/* * Copyright (c) 2013-2020, Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #ifdef CONFIG_QCOM_BUS_SCALING #include #endif #include "ufshcd.h" #include "ufshcd-pltfrm.h" #include "unipro.h" #include "ufs-qcom.h" #include "ufshci.h" #include "ufs-qcom-debugfs.h" #include "ufs_quirks.h" #include "ufshcd-crypto-qti.h" #define MAX_PROP_SIZE 32 #define VDDP_REF_CLK_MIN_UV 1200000 #define VDDP_REF_CLK_MAX_UV 1200000 #define UFS_QCOM_DEFAULT_DBG_PRINT_EN \ (UFS_QCOM_DBG_PRINT_REGS_EN | UFS_QCOM_DBG_PRINT_TEST_BUS_EN) enum { TSTBUS_UAWM, TSTBUS_UARM, TSTBUS_TXUC, TSTBUS_RXUC, TSTBUS_DFC, TSTBUS_TRLUT, TSTBUS_TMRLUT, TSTBUS_OCSC, TSTBUS_UTP_HCI, TSTBUS_COMBINED, TSTBUS_WRAPPER, TSTBUS_UNIPRO, TSTBUS_MAX, }; static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS]; static int ufs_qcom_update_sec_cfg(struct ufs_hba *hba, bool restore_sec_cfg); static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host); static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba, u32 clk_1us_cycles, u32 clk_40ns_cycles); static void ufs_qcom_dump_regs(struct ufs_hba *hba, int offset, int len, char *prefix) { print_hex_dump(KERN_ERR, prefix, len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE, 16, 4, (void __force *)hba->mmio_base + offset, len * 4, false); } static void ufs_qcom_dump_regs_wrapper(struct ufs_hba *hba, int offset, int len, char *prefix, void *priv) { ufs_qcom_dump_regs(hba, offset, len, prefix); } static int ufs_qcom_get_connected_tx_lanes(struct ufs_hba *hba, u32 *tx_lanes) { int err = 0; err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), tx_lanes); if (err) dev_err(hba->dev, "%s: couldn't read PA_CONNECTEDTXDATALANES %d\n", __func__, err); return err; } static int ufs_qcom_host_clk_get(struct device *dev, const char *name, struct clk **clk_out) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (IS_ERR(clk)) err = PTR_ERR(clk); else *clk_out = clk; return err; } static int ufs_qcom_host_clk_enable(struct device *dev, const char *name, struct clk *clk) { int err = 0; err = clk_prepare_enable(clk); if (err) dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err); return err; } static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host) { if (!host->is_lane_clks_enabled) return; if (host->tx_l1_sync_clk) clk_disable_unprepare(host->tx_l1_sync_clk); clk_disable_unprepare(host->tx_l0_sync_clk); if (host->rx_l1_sync_clk) clk_disable_unprepare(host->rx_l1_sync_clk); clk_disable_unprepare(host->rx_l0_sync_clk); host->is_lane_clks_enabled = false; } static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host) { int err = 0; struct device *dev = host->hba->dev; if (host->is_lane_clks_enabled) return 0; err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk", host->rx_l0_sync_clk); if (err) goto out; err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk", host->tx_l0_sync_clk); if (err) goto disable_rx_l0; if (host->hba->lanes_per_direction > 1) { err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk", host->rx_l1_sync_clk); if (err) goto disable_tx_l0; /* The tx lane1 clk could be muxed, hence keep this optional */ if (host->tx_l1_sync_clk) ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk", host->tx_l1_sync_clk); } host->is_lane_clks_enabled = true; goto out; disable_tx_l0: clk_disable_unprepare(host->tx_l0_sync_clk); disable_rx_l0: clk_disable_unprepare(host->rx_l0_sync_clk); out: return err; } static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host) { int err = 0; struct device *dev = host->hba->dev; err = ufs_qcom_host_clk_get(dev, "rx_lane0_sync_clk", &host->rx_l0_sync_clk); if (err) { dev_err(dev, "%s: failed to get rx_lane0_sync_clk, err %d", __func__, err); goto out; } err = ufs_qcom_host_clk_get(dev, "tx_lane0_sync_clk", &host->tx_l0_sync_clk); if (err) { dev_err(dev, "%s: failed to get tx_lane0_sync_clk, err %d", __func__, err); goto out; } /* In case of single lane per direction, don't read lane1 clocks */ if (host->hba->lanes_per_direction > 1) { err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk", &host->rx_l1_sync_clk); if (err) { dev_err(dev, "%s: failed to get rx_lane1_sync_clk, err %d", __func__, err); goto out; } /* The tx lane1 clk could be muxed, hence keep this optional */ ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk", &host->tx_l1_sync_clk); } out: return err; } static int ufs_qcom_check_hibern8(struct ufs_hba *hba) { int err; u32 tx_fsm_val = 0; unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS); do { err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &tx_fsm_val); if (err || tx_fsm_val == TX_FSM_HIBERN8) break; /* sleep for max. 200us */ usleep_range(100, 200); } while (time_before(jiffies, timeout)); /* * we might have scheduled out for long during polling so * check the state again. */ if (time_after(jiffies, timeout)) err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &tx_fsm_val); if (err) { dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n", __func__, err); } else if (tx_fsm_val != TX_FSM_HIBERN8) { err = tx_fsm_val; dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n", __func__, err); } return err; } static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host) { ufshcd_rmwl(host->hba, QUNIPRO_SEL, ufs_qcom_cap_qunipro(host) ? QUNIPRO_SEL : 0, REG_UFS_CFG1); /* make sure above configuration is applied before we return */ mb(); } static int ufs_qcom_power_up_sequence(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int ret = 0; bool is_rate_B = (UFS_QCOM_LIMIT_HS_RATE == PA_HS_MODE_B) ? true : false; if (hba->reinit_g4_rate_A) is_rate_B = false; /* Assert PHY reset and apply PHY calibration values */ ufs_qcom_assert_reset(hba); /* provide 1ms delay to let the reset pulse propagate */ usleep_range(1000, 1100); ret = ufs_qcom_phy_calibrate_phy(phy, is_rate_B, hba->reinit_g4_rate_A); if (ret) { dev_err(hba->dev, "%s: ufs_qcom_phy_calibrate_phy() failed, ret = %d\n", __func__, ret); goto out; } /* De-assert PHY reset and start serdes */ ufs_qcom_deassert_reset(hba); /* * after reset deassertion, phy will need all ref clocks, * voltage, current to settle down before starting serdes. */ usleep_range(1000, 1100); ret = ufs_qcom_phy_start_serdes(phy); if (ret) { dev_err(hba->dev, "%s: ufs_qcom_phy_start_serdes() failed, ret = %d\n", __func__, ret); goto out; } ret = ufs_qcom_phy_is_pcs_ready(phy); if (ret) dev_err(hba->dev, "%s: is_physical_coding_sublayer_ready() failed, ret = %d\n", __func__, ret); ufs_qcom_select_unipro_mode(host); out: return ret; } /* * The UTP controller has a number of internal clock gating cells (CGCs). * Internal hardware sub-modules within the UTP controller control the CGCs. * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved * in a specific operation, UTP controller CGCs are by default disabled and * this function enables them (after every UFS link startup) to save some power * leakage. * * UFS host controller v3.0.0 onwards has internal clock gating mechanism * in Qunipro, enable them to save additional power. */ static int ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; /* Enable UTP internal clock gating */ ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2); /* Ensure that HW clock gating is enabled before next operations */ mb(); /* Enable Qunipro internal clock gating if supported */ if (!ufs_qcom_cap_qunipro_clk_gating(host)) goto out; /* Enable all the mask bits */ err = ufshcd_dme_rmw(hba, DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG); if (err) goto out; err = ufshcd_dme_rmw(hba, PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG); if (err) goto out; if (!((host->hw_ver.major == 4) && (host->hw_ver.minor == 0) && (host->hw_ver.step == 0))) { err = ufshcd_dme_rmw(hba, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN, DME_VS_CORE_CLK_CTRL); } else { dev_err(hba->dev, "%s: skipping DME_HW_CGC_EN set\n", __func__); } out: return err; } static void ufs_qcom_force_mem_config(struct ufs_hba *hba) { struct ufs_clk_info *clki; /* * Configure the behavior of ufs clocks core and peripheral * memory state when they are turned off. * This configuration is required to allow retaining * ICE crypto configuration (including keys) when * core_clk_ice is turned off, and powering down * non-ICE RAMs of host controller. */ list_for_each_entry(clki, &hba->clk_list_head, list) { if (!strcmp(clki->name, "core_clk_ice")) clk_set_flags(clki->clk, CLKFLAG_RETAIN_MEM); else clk_set_flags(clki->clk, CLKFLAG_NORETAIN_MEM); clk_set_flags(clki->clk, CLKFLAG_NORETAIN_PERIPH); clk_set_flags(clki->clk, CLKFLAG_PERIPH_OFF_CLEAR); } } static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; switch (status) { case PRE_CHANGE: ufs_qcom_force_mem_config(hba); ufs_qcom_power_up_sequence(hba); /* * The PHY PLL output is the source of tx/rx lane symbol * clocks, hence, enable the lane clocks only after PHY * is initialized. */ err = ufs_qcom_enable_lane_clks(host); break; case POST_CHANGE: /* check if UFS PHY moved from DISABLED to HIBERN8 */ err = ufs_qcom_check_hibern8(hba); break; default: dev_err(hba->dev, "%s: invalid status %d\n", __func__, status); err = -EINVAL; break; } return err; } /** * Returns zero for success and non-zero in case of a failure */ static int __ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear, u32 hs, u32 rate, bool update_link_startup_timer, bool is_pre_scale_up) { int ret = 0; struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_clk_info *clki; u32 core_clk_period_in_ns; u32 tx_clk_cycles_per_us = 0; unsigned long core_clk_rate = 0; u32 core_clk_cycles_per_us = 0; static u32 pwm_fr_table[][2] = { {UFS_PWM_G1, 0x1}, {UFS_PWM_G2, 0x1}, {UFS_PWM_G3, 0x1}, {UFS_PWM_G4, 0x1}, }; static u32 hs_fr_table_rA[][2] = { {UFS_HS_G1, 0x1F}, {UFS_HS_G2, 0x3e}, {UFS_HS_G3, 0x7D}, }; static u32 hs_fr_table_rB[][2] = { {UFS_HS_G1, 0x24}, {UFS_HS_G2, 0x49}, {UFS_HS_G3, 0x92}, }; /* * The Qunipro controller does not use following registers: * SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG & * UFS_REG_PA_LINK_STARTUP_TIMER * But UTP controller uses SYS1CLK_1US_REG register for Interrupt * Aggregation / Auto hibern8 logic. * It is mandatory to write SYS1CLK_1US_REG register on UFS host * controller V4.0.0 onwards. */ if (ufs_qcom_cap_qunipro(host) && (!(ufshcd_is_intr_aggr_allowed(hba) || ufshcd_is_auto_hibern8_supported(hba) || host->hw_ver.major >= 4))) goto out; if (gear == 0) { dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear); goto out_error; } list_for_each_entry(clki, &hba->clk_list_head, list) { if (!strcmp(clki->name, "core_clk")) { if (is_pre_scale_up) core_clk_rate = clki->max_freq; else core_clk_rate = clk_get_rate(clki->clk); } } /* If frequency is smaller than 1MHz, set to 1MHz */ if (core_clk_rate < DEFAULT_CLK_RATE_HZ) core_clk_rate = DEFAULT_CLK_RATE_HZ; core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC; if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) { ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US); /* * make sure above write gets applied before we return from * this function. */ mb(); } if (ufs_qcom_cap_qunipro(host)) goto out; core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate; core_clk_period_in_ns <<= OFFSET_CLK_NS_REG; core_clk_period_in_ns &= MASK_CLK_NS_REG; switch (hs) { case FASTAUTO_MODE: case FAST_MODE: if (rate == PA_HS_MODE_A) { if (gear > ARRAY_SIZE(hs_fr_table_rA)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rA)); goto out_error; } tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1]; } else if (rate == PA_HS_MODE_B) { if (gear > ARRAY_SIZE(hs_fr_table_rB)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rB)); goto out_error; } tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1]; } else { dev_err(hba->dev, "%s: invalid rate = %d\n", __func__, rate); goto out_error; } break; case SLOWAUTO_MODE: case SLOW_MODE: if (gear > ARRAY_SIZE(pwm_fr_table)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(pwm_fr_table)); goto out_error; } tx_clk_cycles_per_us = pwm_fr_table[gear-1][1]; break; case UNCHANGED: default: dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs); goto out_error; } if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) != (core_clk_period_in_ns | tx_clk_cycles_per_us)) { /* this register 2 fields shall be written at once */ ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us, REG_UFS_TX_SYMBOL_CLK_NS_US); /* * make sure above write gets applied before we return from * this function. */ mb(); } if (update_link_startup_timer) { ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100), REG_UFS_PA_LINK_STARTUP_TIMER); /* * make sure that this configuration is applied before * we return */ mb(); } goto out; out_error: ret = -EINVAL; out: return ret; } static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear, u32 hs, u32 rate, bool update_link_startup_timer) { return __ufs_qcom_cfg_timers(hba, gear, hs, rate, update_link_startup_timer, false); } static int ufs_qcom_set_dme_vs_core_clk_ctrl_max_freq_mode(struct ufs_hba *hba) { struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; u32 max_freq = 0; int err = 0; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk) && (!strcmp(clki->name, "core_clk_unipro"))) { max_freq = clki->max_freq; break; } } switch (max_freq) { case 300000000: err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 300, 12); break; case 150000000: err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150, 6); break; default: err = -EINVAL; break; } return err; } static int ufs_qcom_link_startup_pre_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; u32 unipro_ver; int err = 0; if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE, 0, true)) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); err = -EINVAL; goto out; } /* make sure RX LineCfg is enabled before link startup */ err = ufs_qcom_phy_ctrl_rx_linecfg(phy, true); if (err) goto out; if (ufs_qcom_cap_qunipro(host)) { err = ufs_qcom_set_dme_vs_core_clk_ctrl_max_freq_mode(hba); if (err) goto out; } err = ufs_qcom_enable_hw_clk_gating(hba); if (err) goto out; /* * Some UFS devices (and may be host) have issues if LCC is * enabled. So we are setting PA_Local_TX_LCC_Enable to 0 * before link startup which will make sure that both host * and device TX LCC are disabled once link startup is * completed. */ unipro_ver = ufshcd_get_local_unipro_ver(hba); if (unipro_ver != UFS_UNIPRO_VER_1_41) err = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0); if (err) goto out; if (!ufs_qcom_cap_qunipro_clk_gating(host)) goto out; /* Enable all the mask bits */ err = ufshcd_dme_rmw(hba, SAVECONFIGTIME_MODE_MASK, SAVECONFIGTIME_MODE_MASK, PA_VS_CONFIG_REG1); out: return err; } static int ufs_qcom_link_startup_post_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; u32 tx_lanes; int err = 0; err = ufs_qcom_get_connected_tx_lanes(hba, &tx_lanes); if (err) goto out; err = ufs_qcom_phy_set_tx_lane_enable(phy, tx_lanes); if (err) { dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable failed\n", __func__); goto out; } /* * Some UFS devices send incorrect LineCfg data as part of power mode * change sequence which may cause host PHY to go into bad state. * Disabling Rx LineCfg of host PHY should help avoid this. */ if (ufshcd_get_local_unipro_ver(hba) == UFS_UNIPRO_VER_1_41) err = ufs_qcom_phy_ctrl_rx_linecfg(phy, false); if (err) { dev_err(hba->dev, "%s: ufs_qcom_phy_ctrl_rx_linecfg failed\n", __func__); goto out; } /* * UFS controller has *clk_req output to GCC, for each one if the clocks * entering it. When *clk_req for a specific clock is de-asserted, * a corresponding clock from GCC is stopped. UFS controller de-asserts * *clk_req outputs when it is in Auto Hibernate state only if the * Clock request feature is enabled. * Enable the Clock request feature: * - Enable HW clock control for UFS clocks in GCC (handled by the * clock driver as part of clk_prepare_enable). * - Set the AH8_CFG.*CLK_REQ register bits to 1. */ if (ufshcd_is_auto_hibern8_supported(hba)) ufshcd_writel(hba, ufshcd_readl(hba, UFS_AH8_CFG) | UFS_HW_CLK_CTRL_EN, UFS_AH8_CFG); /* * Make sure clock request feature gets enabled for HW clk gating * before further operations. */ mb(); out: return err; } static int ufs_qcom_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { int err = 0; switch (status) { case PRE_CHANGE: err = ufs_qcom_link_startup_pre_change(hba); break; case POST_CHANGE: err = ufs_qcom_link_startup_post_change(hba); break; default: break; } return err; } static int ufs_qcom_config_vreg(struct device *dev, struct ufs_vreg *vreg, bool on) { int ret = 0; struct regulator *reg; int min_uV, uA_load; if (!vreg) { WARN_ON(1); ret = -EINVAL; goto out; } reg = vreg->reg; if (regulator_count_voltages(reg) > 0) { uA_load = on ? vreg->max_uA : 0; ret = regulator_set_load(vreg->reg, uA_load); if (ret) goto out; if (vreg->min_uV && vreg->max_uV) { min_uV = on ? vreg->min_uV : 0; ret = regulator_set_voltage(reg, min_uV, vreg->max_uV); if (ret) { dev_err(dev, "%s: %s failed, err=%d\n", __func__, vreg->name, ret); goto out; } } } out: return ret; } static int ufs_qcom_enable_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (vreg->enabled) return ret; ret = ufs_qcom_config_vreg(dev, vreg, true); if (ret) goto out; ret = regulator_enable(vreg->reg); if (ret) goto out; vreg->enabled = true; out: return ret; } static int ufs_qcom_disable_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (!vreg->enabled) return ret; ret = regulator_disable(vreg->reg); if (ret) goto out; ret = ufs_qcom_config_vreg(dev, vreg, false); if (ret) goto out; vreg->enabled = false; out: return ret; } static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int ret = 0; /* * If UniPro link is not active or OFF, PHY ref_clk, main PHY analog * power rail and low noise analog power rail for PLL can be * switched off. */ if (!ufs_qcom_is_link_active(hba)) { ufs_qcom_disable_lane_clks(host); phy_power_off(phy); if (host->vddp_ref_clk && ufs_qcom_is_link_off(hba)) ret = ufs_qcom_disable_vreg(hba->dev, host->vddp_ref_clk); if (host->vccq_parent && !hba->auto_bkops_enabled) ufs_qcom_config_vreg(hba->dev, host->vccq_parent, false); if (ufs_qcom_is_link_off(hba)) { /* Assert PHY soft reset */ ufs_qcom_assert_reset(hba); goto out; } } out: return ret; } static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int err; err = phy_power_on(phy); if (err) { dev_err(hba->dev, "%s: failed enabling regs, err = %d\n", __func__, err); goto out; } if (host->vddp_ref_clk && (hba->rpm_lvl > UFS_PM_LVL_3 || hba->spm_lvl > UFS_PM_LVL_3)) ufs_qcom_enable_vreg(hba->dev, host->vddp_ref_clk); if (host->vccq_parent) ufs_qcom_config_vreg(hba->dev, host->vccq_parent, true); err = ufs_qcom_enable_lane_clks(host); if (err) goto out; hba->is_sys_suspended = false; out: return err; } static int ufs_qcom_full_reset(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int ret = -ENOTSUPP; host->hw_reset_count++; host->last_hw_reset = (unsigned long)ktime_to_us(ktime_get()); host->hw_reset_saved_err = hba->saved_err; host->hw_reset_saved_uic_err = hba->saved_uic_err; host->hw_reset_outstanding_tasks = hba->outstanding_tasks; host->hw_reset_outstanding_reqs = hba->outstanding_reqs; memcpy(&host->hw_reset_ufs_stats, &hba->ufs_stats, sizeof(struct ufs_stats)); if (!hba->core_reset) { dev_err(hba->dev, "%s: failed, err = %d\n", __func__, ret); goto out; } ret = reset_control_assert(hba->core_reset); if (ret) { dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n", __func__, ret); goto out; } /* * The hardware requirement for delay between assert/deassert * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to * ~125us (4/32768). To be on the safe side add 200us delay. */ usleep_range(200, 210); ret = reset_control_deassert(hba->core_reset); if (ret) dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n", __func__, ret); out: return ret; } struct ufs_qcom_dev_params { u32 pwm_rx_gear; /* pwm rx gear to work in */ u32 pwm_tx_gear; /* pwm tx gear to work in */ u32 hs_rx_gear; /* hs rx gear to work in */ u32 hs_tx_gear; /* hs tx gear to work in */ u32 rx_lanes; /* number of rx lanes */ u32 tx_lanes; /* number of tx lanes */ u32 rx_pwr_pwm; /* rx pwm working pwr */ u32 tx_pwr_pwm; /* tx pwm working pwr */ u32 rx_pwr_hs; /* rx hs working pwr */ u32 tx_pwr_hs; /* tx hs working pwr */ u32 hs_rate; /* rate A/B to work in HS */ u32 desired_working_mode; }; static int ufs_qcom_get_pwr_dev_param(struct ufs_qcom_dev_params *qcom_param, struct ufs_pa_layer_attr *dev_max, struct ufs_pa_layer_attr *agreed_pwr) { int min_qcom_gear; int min_dev_gear; bool is_dev_sup_hs = false; bool is_qcom_max_hs = false; if (dev_max->pwr_rx == FAST_MODE) is_dev_sup_hs = true; if (qcom_param->desired_working_mode == FAST) { is_qcom_max_hs = true; min_qcom_gear = min_t(u32, qcom_param->hs_rx_gear, qcom_param->hs_tx_gear); } else { min_qcom_gear = min_t(u32, qcom_param->pwm_rx_gear, qcom_param->pwm_tx_gear); } /* * device doesn't support HS but qcom_param->desired_working_mode is * HS, thus device and qcom_param don't agree */ if (!is_dev_sup_hs && is_qcom_max_hs) { pr_err("%s: failed to agree on power mode (device doesn't support HS but requested power is HS)\n", __func__); return -ENOTSUPP; } else if (is_dev_sup_hs && is_qcom_max_hs) { /* * since device supports HS, it supports FAST_MODE. * since qcom_param->desired_working_mode is also HS * then final decision (FAST/FASTAUTO) is done according * to qcom_params as it is the restricting factor */ agreed_pwr->pwr_rx = agreed_pwr->pwr_tx = qcom_param->rx_pwr_hs; } else { /* * here qcom_param->desired_working_mode is PWM. * it doesn't matter whether device supports HS or PWM, * in both cases qcom_param->desired_working_mode will * determine the mode */ agreed_pwr->pwr_rx = agreed_pwr->pwr_tx = qcom_param->rx_pwr_pwm; } /* * we would like tx to work in the minimum number of lanes * between device capability and vendor preferences. * the same decision will be made for rx */ agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx, qcom_param->tx_lanes); agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx, qcom_param->rx_lanes); /* device maximum gear is the minimum between device rx and tx gears */ min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx); /* * if both device capabilities and vendor pre-defined preferences are * both HS or both PWM then set the minimum gear to be the chosen * working gear. * if one is PWM and one is HS then the one that is PWM get to decide * what is the gear, as it is the one that also decided previously what * pwr the device will be configured to. */ if ((is_dev_sup_hs && is_qcom_max_hs) || (!is_dev_sup_hs && !is_qcom_max_hs)) agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_t(u32, min_dev_gear, min_qcom_gear); else if (!is_dev_sup_hs) agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_dev_gear; else agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_qcom_gear; agreed_pwr->hs_rate = qcom_param->hs_rate; return 0; } #ifdef CONFIG_QCOM_BUS_SCALING static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host, const char *speed_mode) { struct device *dev = host->hba->dev; struct device_node *np = dev->of_node; int err; const char *key = "qcom,bus-vector-names"; if (!speed_mode) { err = -EINVAL; goto out; } if (host->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN")) err = of_property_match_string(np, key, "MAX"); else err = of_property_match_string(np, key, speed_mode); out: if (err < 0) dev_err(dev, "%s: Invalid %s mode %d\n", __func__, speed_mode, err); return err; } static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result) { int gear = max_t(u32, p->gear_rx, p->gear_tx); int lanes = max_t(u32, p->lane_rx, p->lane_tx); int pwr; /* default to PWM Gear 1, Lane 1 if power mode is not initialized */ if (!gear) gear = 1; if (!lanes) lanes = 1; if (!p->pwr_rx && !p->pwr_tx) { pwr = SLOWAUTO_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "MIN"); } else if (p->pwr_rx == FAST_MODE || p->pwr_rx == FASTAUTO_MODE || p->pwr_tx == FAST_MODE || p->pwr_tx == FASTAUTO_MODE) { pwr = FAST_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "%s_R%s_G%d_L%d", "HS", p->hs_rate == PA_HS_MODE_B ? "B" : "A", gear, lanes); } else { pwr = SLOW_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "%s_G%d_L%d", "PWM", gear, lanes); } } static int __ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote) { int err = 0; if (vote != host->bus_vote.curr_vote) { err = msm_bus_scale_client_update_request( host->bus_vote.client_handle, vote); if (err) { dev_err(host->hba->dev, "%s: msm_bus_scale_client_update_request() failed: bus_client_handle=0x%x, vote=%d, err=%d\n", __func__, host->bus_vote.client_handle, vote, err); goto out; } host->bus_vote.curr_vote = vote; } out: return err; } static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host) { int vote; int err = 0; char mode[BUS_VECTOR_NAME_LEN]; ufs_qcom_get_speed_mode(&host->dev_req_params, mode); vote = ufs_qcom_get_bus_vote(host, mode); if (vote >= 0) err = __ufs_qcom_set_bus_vote(host, vote); else err = vote; if (err) dev_err(host->hba->dev, "%s: failed %d\n", __func__, err); else host->bus_vote.saved_vote = vote; return err; } static int ufs_qcom_set_bus_vote(struct ufs_hba *hba, bool on) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int vote, err; /* * In case ufs_qcom_init() is not yet done, simply ignore. * This ufs_qcom_set_bus_vote() shall be called from * ufs_qcom_init() after init is done. */ if (!host) return 0; if (on) { vote = host->bus_vote.saved_vote; if (vote == host->bus_vote.min_bw_vote) ufs_qcom_update_bus_bw_vote(host); } else { vote = host->bus_vote.min_bw_vote; } err = __ufs_qcom_set_bus_vote(host, vote); if (err) dev_err(hba->dev, "%s: set bus vote failed %d\n", __func__, err); return err; } static ssize_t show_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_qcom_host *host = ufshcd_get_variant(hba); return snprintf(buf, PAGE_SIZE, "%u\n", host->bus_vote.is_max_bw_needed); } static ssize_t store_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_qcom_host *host = ufshcd_get_variant(hba); uint32_t value; if (!kstrtou32(buf, 0, &value)) { host->bus_vote.is_max_bw_needed = !!value; ufs_qcom_update_bus_bw_vote(host); } return count; } static int ufs_qcom_bus_register(struct ufs_qcom_host *host) { int err; struct msm_bus_scale_pdata *bus_pdata; struct device *dev = host->hba->dev; struct platform_device *pdev = to_platform_device(dev); struct device_node *np = dev->of_node; bus_pdata = msm_bus_cl_get_pdata(pdev); if (!bus_pdata) { dev_err(dev, "%s: failed to get bus vectors\n", __func__); err = -ENODATA; goto out; } err = of_property_count_strings(np, "qcom,bus-vector-names"); if (err < 0 || err != bus_pdata->num_usecases) { dev_err(dev, "%s: qcom,bus-vector-names not specified correctly %d\n", __func__, err); goto out; } host->bus_vote.client_handle = msm_bus_scale_register_client(bus_pdata); if (!host->bus_vote.client_handle) { dev_err(dev, "%s: msm_bus_scale_register_client failed\n", __func__); err = -EFAULT; goto out; } /* cache the vote index for minimum and maximum bandwidth */ host->bus_vote.min_bw_vote = ufs_qcom_get_bus_vote(host, "MIN"); host->bus_vote.max_bw_vote = ufs_qcom_get_bus_vote(host, "MAX"); host->bus_vote.max_bus_bw.show = show_ufs_to_mem_max_bus_bw; host->bus_vote.max_bus_bw.store = store_ufs_to_mem_max_bus_bw; sysfs_attr_init(&host->bus_vote.max_bus_bw.attr); host->bus_vote.max_bus_bw.attr.name = "max_bus_bw"; host->bus_vote.max_bus_bw.attr.mode = 0644; err = device_create_file(dev, &host->bus_vote.max_bus_bw); out: return err; } #else /* CONFIG_QCOM_BUS_SCALING */ static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host) { return 0; } static int ufs_qcom_set_bus_vote(struct ufs_hba *host, bool on) { return 0; } static int ufs_qcom_bus_register(struct ufs_qcom_host *host) { return 0; } static inline void msm_bus_scale_unregister_client(uint32_t cl) { } #endif /* CONFIG_QCOM_BUS_SCALING */ static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable) { if (host->dev_ref_clk_ctrl_mmio && (enable ^ host->is_dev_ref_clk_enabled)) { u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio); if (enable) temp |= host->dev_ref_clk_en_mask; else temp &= ~host->dev_ref_clk_en_mask; /* * If we are here to disable this clock it might be immediately * after entering into hibern8 in which case we need to make * sure that device ref_clk is active for a given time after the * hibern8 enter for pre UFS3.0 devices */ if (!enable) udelay(host->hba->dev_ref_clk_gating_wait); writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio); /* ensure that ref_clk is enabled/disabled before we return */ wmb(); /* * If we call hibern8 exit after this, we need to make sure that * device ref_clk is stable for a given time before the hibern8 * exit command. */ if (enable) { if (host->hba->dev_info.quirks & UFS_DEVICE_QUIRK_WAIT_AFTER_REF_CLK_UNGATE) usleep_range(50, 60); else udelay(1); } host->is_dev_ref_clk_enabled = enable; } } static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status status, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { u32 val; struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; struct ufs_qcom_dev_params ufs_qcom_cap; int ret = 0; int res = 0; if (!dev_req_params) { pr_err("%s: incoming dev_req_params is NULL\n", __func__); ret = -EINVAL; goto out; } switch (status) { case PRE_CHANGE: ufs_qcom_cap.tx_lanes = UFS_QCOM_LIMIT_NUM_LANES_TX; ufs_qcom_cap.rx_lanes = UFS_QCOM_LIMIT_NUM_LANES_RX; ufs_qcom_cap.hs_rx_gear = UFS_QCOM_LIMIT_HSGEAR_RX; ufs_qcom_cap.hs_tx_gear = UFS_QCOM_LIMIT_HSGEAR_TX; ufs_qcom_cap.pwm_rx_gear = UFS_QCOM_LIMIT_PWMGEAR_RX; ufs_qcom_cap.pwm_tx_gear = UFS_QCOM_LIMIT_PWMGEAR_TX; ufs_qcom_cap.rx_pwr_pwm = UFS_QCOM_LIMIT_RX_PWR_PWM; ufs_qcom_cap.tx_pwr_pwm = UFS_QCOM_LIMIT_TX_PWR_PWM; ufs_qcom_cap.rx_pwr_hs = UFS_QCOM_LIMIT_RX_PWR_HS; ufs_qcom_cap.tx_pwr_hs = UFS_QCOM_LIMIT_TX_PWR_HS; if (hba->reinit_g4_rate_A) ufs_qcom_cap.hs_rate = PA_HS_MODE_A; else ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE; ufs_qcom_cap.desired_working_mode = UFS_QCOM_LIMIT_DESIRED_MODE; if (host->hw_ver.major == 0x1) { /* * HS-G3 operations may not reliably work on legacy QCOM * UFS host controller hardware even though capability * exchange during link startup phase may end up * negotiating maximum supported gear as G3. * Hence downgrade the maximum supported gear to HS-G2. */ if (ufs_qcom_cap.hs_tx_gear > UFS_HS_G2) ufs_qcom_cap.hs_tx_gear = UFS_HS_G2; if (ufs_qcom_cap.hs_rx_gear > UFS_HS_G2) ufs_qcom_cap.hs_rx_gear = UFS_HS_G2; } ret = ufs_qcom_get_pwr_dev_param(&ufs_qcom_cap, dev_max_params, dev_req_params); if (ret) { pr_err("%s: failed to determine capabilities\n", __func__); goto out; } /* enable the device ref clock before changing to HS mode */ if (!ufshcd_is_hs_mode(&hba->pwr_info) && ufshcd_is_hs_mode(dev_req_params)) ufs_qcom_dev_ref_clk_ctrl(host, true); break; case POST_CHANGE: if (ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx, dev_req_params->pwr_rx, dev_req_params->hs_rate, false)) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); /* * we return error code at the end of the routine, * but continue to configure UFS_PHY_TX_LANE_ENABLE * and bus voting as usual */ ret = -EINVAL; } val = ~(MAX_U32 << dev_req_params->lane_tx); res = ufs_qcom_phy_set_tx_lane_enable(phy, val); if (res) { dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable() failed res = %d\n", __func__, res); ret = res; } /* cache the power mode parameters to use internally */ memcpy(&host->dev_req_params, dev_req_params, sizeof(*dev_req_params)); ufs_qcom_update_bus_bw_vote(host); /* disable the device ref clock if entered PWM mode */ if (ufshcd_is_hs_mode(&hba->pwr_info) && !ufshcd_is_hs_mode(dev_req_params)) ufs_qcom_dev_ref_clk_ctrl(host, false); break; default: ret = -EINVAL; break; } out: return ret; } static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba) { int err; u32 pa_vs_config_reg1; err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), &pa_vs_config_reg1); if (err) goto out; /* Allow extension of MSB bits of PA_SaveConfigTime attribute */ err = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), (pa_vs_config_reg1 | (1 << 12))); out: return err; } static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba) { int err = 0; if (hba->dev_info.quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME) err = ufs_qcom_quirk_host_pa_saveconfigtime(hba); return err; } static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x1) return UFSHCI_VERSION_11; else return UFSHCI_VERSION_20; } /** * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks * @hba: host controller instance * * QCOM UFS host controller might have some non standard behaviours (quirks) * than what is specified by UFSHCI specification. Advertise all such * quirks to standard UFS host controller driver so standard takes them into * account. */ static void ufs_qcom_advertise_quirks(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x1) { hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE; if (host->hw_ver.minor == 0x001 && host->hw_ver.step == 0x0001) hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR; hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC; } if (host->hw_ver.major == 0x2) { hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION; if (!ufs_qcom_cap_qunipro(host)) /* Legacy UniPro mode still need following quirks */ hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP); } if (host->disable_lpm) hba->quirks |= UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8; /* * Inline crypto is currently broken with ufs-qcom at least because the * device tree doesn't include the crypto registers. There are likely * to be other issues that will need to be addressed too. */ //hba->quirks |= UFSHCD_QUIRK_BROKEN_CRYPTO; } static void ufs_qcom_set_caps(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (!host->disable_lpm) { hba->caps |= UFSHCD_CAP_CLK_GATING; hba->caps |= UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; } hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND; if (host->hw_ver.major >= 0x2) { if (!host->disable_lpm) hba->caps |= UFSHCD_CAP_POWER_COLLAPSE_DURING_HIBERN8; host->caps = UFS_QCOM_CAP_QUNIPRO | UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE; } if (host->hw_ver.major >= 0x3) { host->caps |= UFS_QCOM_CAP_QUNIPRO_CLK_GATING; /* * The UFS PHY attached to v3.0.0 controller supports entering * deeper low power state of SVS2. This lets the controller * run at much lower clock frequencies for saving power. * Assuming this and any future revisions of the controller * support this capability. Need to revist this assumption if * any future platform with this core doesn't support the * capability, as there will be no benefit running at lower * frequencies then. */ host->caps |= UFS_QCOM_CAP_SVS2; } } /** * ufs_qcom_setup_clocks - enables/disable clocks * @hba: host controller instance * @on: If true, enable clocks else disable them. * @status: PRE_CHANGE or POST_CHANGE notify * * Returns 0 on success, non-zero on failure. */ static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); /* * In case ufs_qcom_init() is not yet done, simply ignore. * This ufs_qcom_setup_clocks() shall be called from * ufs_qcom_init() after init is done. */ if (!host) return 0; if (on && (status == POST_CHANGE)) { phy_power_on(host->generic_phy); /* enable the device ref clock for HS mode*/ if (ufshcd_is_hs_mode(&hba->pwr_info)) ufs_qcom_dev_ref_clk_ctrl(host, true); } else if (!on && (status == PRE_CHANGE)) { /* * If auto hibern8 is supported then the link will already * be in hibern8 state and the ref clock can be gated. */ if ((ufshcd_is_auto_hibern8_supported(hba) && hba->hibern8_on_idle.is_enabled) || !ufs_qcom_is_link_active(hba)) { /* disable device ref_clk */ ufs_qcom_dev_ref_clk_ctrl(host, false); /* powering off PHY during aggressive clk gating */ phy_power_off(host->generic_phy); } } return 0; } #define ANDROID_BOOT_DEV_MAX 30 static char android_boot_dev[ANDROID_BOOT_DEV_MAX]; #ifndef MODULE static int __init get_android_boot_dev(char *str) { strlcpy(android_boot_dev, str, ANDROID_BOOT_DEV_MAX); return 1; } __setup("androidboot.bootdevice=", get_android_boot_dev); #endif /* * ufs_qcom_parse_lpm - read from DTS whether LPM modes should be disabled. */ static void ufs_qcom_parse_lpm(struct ufs_qcom_host *host) { struct device_node *node = host->hba->dev->of_node; host->disable_lpm = of_property_read_bool(node, "qcom,disable-lpm"); if (host->disable_lpm) pr_info("%s: will disable all LPM modes\n", __func__); } static int ufs_qcom_parse_reg_info(struct ufs_qcom_host *host, char *name, struct ufs_vreg **out_vreg) { int ret = 0; char prop_name[MAX_PROP_SIZE]; struct ufs_vreg *vreg = NULL; struct device *dev = host->hba->dev; struct device_node *np = dev->of_node; if (!np) { dev_err(dev, "%s: non DT initialization\n", __func__); goto out; } snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", name); if (!of_parse_phandle(np, prop_name, 0)) { dev_info(dev, "%s: Unable to find %s regulator, assuming enabled\n", __func__, prop_name); ret = -ENODEV; goto out; } vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL); if (!vreg) return -ENOMEM; vreg->name = name; snprintf(prop_name, MAX_PROP_SIZE, "%s-max-microamp", name); ret = of_property_read_u32(np, prop_name, &vreg->max_uA); if (ret) { dev_err(dev, "%s: unable to find %s err %d\n", __func__, prop_name, ret); goto out; } vreg->reg = devm_regulator_get(dev, vreg->name); if (IS_ERR(vreg->reg)) { ret = PTR_ERR(vreg->reg); dev_err(dev, "%s: %s get failed, err=%d\n", __func__, vreg->name, ret); } snprintf(prop_name, MAX_PROP_SIZE, "%s-min-uV", name); ret = of_property_read_u32(np, prop_name, &vreg->min_uV); if (ret) { dev_dbg(dev, "%s: unable to find %s err %d, using default\n", __func__, prop_name, ret); if (!strcmp(name, "qcom,vddp-ref-clk")) vreg->min_uV = VDDP_REF_CLK_MIN_UV; else if (!strcmp(name, "qcom,vccq-parent")) vreg->min_uV = 0; ret = 0; } snprintf(prop_name, MAX_PROP_SIZE, "%s-max-uV", name); ret = of_property_read_u32(np, prop_name, &vreg->max_uV); if (ret) { dev_dbg(dev, "%s: unable to find %s err %d, using default\n", __func__, prop_name, ret); if (!strcmp(name, "qcom,vddp-ref-clk")) vreg->max_uV = VDDP_REF_CLK_MAX_UV; else if (!strcmp(name, "qcom,vccq-parent")) vreg->max_uV = 0; ret = 0; } out: if (!ret) *out_vreg = vreg; return ret; } static void ufs_qcom_save_host_ptr(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int id; if (!hba->dev->of_node) return; /* Extract platform data */ id = of_alias_get_id(hba->dev->of_node, "ufshc"); if (id <= 0) dev_err(hba->dev, "Failed to get host index %d\n", id); else if (id <= MAX_UFS_QCOM_HOSTS) ufs_qcom_hosts[id - 1] = host; else dev_err(hba->dev, "invalid host index %d\n", id); } /** * ufs_qcom_init - bind phy with controller * @hba: host controller instance * * Binds PHY with controller and powers up PHY enabling clocks * and regulators. * * Returns -EPROBE_DEFER if binding fails, returns negative error * on phy power up failure and returns zero on success. */ static int ufs_qcom_init(struct ufs_hba *hba) { int err; struct device *dev = hba->dev; struct platform_device *pdev = to_platform_device(dev); struct ufs_qcom_host *host; struct resource *res; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { err = -ENOMEM; dev_err(dev, "%s: no memory for qcom ufs host\n", __func__); goto out; } /* Make a two way bind between the qcom host and the hba */ host->hba = hba; ufshcd_set_variant(hba, host); host->generic_phy = devm_phy_get(dev, "ufsphy"); if (host->generic_phy == ERR_PTR(-EPROBE_DEFER)) { /* * UFS driver might be probed before the phy driver does. * In that case we would like to return EPROBE_DEFER code. */ err = -EPROBE_DEFER; dev_warn(dev, "%s: required phy device. hasn't probed yet. err = %d\n", __func__, err); goto out_variant_clear; } else if (IS_ERR(host->generic_phy)) { err = PTR_ERR(host->generic_phy); dev_err(dev, "%s: PHY get failed %d\n", __func__, err); goto out_variant_clear; } /* restore the secure configuration */ ufs_qcom_update_sec_cfg(hba, true); /* * Set the vendor specific ops needed for ICE. * Default implementation if the ops are not set. */ ufshcd_crypto_qti_set_vops(hba); err = ufs_qcom_bus_register(host); if (err) goto out_variant_clear; ufs_qcom_get_controller_revision(hba, &host->hw_ver.major, &host->hw_ver.minor, &host->hw_ver.step); /* * for newer controllers, device reference clock control bit has * moved inside UFS controller register address space itself. */ if (host->hw_ver.major >= 0x02) { host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1; host->dev_ref_clk_en_mask = BIT(26); } else { /* "dev_ref_clk_ctrl_mem" is optional resource */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (res) { host->dev_ref_clk_ctrl_mmio = devm_ioremap_resource(dev, res); if (IS_ERR(host->dev_ref_clk_ctrl_mmio)) { dev_warn(dev, "%s: could not map dev_ref_clk_ctrl_mmio, err %ld\n", __func__, PTR_ERR(host->dev_ref_clk_ctrl_mmio)); host->dev_ref_clk_ctrl_mmio = NULL; } host->dev_ref_clk_en_mask = BIT(5); } } /* use binary power_count to avoid race condition of phy on/off */ host->generic_phy->is_binary_power_count = true; /* update phy revision information before calling phy_init() */ ufs_qcom_phy_save_controller_version(host->generic_phy, host->hw_ver.major, host->hw_ver.minor, host->hw_ver.step); err = ufs_qcom_parse_reg_info(host, "qcom,vddp-ref-clk", &host->vddp_ref_clk); phy_init(host->generic_phy); err = phy_power_on(host->generic_phy); if (err) goto out_unregister_bus; if (host->vddp_ref_clk) { err = ufs_qcom_enable_vreg(dev, host->vddp_ref_clk); if (err) { dev_err(dev, "%s: failed enabling ref clk supply: %d\n", __func__, err); goto out_disable_phy; } } err = ufs_qcom_parse_reg_info(host, "qcom,vccq-parent", &host->vccq_parent); if (host->vccq_parent) { err = ufs_qcom_config_vreg(hba->dev, host->vccq_parent, true); if (err) { dev_err(dev, "%s: failed vccq-parent set load: %d\n", __func__, err); goto out_disable_vddp; } } err = ufs_qcom_init_lane_clks(host); if (err) goto out_set_load_vccq_parent; ufs_qcom_parse_lpm(host); if (host->disable_lpm) pm_runtime_forbid(host->hba->dev); ufs_qcom_set_caps(hba); ufs_qcom_advertise_quirks(hba); ufs_qcom_set_bus_vote(hba, true); ufs_qcom_setup_clocks(hba, true, POST_CHANGE); host->dbg_print_en |= UFS_QCOM_DEFAULT_DBG_PRINT_EN; ufs_qcom_get_default_testbus_cfg(host); err = ufs_qcom_testbus_config(host); if (err) { dev_warn(dev, "%s: failed to configure the testbus %d\n", __func__, err); err = 0; } ufs_qcom_save_host_ptr(hba); goto out; out_set_load_vccq_parent: if (host->vccq_parent) ufs_qcom_config_vreg(hba->dev, host->vccq_parent, false); out_disable_vddp: if (host->vddp_ref_clk) ufs_qcom_disable_vreg(dev, host->vddp_ref_clk); out_disable_phy: phy_power_off(host->generic_phy); out_unregister_bus: phy_exit(host->generic_phy); msm_bus_scale_unregister_client(host->bus_vote.client_handle); out_variant_clear: devm_kfree(dev, host); ufshcd_set_variant(hba, NULL); out: /* * host->hw_reset_count's default is -1 * because full_reset is called 1 time on ufshcd_hba_probe() */ if (host) host->hw_reset_count = -1; return err; } static void ufs_qcom_exit(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); msm_bus_scale_unregister_client(host->bus_vote.client_handle); ufs_qcom_disable_lane_clks(host); phy_power_off(host->generic_phy); phy_exit(host->generic_phy); } static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba, u32 clk_1us_cycles, u32 clk_40ns_cycles) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err; u32 core_clk_ctrl_reg, clk_cycles; u32 mask = DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK; u32 offset = 0; /* Bits mask and offset changed on UFS host controller V4.0.0 onwards */ if (host->hw_ver.major >= 4) { mask = DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK_V4; offset = DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_OFFSET_V4; } if (clk_1us_cycles > mask) return -EINVAL; err = ufshcd_dme_get(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), &core_clk_ctrl_reg); if (err) goto out; core_clk_ctrl_reg &= ~mask; core_clk_ctrl_reg |= clk_1us_cycles; core_clk_ctrl_reg <<= offset; /* Clear CORE_CLK_DIV_EN */ core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT; err = ufshcd_dme_set(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), core_clk_ctrl_reg); /* UFS host controller V4.0.0 onwards needs to program * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed frequency of * unipro core clk of UFS host controller. */ if (!err && (host->hw_ver.major >= 4)) { if (clk_40ns_cycles > PA_VS_CORE_CLK_40NS_CYCLES_MASK) return -EINVAL; err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), &clk_cycles); if (err) goto out; clk_cycles &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK; clk_cycles |= clk_40ns_cycles; err = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), clk_cycles); } out: return err; } static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_pa_layer_attr *attr = &host->dev_req_params; int err = 0; if (!ufs_qcom_cap_qunipro(host)) goto out; if (attr) __ufs_qcom_cfg_timers(hba, attr->gear_rx, attr->pwr_rx, attr->hs_rate, false, true); err = ufs_qcom_set_dme_vs_core_clk_ctrl_max_freq_mode(hba); out: return err; } static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_pa_layer_attr *attr = &host->dev_req_params; int err = 0; struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; u32 curr_freq = 0; if (!ufs_qcom_cap_qunipro(host)) return 0; if (attr) ufs_qcom_cfg_timers(hba, attr->gear_rx, attr->pwr_rx, attr->hs_rate, false); list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk) && (!strcmp(clki->name, "core_clk_unipro"))) { curr_freq = clk_get_rate(clki->clk); break; } } switch (curr_freq) { case 37500000: err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 38, 2); break; case 75000000: err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 75, 3); break; default: err = -EINVAL; break; } return err; } static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; switch (status) { case PRE_CHANGE: if (scale_up) err = ufs_qcom_clk_scale_up_pre_change(hba); break; case POST_CHANGE: if (!scale_up) err = ufs_qcom_clk_scale_down_post_change(hba); ufs_qcom_update_bus_bw_vote(host); break; default: dev_err(hba->dev, "%s: invalid status %d\n", __func__, status); err = -EINVAL; break; } return err; } /* * This function should be called to restore the security configuration of UFS * register space after coming out of UFS host core power collapse. * * @hba: host controller instance * @restore_sec_cfg: Set "true" if secure configuration needs to be restored * and set "false" when secure configuration is lost. */ static int ufs_qcom_update_sec_cfg(struct ufs_hba *hba, bool restore_sec_cfg) { return 0; } static inline u32 ufs_qcom_get_scale_down_gear(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (ufs_qcom_cap_svs2(host)) return UFS_HS_G1; /* Default SVS support @ HS G2 frequencies*/ return UFS_HS_G2; } void ufs_qcom_print_hw_debug_reg_all(struct ufs_hba *hba, void *priv, void (*print_fn)(struct ufs_hba *hba, int offset, int num_regs, char *str, void *priv)) { u32 reg; struct ufs_qcom_host *host; if (unlikely(!hba)) { pr_err("%s: hba is NULL\n", __func__); return; } if (unlikely(!print_fn)) { dev_err(hba->dev, "%s: print_fn is NULL\n", __func__); return; } host = ufshcd_get_variant(hba); if (!(host->dbg_print_en & UFS_QCOM_DBG_PRINT_REGS_EN)) return; reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC); print_fn(hba, reg, 44, "UFS_UFS_DBG_RD_REG_OCSC ", priv); reg = ufshcd_readl(hba, REG_UFS_CFG1); reg |= UFS_BIT(17); ufshcd_writel(hba, reg, REG_UFS_CFG1); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM); print_fn(hba, reg, 32, "UFS_UFS_DBG_RD_EDTL_RAM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM); print_fn(hba, reg, 128, "UFS_UFS_DBG_RD_DESC_RAM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM); print_fn(hba, reg, 64, "UFS_UFS_DBG_RD_PRDT_RAM ", priv); /* clear bit 17 - UTP_DBG_RAMS_EN */ ufshcd_rmwl(hba, UFS_BIT(17), 0, REG_UFS_CFG1); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM); print_fn(hba, reg, 4, "UFS_DBG_RD_REG_UAWM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM); print_fn(hba, reg, 4, "UFS_DBG_RD_REG_UARM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC); print_fn(hba, reg, 48, "UFS_DBG_RD_REG_TXUC ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC); print_fn(hba, reg, 27, "UFS_DBG_RD_REG_RXUC ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC); print_fn(hba, reg, 19, "UFS_DBG_RD_REG_DFC ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT); print_fn(hba, reg, 34, "UFS_DBG_RD_REG_TRLUT ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT); print_fn(hba, reg, 9, "UFS_DBG_RD_REG_TMRLUT ", priv); } static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host) { if (host->dbg_print_en & UFS_QCOM_DBG_PRINT_TEST_BUS_EN) { ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN, UFS_REG_TEST_BUS_EN, REG_UFS_CFG1); ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1); } else { ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN, 0, REG_UFS_CFG1); ufshcd_rmwl(host->hba, TEST_BUS_EN, 0, REG_UFS_CFG1); } } static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host) { /* provide a legal default configuration */ host->testbus.select_major = TSTBUS_UNIPRO; host->testbus.select_minor = 37; } bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host, u8 select_major, u8 select_minor) { if (select_major >= TSTBUS_MAX) { dev_err(host->hba->dev, "%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n", __func__, select_major); return false; } return true; } /* * The caller of this function must make sure that the controller * is out of runtime suspend and appropriate clocks are enabled * before accessing. */ int ufs_qcom_testbus_config(struct ufs_qcom_host *host) { int reg = 0; int offset = -1, ret = 0, testbus_sel_offset = 19; u32 mask = TEST_BUS_SUB_SEL_MASK; unsigned long flags; struct ufs_hba *hba; if (!host) return -EINVAL; hba = host->hba; spin_lock_irqsave(hba->host->host_lock, flags); switch (host->testbus.select_major) { case TSTBUS_UAWM: reg = UFS_TEST_BUS_CTRL_0; offset = 24; break; case TSTBUS_UARM: reg = UFS_TEST_BUS_CTRL_0; offset = 16; break; case TSTBUS_TXUC: reg = UFS_TEST_BUS_CTRL_0; offset = 8; break; case TSTBUS_RXUC: reg = UFS_TEST_BUS_CTRL_0; offset = 0; break; case TSTBUS_DFC: reg = UFS_TEST_BUS_CTRL_1; offset = 24; break; case TSTBUS_TRLUT: reg = UFS_TEST_BUS_CTRL_1; offset = 16; break; case TSTBUS_TMRLUT: reg = UFS_TEST_BUS_CTRL_1; offset = 8; break; case TSTBUS_OCSC: reg = UFS_TEST_BUS_CTRL_1; offset = 0; break; case TSTBUS_WRAPPER: reg = UFS_TEST_BUS_CTRL_2; offset = 16; break; case TSTBUS_COMBINED: reg = UFS_TEST_BUS_CTRL_2; offset = 8; break; case TSTBUS_UTP_HCI: reg = UFS_TEST_BUS_CTRL_2; offset = 0; break; case TSTBUS_UNIPRO: reg = UFS_UNIPRO_CFG; offset = 20; mask = 0xFFF; break; /* * No need for a default case, since * ufs_qcom_testbus_cfg_is_ok() checks that the configuration * is legal */ } if (offset < 0) { dev_err(hba->dev, "%s: Bad offset: %d\n", __func__, offset); ret = -EINVAL; spin_unlock_irqrestore(hba->host->host_lock, flags); goto out; } mask <<= offset; spin_unlock_irqrestore(hba->host->host_lock, flags); if (reg) { ufshcd_rmwl(host->hba, TEST_BUS_SEL, (u32)host->testbus.select_major << testbus_sel_offset, REG_UFS_CFG1); ufshcd_rmwl(host->hba, mask, (u32)host->testbus.select_minor << offset, reg); } else { dev_err(hba->dev, "%s: Problem setting minor\n", __func__); ret = -EINVAL; goto out; } ufs_qcom_enable_test_bus(host); /* * Make sure the test bus configuration is * committed before returning. */ mb(); out: return ret; } static void ufs_qcom_testbus_read(struct ufs_hba *hba) { ufs_qcom_dump_regs(hba, UFS_TEST_BUS, 1, "UFS_TEST_BUS "); } static void ufs_qcom_print_unipro_testbus(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); u32 *testbus = NULL; int i, nminor = 256, testbus_len = nminor * sizeof(u32); testbus = kmalloc(testbus_len, GFP_KERNEL); if (!testbus) return; host->testbus.select_major = TSTBUS_UNIPRO; for (i = 0; i < nminor; i++) { host->testbus.select_minor = i; ufs_qcom_testbus_config(host); testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS); } print_hex_dump(KERN_ERR, "UNIPRO_TEST_BUS ", DUMP_PREFIX_OFFSET, 16, 4, testbus, testbus_len, false); kfree(testbus); } static void ufs_qcom_print_utp_hci_testbus(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); u32 *testbus = NULL; int i, nminor = 32, testbus_len = nminor * sizeof(u32); testbus = kmalloc(testbus_len, GFP_KERNEL); if (!testbus) return; host->testbus.select_major = TSTBUS_UTP_HCI; for (i = 0; i < nminor; i++) { host->testbus.select_minor = i; ufs_qcom_testbus_config(host); testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS); } print_hex_dump(KERN_ERR, "UTP_HCI_TEST_BUS ", DUMP_PREFIX_OFFSET, 16, 4, testbus, testbus_len, false); kfree(testbus); } static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba, bool no_sleep) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; ufs_qcom_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16, "HCI Vendor Specific Registers "); ufs_qcom_print_hw_debug_reg_all(hba, NULL, ufs_qcom_dump_regs_wrapper); if (no_sleep) return; /* sleep a bit intermittently as we are dumping too much data */ udelay(1000); ufs_qcom_testbus_read(hba); udelay(1000); ufs_qcom_print_unipro_testbus(hba); udelay(1000); ufs_qcom_print_utp_hci_testbus(hba); udelay(1000); ufs_qcom_phy_dbg_register_dump(phy); udelay(1000); } /** * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations * * The variant operations configure the necessary controller and PHY * handshake during initialization. */ static struct ufs_hba_variant_ops ufs_hba_qcom_vops = { .init = ufs_qcom_init, .exit = ufs_qcom_exit, .get_ufs_hci_version = ufs_qcom_get_ufs_hci_version, .clk_scale_notify = ufs_qcom_clk_scale_notify, .setup_clocks = ufs_qcom_setup_clocks, .hce_enable_notify = ufs_qcom_hce_enable_notify, .link_startup_notify = ufs_qcom_link_startup_notify, .pwr_change_notify = ufs_qcom_pwr_change_notify, .apply_dev_quirks = ufs_qcom_apply_dev_quirks, .suspend = ufs_qcom_suspend, .resume = ufs_qcom_resume, .full_reset = ufs_qcom_full_reset, .update_sec_cfg = ufs_qcom_update_sec_cfg, .get_scale_down_gear = ufs_qcom_get_scale_down_gear, .set_bus_vote = ufs_qcom_set_bus_vote, .dbg_register_dump = ufs_qcom_dump_dbg_regs, #ifdef CONFIG_DEBUG_FS .add_debugfs = ufs_qcom_dbg_add_debugfs, #endif }; static struct ufs_hba_variant ufs_hba_qcom_variant = { .name = "qcom", .vops = &ufs_hba_qcom_vops, }; /** * ufs_qcom_probe - probe routine of the driver * @pdev: pointer to Platform device handle * * Return zero for success and non-zero for failure */ static int ufs_qcom_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; /* * On qcom platforms, bootdevice is the primary storage * device. This device can either be eMMC or UFS. * The type of device connected is detected at runtime. * So, if an eMMC device is connected, and this function * is invoked, it would turn-off the regulator if it detects * that the storage device is not ufs. * These regulators are turned ON by the bootloaders & turning * them off without sending PON may damage the connected device. * Hence, check for the connected device early-on & don't turn-off * the regulators. */ if (of_property_read_bool(np, "non-removable") && strlen(android_boot_dev) && strcmp(android_boot_dev, dev_name(dev))) return -ENODEV; /* Perform generic probe */ err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_variant); if (err) dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err); return err; } /** * ufs_qcom_remove - set driver_data of the device to NULL * @pdev: pointer to platform device handle * * Always returns 0 */ static int ufs_qcom_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); return 0; } static const struct of_device_id ufs_qcom_of_match[] = { { .compatible = "qcom,ufshc"}, {}, }; MODULE_DEVICE_TABLE(of, ufs_qcom_of_match); static const struct dev_pm_ops ufs_qcom_pm_ops = { .suspend = ufshcd_pltfrm_suspend, .resume = ufshcd_pltfrm_resume, .runtime_suspend = ufshcd_pltfrm_runtime_suspend, .runtime_resume = ufshcd_pltfrm_runtime_resume, .runtime_idle = ufshcd_pltfrm_runtime_idle, .freeze = ufshcd_pltfrm_freeze, .restore = ufshcd_pltfrm_restore, .thaw = ufshcd_pltfrm_thaw, }; static struct platform_driver ufs_qcom_pltform = { .probe = ufs_qcom_probe, .remove = ufs_qcom_remove, .shutdown = ufshcd_pltfrm_shutdown, .driver = { .name = "ufshcd-qcom", .pm = &ufs_qcom_pm_ops, .of_match_table = of_match_ptr(ufs_qcom_of_match), .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; module_platform_driver(ufs_qcom_pltform); MODULE_LICENSE("GPL v2");