list_head next; char *buf; }; static __initdata_or_module LIST_HEAD(blacklisted_initcalls); static int __init initcall_blacklist(char *str) { char *str_entry; struct blacklist_entry *entry; /* str argument is a comma-separated list of functions */ do { str_entry = strsep(&str, ","); if (str_entry) { pr_debug("blacklisting initcall %s\n", str_entry); entry = alloc_bootmem(sizeof(*entry)); entry->buf = alloc_bootmem(strlen(str_entry) + 1); strcpy(entry->buf, str_entry); list_add(&entry->next, &blacklisted_initcalls); } } while (str_entry); return 0; } static bool __init_or_module initcall_blacklisted(initcall_t fn) { struct blacklist_entry *entry; char fn_name[KSYM_SYMBOL_LEN]; unsigned long addr; if (list_empty(&blacklisted_initcalls)) return false; addr = (unsigned long) dereference_function_descriptor(fn); sprint_symbol_no_offset(fn_name, addr); /* * fn will be "function_name [module_name]" where [module_name] is not * displayed for built-in init functions. Strip off the [module_name]. */ strreplace(fn_name, ' ', '\0'); list_for_each_entry(entry, &blacklisted_initcalls, next) { if (!strcmp(fn_name, entry->buf)) { pr_debug("initcall %s blacklisted\n", fn_name); return true; } } return false; } #else static int __init initcall_blacklist(char *str) { pr_warn("initcall_blacklist requires CONFIG_KALLSYMS\n"); return 0; } static bool __init_or_module initcall_blacklisted(initcall_t fn) { return false; } #endif __setup("initcall_blacklist=", initcall_blacklist); #ifdef CONFIG_SEC_BOOTSTAT static bool __init_or_module initcall_sec_debug = true; static int __init_or_module do_one_initcall_sec_debug(initcall_t fn) { ktime_t calltime, delta, rettime; unsigned long long duration; int ret; struct device_init_time_entry *entry; calltime = ktime_get(); ret = fn(); rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; if (duration > DEVICE_INIT_TIME_100MS) { entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->buf = kasprintf(GFP_KERNEL, "%pf", fn); if (!entry->buf) { return -ENOMEM; } entry->duration = duration; list_add(&entry->next, &device_init_time_list); printk(KERN_DEBUG "initcall %pF returned %d after %lld usecs\n", fn, ret, duration); } return ret; } #endif static int __init_or_module do_one_initcall_debug(initcall_t fn) { ktime_t calltime, delta, rettime; unsigned long long duration; int ret; printk(KERN_DEBUG "calling %pF @ %i\n", fn, task_pid_nr(current)); calltime = ktime_get(); ret = fn(); rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; printk(KERN_DEBUG "initcall %pF returned %d after %lld usecs\n", fn, ret, duration); return ret; } int __init_or_module do_one_initcall(initcall_t fn) { int count = preempt_count(); int ret; char msgbuf[64]; if (initcall_blacklisted(fn)) return -EPERM; if (initcall_debug) ret = do_one_initcall_debug(fn); #if defined(CONFIG_SEC_BSP) && (CONFIG_SEC_BOOTSTAT) else if (initcall_sec_debug) ret = do_one_initcall_sec_debug(fn); #endif else ret = fn(); msgbuf[0] = 0; if (preempt_count() != count) { sprintf(msgbuf, "preemption imbalance "); preempt_count_set(count); } if (irqs_disabled()) { strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf)); local_irq_enable(); } WARN(msgbuf[0], "initcall %pF returned with %s\n", fn, msgbuf); add_latent_entropy(); return ret; } extern initcall_t __initcall_start[]; extern initcall_t __initcall0_start[]; extern initcall_t __initcall1_start[]; extern initcall_t __initcall2_start[]; extern initcall_t __initcall3_start[]; extern initcall_t __initcall4_start[]; extern initcall_t __initcall5_start[]; extern initcall_t __initcall6_start[]; extern initcall_t __initcall7_start[]; extern initcall_t __initcall_end[]; static initcall_t *initcall_levels[] __initdata = { __initcall0_start, __initcall1_start, __initcall2_start, __initcall3_start, __initcall4_start, __initcall5_start, __initcall6_start, __initcall7_start, __initcall_end, }; /* Keep these in sync with initcalls in include/linux/init.h */ static char *initcall_level_names[] __initdata = { "early", "core", "postcore", "arch", "subsys", "fs", "device", "late", }; static void __init do_initcall_level(int level) { initcall_t *fn; strcpy(initcall_command_line, saved_command_line); parse_args(initcall_level_names[level], initcall_command_line, __start___param, __stop___param - __start___param, level, level, NULL, &repair_env_string); for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++) do_one_initcall(*fn); #ifdef CONFIG_SEC_BSP sec_bootstat_add_initcall(initcall_level_names[level]); #endif } static void __init do_initcalls(void) { int level; for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++) do_initcall_level(level); } /* * Ok, the machine is now initialized. None of the devices * have been touched yet, but the CPU subsystem is up and * running, and memory and process management works. * * Now we can finally start doing some real work.. */ static void __init do_basic_setup(void) { cpuset_init_smp(); shmem_init(); driver_init(); init_irq_proc(); do_ctors(); usermodehelper_enable(); do_initcalls(); } static void __init do_pre_smp_initcalls(void) { initcall_t *fn; for (fn = __initcall_start; fn < __initcall0_start; fn++) do_one_initcall(*fn); } /* * This function requests modules which should be loaded by default and is * called twice right after initrd is mounted and right before init is * exec'd. If such modules are on either initrd or rootfs, they will be * loaded before control is passed to userland. */ void __init load_default_modules(void) { load_default_elevator_module(); } static int run_init_process(const char *init_filename) { argv_init[0] = init_filename; return do_execve(getname_kernel(init_filename), (const char __user *const __user *)argv_init, (const char __user *const __user *)envp_init); } static int try_to_run_init_process(const char *init_filename) { int ret; ret = run_init_process(init_filename); if (ret && ret != -ENOENT) { pr_err("Starting init: %s exists but couldn't execute it (error %d)\n", init_filename, ret); } return ret; } static noinline void __init kernel_init_freeable(void); #if defined(CONFIG_STRICT_KERNEL_RWX) || defined(CONFIG_STRICT_MODULE_RWX) bool rodata_enabled __ro_after_init = true; static int __init set_debug_rodata(char *str) { return strtobool(str, &rodata_enabled); } __setup("rodata=", set_debug_rodata); #endif #ifdef CONFIG_STRICT_KERNEL_RWX static void mark_readonly(void) { if (rodata_enabled) { /* * load_module() results in W+X mappings, which are cleaned up * with call_rcu_sched(). Let's make sure that queued work is * flushed so that we don't hit false positives looking for * insecure pages which are W+X. */ rcu_barrier_sched(); mark_rodata_ro(); rodata_test(); } else pr_info("Kernel memory protection disabled.\n"); } #else static inline void mark_readonly(void) { pr_warn("This architecture does not have kernel memory protection.\n"); } #endif static int __ref kernel_init(void *unused) { int ret; #ifdef CONFIG_EARLY_SERVICES int status = 0; #endif kernel_init_freeable(); #ifdef CONFIG_SEC_GPIO_DVS /************************ Caution !!! ****************************/ /* This function must be located in appropriate INIT position * in accordance with the specification of each BB vendor. */ /************************ Caution !!! ****************************/ gpio_dvs_check_initgpio(); #endif /* need to finish all async __init code before freeing the memory */ async_synchronize_full(); #ifndef CONFIG_DEFERRED_INITCALLS ftrace_free_init_mem(); free_initmem(); #endif mark_readonly(); #ifndef CONFIG_DEFERRED_INITCALLS #ifdef CONFIG_UH_RKP rkp_deferred_init(); #endif #endif system_state = SYSTEM_RUNNING; numa_default_policy(); rcu_end_inkernel_boot(); place_marker("M - DRIVER Kernel Boot Done"); #ifdef CONFIG_EARLY_SERVICES status = get_early_services_status(); if (status) { struct kstat stat; /* Wait for early services SE policy load completion signal */ while (vfs_stat("/dev/sedone", &stat) != 0) ; } #endif if (ramdisk_execute_command) { ret = run_init_process(ramdisk_execute_command); if (!ret) { #ifdef CONFIG_DEFERRED_INITCALLS pr_err("DEFERRED init start by ramdisk(%s) %s(%d)\n", ramdisk_execute_command, __func__, __LINE__); schedule_work(&deferred_initcall_work); #endif return 0; } pr_err("Failed to execute %s (error %d)\n", ramdisk_execute_command, ret); } /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. */ if (execute_command) { ret = run_init_process(execute_command); if (!ret) { #ifdef CONFIG_DEFERRED_INITCALLS schedule_work(&deferred_initcall_work); #endif return 0; } panic("Requested init %s failed (error %d).", execute_command, ret); } if (!try_to_run_init_process("/sbin/init") || !try_to_run_init_process("/etc/init") || !try_to_run_init_process("/bin/init") || !try_to_run_init_process("/bin/sh")) return 0; panic("No working init found. Try passing init= option to kernel. " "See Linux Documentation/admin-guide/init.rst for guidance."); } static noinline void __init kernel_init_freeable(void) { /* * Wait until kthreadd is all set-up. */ wait_for_completion(&kthreadd_done); /* Now the scheduler is fully set up and can do blocking allocations */ gfp_allowed_mask = __GFP_BITS_MASK; /* * init can allocate pages on any node */ set_mems_allowed(node_states[N_MEMORY]); cad_pid = task_pid(current); smp_prepare_cpus(setup_max_cpus); workqueue_init(); init_mm_internals(); do_pre_smp_initcalls(); lockup_detector_init(); smp_init(); sched_init_smp(); page_alloc_init_late(); /* Initialize page ext after all struct pages are initialized. */ page_ext_init(); do_basic_setup(); /* Open the /dev/console on the rootfs, this should never fail */ if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0) pr_err("Warning: unable to open an initial console.\n"); (void) sys_dup(0); (void) sys_dup(0); /* * check if there is an early userspace init. If yes, let it do all * the work */ if (!ramdisk_execute_command) ramdisk_execute_command = "/init"; if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) { ramdisk_execute_command = NULL; prepare_namespace(); } launch_early_services(); /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. * * rootfs is available now, try loading the public keys * and default modules */ integrity_load_keys(); load_default_modules(); #ifdef CONFIG_SECURITY_DEFEX defex_load_rules(); #endif }