/* * Copyright (c) 2013-2016, Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include "phy-qcom-ufs-i.h" #define MAX_PROP_NAME 32 #define VDDA_PHY_MIN_UV 800000 #define VDDA_PHY_MAX_UV 925000 #define VDDA_PLL_MIN_UV 1200000 #define VDDA_PLL_MAX_UV 1800000 #define VDDP_REF_CLK_MIN_UV 1200000 #define VDDP_REF_CLK_MAX_UV 1200000 #define UFS_PHY_DEFAULT_LANES_PER_DIRECTION 1 void ufs_qcom_phy_write_tbl(struct ufs_qcom_phy *ufs_qcom_phy, struct ufs_qcom_phy_calibration *tbl, int tbl_size) { int i; for (i = 0; i < tbl_size; i++) writel_relaxed(tbl[i].cfg_value, ufs_qcom_phy->mmio + tbl[i].reg_offset); } EXPORT_SYMBOL(ufs_qcom_phy_write_tbl); int ufs_qcom_phy_calibrate(struct ufs_qcom_phy *ufs_qcom_phy, struct ufs_qcom_phy_calibration *tbl_A, int tbl_size_A, struct ufs_qcom_phy_calibration *tbl_B, int tbl_size_B, bool is_rate_B) { int ret = 0; if (!tbl_A) { dev_err(ufs_qcom_phy->dev, "%s: tbl_A is NULL", __func__); ret = EINVAL; goto out; } ufs_qcom_phy_write_tbl(ufs_qcom_phy, tbl_A, tbl_size_A); /* * In case we would like to work in rate B, we need * to override a registers that were configured in rate A table * with registers of rate B table. * table. */ if (is_rate_B) { if (!tbl_B) { dev_err(ufs_qcom_phy->dev, "%s: tbl_B is NULL", __func__); ret = EINVAL; goto out; } ufs_qcom_phy_write_tbl(ufs_qcom_phy, tbl_B, tbl_size_B); } /* flush buffered writes */ mb(); out: return ret; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_calibrate); /* * This assumes the embedded phy structure inside generic_phy is of type * struct ufs_qcom_phy. In order to function properly it's crucial * to keep the embedded struct "struct ufs_qcom_phy common_cfg" * as the first inside generic_phy. */ struct ufs_qcom_phy *get_ufs_qcom_phy(struct phy *generic_phy) { return (struct ufs_qcom_phy *)phy_get_drvdata(generic_phy); } EXPORT_SYMBOL_GPL(get_ufs_qcom_phy); static int ufs_qcom_phy_base_init(struct platform_device *pdev, struct ufs_qcom_phy *phy_common) { struct device *dev = &pdev->dev; struct resource *res; int err = 0; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy_mem"); phy_common->mmio = devm_ioremap_resource(dev, res); if (IS_ERR((void const *)phy_common->mmio)) { err = PTR_ERR((void const *)phy_common->mmio); phy_common->mmio = NULL; dev_err(dev, "%s: ioremap for phy_mem resource failed %d\n", __func__, err); return err; } return 0; } struct phy *ufs_qcom_phy_generic_probe(struct platform_device *pdev, struct ufs_qcom_phy *common_cfg, const struct phy_ops *ufs_qcom_phy_gen_ops, struct ufs_qcom_phy_specific_ops *phy_spec_ops) { int err; struct device *dev = &pdev->dev; struct phy *generic_phy = NULL; struct phy_provider *phy_provider; err = ufs_qcom_phy_base_init(pdev, common_cfg); if (err) { dev_err(dev, "%s: phy base init failed %d\n", __func__, err); goto out; } phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { err = PTR_ERR(phy_provider); dev_err(dev, "%s: failed to register phy %d\n", __func__, err); goto out; } generic_phy = devm_phy_create(dev, NULL, ufs_qcom_phy_gen_ops); if (IS_ERR(generic_phy)) { err = PTR_ERR(generic_phy); dev_err(dev, "%s: failed to create phy %d\n", __func__, err); generic_phy = NULL; goto out; } if (of_property_read_u32(dev->of_node, "lanes-per-direction", &common_cfg->lanes_per_direction)) common_cfg->lanes_per_direction = UFS_PHY_DEFAULT_LANES_PER_DIRECTION; /* * UFS PHY power management is managed by its parent (UFS host * controller) hence set the no the no runtime PM callbacks flag * on UFS PHY device to avoid any accidental attempt to call the * PM callbacks for PHY device. */ pm_runtime_no_callbacks(&generic_phy->dev); common_cfg->phy_spec_ops = phy_spec_ops; common_cfg->dev = dev; out: return generic_phy; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_generic_probe); static int __ufs_qcom_phy_clk_get(struct device *dev, const char *name, struct clk **clk_out, bool err_print) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (IS_ERR(clk)) { err = PTR_ERR(clk); if (err_print) dev_err(dev, "failed to get %s err %d", name, err); } else { *clk_out = clk; } return err; } static int ufs_qcom_phy_clk_get(struct device *dev, const char *name, struct clk **clk_out) { return __ufs_qcom_phy_clk_get(dev, name, clk_out, true); } int ufs_qcom_phy_init_clks(struct ufs_qcom_phy *phy_common) { int err; if (of_device_is_compatible(phy_common->dev->of_node, "qcom,msm8996-ufs-phy-qmp-14nm")) goto skip_txrx_clk; /* * tx_iface_clk does not exist in newer version of ufs-phy HW, * so don't return error if it is not found */ __ufs_qcom_phy_clk_get(phy_common->dev, "tx_iface_clk", &phy_common->tx_iface_clk, false); /* * rx_iface_clk does not exist in newer version of ufs-phy HW, * so don't return error if it is not found */ __ufs_qcom_phy_clk_get(phy_common->dev, "rx_iface_clk", &phy_common->rx_iface_clk, false); skip_txrx_clk: err = ufs_qcom_phy_clk_get(phy_common->dev, "ref_clk_src", &phy_common->ref_clk_src); if (err) goto out; /* * "ref_clk_parent" is optional hence don't abort init if it's not * found. */ __ufs_qcom_phy_clk_get(phy_common->dev, "ref_clk_parent", &phy_common->ref_clk_parent, false); /* * Some platforms may not have the ON/OFF control for reference clock, * hence this clock may be optional. */ __ufs_qcom_phy_clk_get(phy_common->dev, "ref_clk", &phy_common->ref_clk, false); /* * "ref_aux_clk" is optional and only supported by certain * phy versions, don't abort init if it's not found. */ __ufs_qcom_phy_clk_get(phy_common->dev, "ref_aux_clk", &phy_common->ref_aux_clk, false); out: return err; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_init_clks); static int ufs_qcom_phy_init_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg, const char *name) { int err = 0; char prop_name[MAX_PROP_NAME]; if (dev->of_node) { snprintf(prop_name, MAX_PROP_NAME, "%s-supply", name); if (!of_parse_phandle(dev->of_node, prop_name, 0)) { dev_dbg(dev, "No vreg data found for %s\n", prop_name); return -ENODATA; } } vreg->name = name; vreg->reg = devm_regulator_get(dev, name); if (IS_ERR(vreg->reg)) { err = PTR_ERR(vreg->reg); dev_err(dev, "failed to get %s, %d\n", name, err); goto out; } if (dev->of_node) { snprintf(prop_name, MAX_PROP_NAME, "%s-max-microamp", name); err = of_property_read_u32(dev->of_node, prop_name, &vreg->max_uA); if (err && err != -EINVAL) { dev_err(dev, "%s: failed to read %s\n", __func__, prop_name); goto out; } else if (err == -EINVAL || !vreg->max_uA) { if (regulator_count_voltages(vreg->reg) > 0) { dev_err(dev, "%s: %s is mandatory\n", __func__, prop_name); goto out; } err = 0; } snprintf(prop_name, MAX_PROP_NAME, "%s-always-on", name); vreg->is_always_on = of_property_read_bool(dev->of_node, prop_name); } if (!strcmp(name, "vdda-pll")) { vreg->max_uV = VDDA_PLL_MAX_UV; vreg->min_uV = VDDA_PLL_MIN_UV; } else if (!strcmp(name, "vdda-phy")) { vreg->max_uV = VDDA_PHY_MAX_UV; vreg->min_uV = VDDA_PHY_MIN_UV; } else if (!strcmp(name, "vddp-ref-clk")) { vreg->max_uV = VDDP_REF_CLK_MAX_UV; vreg->min_uV = VDDP_REF_CLK_MIN_UV; } out: return err; } int ufs_qcom_phy_init_vregulators(struct ufs_qcom_phy *phy_common) { int err; err = ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vdda_pll, "vdda-pll"); if (err) goto out; err = ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vdda_phy, "vdda-phy"); if (err) goto out; ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vddp_ref_clk, "vddp-ref-clk"); out: return err; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_init_vregulators); static int ufs_qcom_phy_cfg_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg, bool on) { int ret = 0; struct regulator *reg = vreg->reg; const char *name = vreg->name; int min_uV; int uA_load; WARN_ON(!vreg); if (regulator_count_voltages(reg) > 0) { min_uV = on ? vreg->min_uV : 0; ret = regulator_set_voltage(reg, min_uV, vreg->max_uV); if (ret) { dev_err(dev, "%s: %s set voltage failed, err=%d\n", __func__, name, ret); goto out; } uA_load = on ? vreg->max_uA : 0; ret = regulator_set_load(reg, uA_load); if (ret >= 0) { /* * regulator_set_load() returns new regulator * mode upon success. */ ret = 0; } else { dev_err(dev, "%s: %s set optimum mode(uA_load=%d) failed, err=%d\n", __func__, name, uA_load, ret); goto out; } } out: return ret; } static int ufs_qcom_phy_enable_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg) { int ret = 0; if (!vreg || vreg->enabled) goto out; ret = ufs_qcom_phy_cfg_vreg(dev, vreg, true); if (ret) { dev_err(dev, "%s: ufs_qcom_phy_cfg_vreg() failed, err=%d\n", __func__, ret); goto out; } ret = regulator_enable(vreg->reg); if (ret) { dev_err(dev, "%s: enable failed, err=%d\n", __func__, ret); goto out; } vreg->enabled = true; out: return ret; } static int ufs_qcom_phy_enable_ref_clk(struct ufs_qcom_phy *phy) { int ret = 0; if (phy->is_ref_clk_enabled) goto out; /* * reference clock is propagated in a daisy-chained manner from * source to phy, so ungate them at each stage. */ ret = clk_prepare_enable(phy->ref_clk_src); if (ret) { dev_err(phy->dev, "%s: ref_clk_src enable failed %d\n", __func__, ret); goto out; } /* * "ref_clk_parent" is optional clock hence make sure that clk reference * is available before trying to enable the clock. */ if (phy->ref_clk_parent) { ret = clk_prepare_enable(phy->ref_clk_parent); if (ret) { dev_err(phy->dev, "%s: ref_clk_parent enable failed %d\n", __func__, ret); goto out_disable_src; } } /* * "ref_clk" is optional clock hence make sure that clk reference * is available before trying to enable the clock. */ if (phy->ref_clk) { ret = clk_prepare_enable(phy->ref_clk); if (ret) { dev_err(phy->dev, "%s: ref_clk enable failed %d\n", __func__, ret); goto out_disable_parent; } } /* * "ref_aux_clk" is optional clock and only supported by certain * phy versions, hence make sure that clk reference is available * before trying to enable the clock. */ if (phy->ref_aux_clk) { ret = clk_prepare_enable(phy->ref_aux_clk); if (ret) { dev_err(phy->dev, "%s: ref_aux_clk enable failed %d\n", __func__, ret); goto out_disable_ref; } } phy->is_ref_clk_enabled = true; goto out; out_disable_ref: if (phy->ref_clk) clk_disable_unprepare(phy->ref_clk); out_disable_parent: if (phy->ref_clk_parent) clk_disable_unprepare(phy->ref_clk_parent); out_disable_src: clk_disable_unprepare(phy->ref_clk_src); out: return ret; } static int ufs_qcom_phy_disable_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg) { int ret = 0; if (!vreg || !vreg->enabled) goto out; if (vreg->is_always_on) { /* voting 0 uA load will keep regulator in LPM mode */ ret = regulator_set_load(vreg->reg, 0); if (ret >= 0) { /* * regulator_set_load() returns new regulator * mode upon success. */ ret = 0; } else { dev_err(dev, "%s: %s set optimum mode(uA_load=0) failed, err=%d\n", __func__, vreg->name, ret); } goto out; } ret = regulator_disable(vreg->reg); if (!ret) { /* ignore errors on applying disable config */ ufs_qcom_phy_cfg_vreg(dev, vreg, false); vreg->enabled = false; } else { dev_err(dev, "%s: %s disable failed, err=%d\n", __func__, vreg->name, ret); } out: return ret; } static void ufs_qcom_phy_disable_ref_clk(struct ufs_qcom_phy *phy) { if (phy->is_ref_clk_enabled) { /* * "ref_aux_clk" is optional clock and only supported by * certain phy versions, hence make sure that clk reference * is available before trying to disable the clock. */ if (phy->ref_aux_clk) clk_disable_unprepare(phy->ref_aux_clk); /* * "ref_clk" is optional clock hence make sure that clk * reference is available before trying to disable the clock. */ if (phy->ref_clk) clk_disable_unprepare(phy->ref_clk); /* * "ref_clk_parent" is optional clock hence make sure that clk * reference is available before trying to disable the clock. */ if (phy->ref_clk_parent) clk_disable_unprepare(phy->ref_clk_parent); clk_disable_unprepare(phy->ref_clk_src); phy->is_ref_clk_enabled = false; } } #define UFS_REF_CLK_EN (1 << 5) static void ufs_qcom_phy_dev_ref_clk_ctrl(struct phy *generic_phy, bool enable) { struct ufs_qcom_phy *phy = get_ufs_qcom_phy(generic_phy); if (phy->dev_ref_clk_ctrl_mmio && (enable ^ phy->is_dev_ref_clk_enabled)) { u32 temp = readl_relaxed(phy->dev_ref_clk_ctrl_mmio); if (enable) temp |= UFS_REF_CLK_EN; else temp &= ~UFS_REF_CLK_EN; /* * If we are here to disable this clock immediately after * entering into hibern8, we need to make sure that device * ref_clk is active atleast 1us after the hibern8 enter. */ if (!enable) udelay(1); writel_relaxed(temp, phy->dev_ref_clk_ctrl_mmio); /* ensure that ref_clk is enabled/disabled before we return */ wmb(); /* * If we call hibern8 exit after this, we need to make sure that * device ref_clk is stable for atleast 1us before the hibern8 * exit command. */ if (enable) udelay(1); phy->is_dev_ref_clk_enabled = enable; } } void ufs_qcom_phy_enable_dev_ref_clk(struct phy *generic_phy) { ufs_qcom_phy_dev_ref_clk_ctrl(generic_phy, true); } EXPORT_SYMBOL_GPL(ufs_qcom_phy_enable_dev_ref_clk); void ufs_qcom_phy_disable_dev_ref_clk(struct phy *generic_phy) { ufs_qcom_phy_dev_ref_clk_ctrl(generic_phy, false); } EXPORT_SYMBOL_GPL(ufs_qcom_phy_disable_dev_ref_clk); /* Turn ON M-PHY RMMI interface clocks */ static int ufs_qcom_phy_enable_iface_clk(struct ufs_qcom_phy *phy) { int ret = 0; if (phy->is_iface_clk_enabled) goto out; if (!phy->tx_iface_clk) goto out; ret = clk_prepare_enable(phy->tx_iface_clk); if (ret) { dev_err(phy->dev, "%s: tx_iface_clk enable failed %d\n", __func__, ret); goto out; } ret = clk_prepare_enable(phy->rx_iface_clk); if (ret) { clk_disable_unprepare(phy->tx_iface_clk); dev_err(phy->dev, "%s: rx_iface_clk enable failed %d. disabling also tx_iface_clk\n", __func__, ret); goto out; } phy->is_iface_clk_enabled = true; out: return ret; } /* Turn OFF M-PHY RMMI interface clocks */ void ufs_qcom_phy_disable_iface_clk(struct ufs_qcom_phy *phy) { if (!phy->tx_iface_clk) return; if (phy->is_iface_clk_enabled) { clk_disable_unprepare(phy->tx_iface_clk); clk_disable_unprepare(phy->rx_iface_clk); phy->is_iface_clk_enabled = false; } } int ufs_qcom_phy_start_serdes(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); int ret = 0; if (!ufs_qcom_phy->phy_spec_ops->start_serdes) { dev_err(ufs_qcom_phy->dev, "%s: start_serdes() callback is not supported\n", __func__); ret = -ENOTSUPP; } else { ufs_qcom_phy->phy_spec_ops->start_serdes(ufs_qcom_phy); } return ret; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_start_serdes); int ufs_qcom_phy_set_tx_lane_enable(struct phy *generic_phy, u32 tx_lanes) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); int ret = 0; if (ufs_qcom_phy->phy_spec_ops->set_tx_lane_enable) ufs_qcom_phy->phy_spec_ops->set_tx_lane_enable(ufs_qcom_phy, tx_lanes); return ret; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_set_tx_lane_enable); int ufs_qcom_phy_ctrl_rx_linecfg(struct phy *generic_phy, bool ctrl) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); int ret = 0; if (ufs_qcom_phy->phy_spec_ops->ctrl_rx_linecfg) ufs_qcom_phy->phy_spec_ops->ctrl_rx_linecfg(ufs_qcom_phy, ctrl); return ret; } void ufs_qcom_phy_save_controller_version(struct phy *generic_phy, u8 major, u16 minor, u16 step) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); ufs_qcom_phy->host_ctrl_rev_major = major; ufs_qcom_phy->host_ctrl_rev_minor = minor; ufs_qcom_phy->host_ctrl_rev_step = step; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_save_controller_version); int ufs_qcom_phy_calibrate_phy(struct phy *generic_phy, bool is_rate_B, bool is_g4) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); int ret = 0; if (!ufs_qcom_phy->phy_spec_ops->calibrate_phy) { dev_err(ufs_qcom_phy->dev, "%s: calibrate_phy() callback is not supported\n", __func__); ret = -ENOTSUPP; } else { ret = ufs_qcom_phy->phy_spec_ops-> calibrate_phy(ufs_qcom_phy, is_rate_B, is_g4); if (ret) dev_err(ufs_qcom_phy->dev, "%s: calibrate_phy() failed %d\n", __func__, ret); } return ret; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_calibrate_phy); const char *ufs_qcom_phy_name(struct phy *phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(phy); return ufs_qcom_phy->name; } EXPORT_SYMBOL(ufs_qcom_phy_name); int ufs_qcom_phy_is_pcs_ready(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (!ufs_qcom_phy->phy_spec_ops->is_physical_coding_sublayer_ready) { dev_err(ufs_qcom_phy->dev, "%s: is_physical_coding_sublayer_ready() callback is not supported\n", __func__); return -ENOTSUPP; } return ufs_qcom_phy->phy_spec_ops-> is_physical_coding_sublayer_ready(ufs_qcom_phy); } EXPORT_SYMBOL_GPL(ufs_qcom_phy_is_pcs_ready); int ufs_qcom_phy_power_on(struct phy *generic_phy) { struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy); struct device *dev = phy_common->dev; int err; if (phy_common->is_powered_on) return 0; err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vdda_phy); if (err) { dev_err(dev, "%s enable vdda_phy failed, err=%d\n", __func__, err); goto out; } phy_common->phy_spec_ops->power_control(phy_common, true); /* vdda_pll also enables ref clock LDOs so enable it first */ err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vdda_pll); if (err) { dev_err(dev, "%s enable vdda_pll failed, err=%d\n", __func__, err); goto out_disable_phy; } err = ufs_qcom_phy_enable_iface_clk(phy_common); if (err) { dev_err(dev, "%s enable phy iface clock failed, err=%d\n", __func__, err); goto out_disable_pll; } err = ufs_qcom_phy_enable_ref_clk(phy_common); if (err) { dev_err(dev, "%s enable phy ref clock failed, err=%d\n", __func__, err); goto out_disable_iface_clk; } /* enable device PHY ref_clk pad rail */ if (phy_common->vddp_ref_clk.reg) { err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vddp_ref_clk); if (err) { dev_err(dev, "%s enable vddp_ref_clk failed, err=%d\n", __func__, err); goto out_disable_ref_clk; } } phy_common->is_powered_on = true; goto out; out_disable_ref_clk: ufs_qcom_phy_disable_ref_clk(phy_common); out_disable_iface_clk: ufs_qcom_phy_disable_iface_clk(phy_common); out_disable_pll: ufs_qcom_phy_disable_vreg(dev, &phy_common->vdda_pll); out_disable_phy: ufs_qcom_phy_disable_vreg(dev, &phy_common->vdda_phy); out: return err; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_power_on); int ufs_qcom_phy_power_off(struct phy *generic_phy) { struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy); if (!phy_common->is_powered_on) return 0; phy_common->phy_spec_ops->power_control(phy_common, false); if (phy_common->vddp_ref_clk.reg) ufs_qcom_phy_disable_vreg(phy_common->dev, &phy_common->vddp_ref_clk); ufs_qcom_phy_disable_ref_clk(phy_common); ufs_qcom_phy_disable_iface_clk(phy_common); ufs_qcom_phy_disable_vreg(phy_common->dev, &phy_common->vdda_pll); ufs_qcom_phy_disable_vreg(phy_common->dev, &phy_common->vdda_phy); phy_common->is_powered_on = false; return 0; } EXPORT_SYMBOL_GPL(ufs_qcom_phy_power_off); int ufs_qcom_phy_configure_lpm(struct phy *generic_phy, bool enable) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); int ret = 0; if (ufs_qcom_phy->phy_spec_ops->configure_lpm) { ret = ufs_qcom_phy->phy_spec_ops-> configure_lpm(ufs_qcom_phy, enable); if (ret) dev_err(ufs_qcom_phy->dev, "%s: configure_lpm(%s) failed %d\n", __func__, enable ? "enable" : "disable", ret); } return ret; } EXPORT_SYMBOL(ufs_qcom_phy_configure_lpm); void ufs_qcom_phy_dump_regs(struct ufs_qcom_phy *phy, int offset, int len, char *prefix) { print_hex_dump(KERN_ERR, prefix, len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE, 16, 4, phy->mmio + offset, len, false); } EXPORT_SYMBOL(ufs_qcom_phy_dump_regs); void ufs_qcom_phy_dbg_register_dump(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (ufs_qcom_phy->phy_spec_ops->dbg_register_dump) ufs_qcom_phy->phy_spec_ops->dbg_register_dump(ufs_qcom_phy); } EXPORT_SYMBOL(ufs_qcom_phy_dbg_register_dump); MODULE_AUTHOR("Yaniv Gardi "); MODULE_AUTHOR("Vivek Gautam "); MODULE_DESCRIPTION("Universal Flash Storage (UFS) QCOM PHY"); MODULE_LICENSE("GPL v2");