/* Copyright (c) 2015-2017, 2020 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cmdq_hci.h" #include "cmdq_hci-crypto.h" #include "sdhci.h" #include "sdhci-msm.h" #include "../core/queue.h" #define DCMD_SLOT 31 #define NUM_SLOTS 32 /* 10 sec */ #define HALT_TIMEOUT_MS 10000 static int cmdq_halt_poll(struct mmc_host *mmc, bool halt); static int cmdq_halt(struct mmc_host *mmc, bool halt); #ifdef CONFIG_PM_RUNTIME static int cmdq_runtime_pm_get(struct cmdq_host *host) { return pm_runtime_get_sync(host->mmc->parent); } static int cmdq_runtime_pm_put(struct cmdq_host *host) { pm_runtime_mark_last_busy(host->mmc->parent); return pm_runtime_put_autosuspend(host->mmc->parent); } #else static inline int cmdq_runtime_pm_get(struct cmdq_host *host) { return 0; } static inline int cmdq_runtime_pm_put(struct cmdq_host *host) { return 0; } #endif static inline struct mmc_request *get_req_by_tag(struct cmdq_host *cq_host, unsigned int tag) { return cq_host->mrq_slot[tag]; } static inline u8 *get_desc(struct cmdq_host *cq_host, u8 tag) { return cq_host->desc_base + (tag * cq_host->slot_sz); } static inline u8 *get_link_desc(struct cmdq_host *cq_host, u8 tag) { u8 *desc = get_desc(cq_host, tag); return desc + cq_host->task_desc_len; } static inline dma_addr_t get_trans_desc_dma(struct cmdq_host *cq_host, u8 tag) { return cq_host->trans_desc_dma_base + (cq_host->mmc->max_segs * tag * cq_host->trans_desc_len); } static inline u8 *get_trans_desc(struct cmdq_host *cq_host, u8 tag) { return cq_host->trans_desc_base + (cq_host->trans_desc_len * cq_host->mmc->max_segs * tag); } static void setup_trans_desc(struct cmdq_host *cq_host, u8 tag) { u8 *link_temp; dma_addr_t trans_temp; link_temp = get_link_desc(cq_host, tag); trans_temp = get_trans_desc_dma(cq_host, tag); memset(link_temp, 0, cq_host->link_desc_len); if (cq_host->link_desc_len > 8) *(link_temp + 8) = 0; if (tag == DCMD_SLOT) { *link_temp = VALID(0) | ACT(0) | END(1); return; } *link_temp = VALID(1) | ACT(0x6) | END(0); if (cq_host->dma64) { __le64 *data_addr = (__le64 __force *)(link_temp + 4); data_addr[0] = cpu_to_le64(trans_temp); } else { __le32 *data_addr = (__le32 __force *)(link_temp + 4); data_addr[0] = cpu_to_le32(trans_temp); } } static void cmdq_set_halt_irq(struct cmdq_host *cq_host, bool enable) { u32 ier; ier = cmdq_readl(cq_host, CQISTE); if (enable) { cmdq_writel(cq_host, ier | HALT, CQISTE); cmdq_writel(cq_host, ier | HALT, CQISGE); } else { cmdq_writel(cq_host, ier & ~HALT, CQISTE); cmdq_writel(cq_host, ier & ~HALT, CQISGE); } } static void cmdq_clear_set_irqs(struct cmdq_host *cq_host, u32 clear, u32 set) { u32 ier; ier = cmdq_readl(cq_host, CQISTE); ier &= ~clear; ier |= set; cmdq_writel(cq_host, ier, CQISTE); cmdq_writel(cq_host, ier, CQISGE); /* ensure the writes are done */ mb(); } static int cmdq_clear_task_poll(struct cmdq_host *cq_host, unsigned int tag) { int retries = 100; cmdq_clear_set_irqs(cq_host, CQIS_TCL, 0); cmdq_writel(cq_host, 1<mmc->cmdq_thist_enabled)) return; if (!cq_host->thist) { pr_err("%s: %s: CMDQ task history buffer not allocated\n", mmc_hostname(cq_host->mmc), __func__); return; } pr_err("---- Circular Task History ----\n"); pr_err(DRV_NAME ": Last entry index: %d", cq_host->thist_idx - 1); for (i = 0; i < cq_host->num_slots; i++) { pr_err(DRV_NAME ": [%02d]%s Task: 0x%08x | Args: 0x%08x\n", i, (cq_host->thist[i].is_dcmd) ? "DCMD" : "DATA", lower_32_bits(cq_host->thist[i].task), upper_32_bits(cq_host->thist[i].task)); pr_err(DRV_NAME ": Tag : %d, Issue time: %lld ms\n", cq_host->thist[i].tag, ktime_to_ms(cq_host->thist[i].issue_time)); low32b = lower_32_bits(cq_host->thist[i].task); pr_err(DRV_NAME ": %s, blkcnt:0x%04x, rel_wr:%d, QBR:%d, PRIO:%d, DTAG:%d\n", low32b & (1 << 12) ? "RD" : "WR", (low32b & (0xFFFF << 16)) >> 16, (low32b & (1 << 15)) >> 15, (low32b & (1 << 14)) >> 14, (low32b & (1 << 13)) >> 13, (low32b & (1 << 11)) >> 11); pr_err(DRV_NAME ": context:0x%x, FPROG:%d, ACT:0x%x, INT:%d, END:%d, VALID:%d\n", (low32b & (0xF << 7)) >> 7, (low32b & (1 << 6)) >> 6, (low32b & (0x7 << 3)) >> 3, (low32b & (1 << 2)) >> 2, (low32b & (1 << 1)) >> 1, low32b & 1); } pr_err("-------------------------\n"); } static void cmdq_dump_adma_mem(struct cmdq_host *cq_host) { struct mmc_host *mmc = cq_host->mmc; dma_addr_t desc_dma; int tag = 0; unsigned long data_active_reqs = mmc->cmdq_ctx.data_active_reqs; unsigned long desc_size = (cq_host->mmc->max_segs * cq_host->trans_desc_len); for_each_set_bit(tag, &data_active_reqs, cq_host->num_slots) { desc_dma = get_trans_desc_dma(cq_host, tag); pr_err("%s: %s: tag = %d, trans_dma(phys) = %pad, trans_desc(virt) = 0x%p\n", mmc_hostname(mmc), __func__, tag, &desc_dma, get_trans_desc(cq_host, tag)); print_hex_dump(KERN_ERR, "cmdq-adma:", DUMP_PREFIX_ADDRESS, 32, 8, get_trans_desc(cq_host, tag), (desc_size), false); } } static void cmdq_dumpregs(struct cmdq_host *cq_host) { struct mmc_host *mmc = cq_host->mmc; int offset = 0, err = 0; if (cq_host->offset_changed) offset = CQ_V5_VENDOR_CFG; MMC_TRACE(mmc, "%s: 0x0C=0x%08x 0x10=0x%08x 0x14=0x%08x 0x18=0x%08x 0x28=0x%08x 0x2C=0x%08x 0x30=0x%08x 0x34=0x%08x 0x54=0x%08x 0x58=0x%08x 0x5C=0x%08x 0x48=0x%08x\n", __func__, cmdq_readl(cq_host, CQCTL), cmdq_readl(cq_host, CQIS), cmdq_readl(cq_host, CQISTE), cmdq_readl(cq_host, CQISGE), cmdq_readl(cq_host, CQTDBR), cmdq_readl(cq_host, CQTCN), cmdq_readl(cq_host, CQDQS), cmdq_readl(cq_host, CQDPT), cmdq_readl(cq_host, CQTERRI), cmdq_readl(cq_host, CQCRI), cmdq_readl(cq_host, CQCRA), cmdq_readl(cq_host, CQCRDCT)); pr_err(DRV_NAME ": ========== REGISTER DUMP (%s)==========\n", mmc_hostname(mmc)); pr_err(DRV_NAME ": Caps: 0x%08x | Version: 0x%08x\n", cmdq_readl(cq_host, CQCAP), cmdq_readl(cq_host, CQVER)); pr_err(DRV_NAME ": Queing config: 0x%08x | Queue Ctrl: 0x%08x\n", cmdq_readl(cq_host, CQCFG), cmdq_readl(cq_host, CQCTL)); pr_err(DRV_NAME ": Int stat: 0x%08x | Int enab: 0x%08x\n", cmdq_readl(cq_host, CQIS), cmdq_readl(cq_host, CQISTE)); pr_err(DRV_NAME ": Int sig: 0x%08x | Int Coal: 0x%08x\n", cmdq_readl(cq_host, CQISGE), cmdq_readl(cq_host, CQIC)); pr_err(DRV_NAME ": TDL base: 0x%08x | TDL up32: 0x%08x\n", cmdq_readl(cq_host, CQTDLBA), cmdq_readl(cq_host, CQTDLBAU)); pr_err(DRV_NAME ": Doorbell: 0x%08x | Comp Notif: 0x%08x\n", cmdq_readl(cq_host, CQTDBR), cmdq_readl(cq_host, CQTCN)); pr_err(DRV_NAME ": Dev queue: 0x%08x | Dev Pend: 0x%08x\n", cmdq_readl(cq_host, CQDQS), cmdq_readl(cq_host, CQDPT)); pr_err(DRV_NAME ": Task clr: 0x%08x | Send stat 1: 0x%08x\n", cmdq_readl(cq_host, CQTCLR), cmdq_readl(cq_host, CQSSC1)); pr_err(DRV_NAME ": Send stat 2: 0x%08x | DCMD resp: 0x%08x\n", cmdq_readl(cq_host, CQSSC2), cmdq_readl(cq_host, CQCRDCT)); pr_err(DRV_NAME ": Resp err mask: 0x%08x | Task err: 0x%08x\n", cmdq_readl(cq_host, CQRMEM), cmdq_readl(cq_host, CQTERRI)); pr_err(DRV_NAME ": Resp idx 0x%08x | Resp arg: 0x%08x\n", cmdq_readl(cq_host, CQCRI), cmdq_readl(cq_host, CQCRA)); pr_err(DRV_NAME": Vendor cfg 0x%08x\n", cmdq_readl(cq_host, CQ_VENDOR_CFG + offset)); pr_err(DRV_NAME ": ===========================================\n"); cmdq_crypto_debug(cq_host); err = cmdq_readl(cq_host, CQTERRI); if (err & CQ_RMEFV) pr_err(DRV_NAME ": CMD: %d, err tag: %d\n", GET_CMD_ERR_IDX(err), GET_CMD_ERR_TAG(err)); if (err & CQ_DTEFV) pr_err(DRV_NAME ": DAT: %d, err tag: %d\n", GET_DAT_ERR_IDX(err), GET_DAT_ERR_TAG(err)); cmdq_dump_task_history(cq_host); if (cq_host->ops->dump_vendor_regs) cq_host->ops->dump_vendor_regs(mmc); } /** * The allocated descriptor table for task, link & transfer descritors * looks like: * |----------| * |task desc | |->|----------| * |----------| | |trans desc| * |link desc-|->| |----------| * |----------| . * . . * no. of slots max-segs * . |----------| * |----------| * The idea here is to create the [task+trans] table and mark & point the * link desc to the transfer desc table on a per slot basis. */ static int cmdq_host_alloc_tdl(struct cmdq_host *cq_host) { size_t desc_size; size_t data_size; int i = 0; /* task descriptor can be 64/128 bit irrespective of arch */ if (cq_host->caps & CMDQ_TASK_DESC_SZ_128) { cmdq_writel(cq_host, cmdq_readl(cq_host, CQCFG) | CQ_TASK_DESC_SZ, CQCFG); cq_host->task_desc_len = 16; } else { cq_host->task_desc_len = 8; } /* * 96 bits length of transfer desc instead of 128 bits which means * ADMA would expect next valid descriptor at the 96th bit * or 128th bit */ if (cq_host->dma64) { if (cq_host->quirks & CMDQ_QUIRK_SHORT_TXFR_DESC_SZ) cq_host->trans_desc_len = 12; else cq_host->trans_desc_len = 16; cq_host->link_desc_len = 16; } else { cq_host->trans_desc_len = 8; cq_host->link_desc_len = 8; } /* total size of a slot: 1 task & 1 transfer (link) */ cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len; desc_size = cq_host->slot_sz * cq_host->num_slots; data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs * (cq_host->num_slots - 1); pr_info("%s: desc_size: %d data_sz: %d slot-sz: %d\n", __func__, (int)desc_size, (int)data_size, cq_host->slot_sz); /* * allocate a dma-mapped chunk of memory for the descriptors * allocate a dma-mapped chunk of memory for link descriptors * setup each link-desc memory offset per slot-number to * the descriptor table. */ cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc), desc_size, &cq_host->desc_dma_base, GFP_KERNEL); cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc), data_size, &cq_host->trans_desc_dma_base, GFP_KERNEL); cq_host->thist = devm_kzalloc(mmc_dev(cq_host->mmc), (sizeof(*cq_host->thist) * cq_host->num_slots), GFP_KERNEL); if (!cq_host->desc_base || !cq_host->trans_desc_base) return -ENOMEM; pr_debug("desc-base: 0x%pK trans-base: 0x%pK\n desc_dma 0x%llx trans_dma: 0x%llx\n", cq_host->desc_base, cq_host->trans_desc_base, (unsigned long long)cq_host->desc_dma_base, (unsigned long long) cq_host->trans_desc_dma_base); for (; i < (cq_host->num_slots); i++) setup_trans_desc(cq_host, i); return 0; } static int cmdq_enable(struct mmc_host *mmc) { int err = 0; u32 cqcfg; bool dcmd_enable; struct cmdq_host *cq_host = mmc_cmdq_private(mmc); if (!cq_host || !mmc->card || !mmc_card_cmdq(mmc->card)) { err = -EINVAL; goto out; } if (cq_host->enabled) goto out; cmdq_runtime_pm_get(cq_host); cqcfg = cmdq_readl(cq_host, CQCFG); if (cqcfg & 0x1) { pr_info("%s: %s: cq_host is already enabled\n", mmc_hostname(mmc), __func__); WARN_ON(1); goto pm_ref_count; } if (cq_host->quirks & CMDQ_QUIRK_NO_DCMD) dcmd_enable = false; else dcmd_enable = true; cqcfg = ((cq_host->caps & CMDQ_TASK_DESC_SZ_128 ? CQ_TASK_DESC_SZ : 0) | (dcmd_enable ? CQ_DCMD : 0)); if (cmdq_host_is_crypto_supported(cq_host)) { cmdq_crypto_enable(cq_host); cqcfg |= CQ_ICE_ENABLE; /* For SDHC v5.0 onwards, ICE 3.0 specific registers are added * in CQ register space, due to which few CQ registers are * shifted. Set offset_changed boolean to use updated address. */ cq_host->offset_changed = true; } cmdq_writel(cq_host, cqcfg, CQCFG); /* enable CQ_HOST */ cmdq_writel(cq_host, cmdq_readl(cq_host, CQCFG) | CQ_ENABLE, CQCFG); if (!cq_host->desc_base || !cq_host->trans_desc_base) { err = cmdq_host_alloc_tdl(cq_host); if (err) goto pm_ref_count; } cmdq_writel(cq_host, lower_32_bits(cq_host->desc_dma_base), CQTDLBA); cmdq_writel(cq_host, upper_32_bits(cq_host->desc_dma_base), CQTDLBAU); /* * disable all vendor interrupts * enable CMDQ interrupts * enable the vendor error interrupts */ if (cq_host->ops->clear_set_irqs) cq_host->ops->clear_set_irqs(mmc, true); cmdq_clear_set_irqs(cq_host, 0x0, CQ_INT_ALL); /* cq_host would use this rca to address the card */ cmdq_writel(cq_host, mmc->card->rca, CQSSC2); /* send QSR at lesser intervals than the default */ cmdq_writel(cq_host, SEND_QSR_INTERVAL, CQSSC1); /* enable bkops exception indication */ if (mmc_card_configured_manual_bkops(mmc->card) && !mmc_card_configured_auto_bkops(mmc->card) && mmc->caps2 & MMC_CAP2_BKOPS_EN) cmdq_writel(cq_host, cmdq_readl(cq_host, CQRMEM) | CQ_EXCEPTION, CQRMEM); /* disable write protection violation indication */ cmdq_writel(cq_host, cmdq_readl(cq_host, CQRMEM) & ~(WP_VIOLATION | WP_ERASE_SKIP), CQRMEM); /* ensure the writes are done before enabling CQE */ mb(); cq_host->enabled = true; mmc_host_clr_cq_disable(mmc); if (cq_host->ops->set_transfer_params) cq_host->ops->set_transfer_params(mmc); if (cq_host->ops->set_block_size) cq_host->ops->set_block_size(cq_host->mmc); if (cq_host->ops->set_data_timeout) cq_host->ops->set_data_timeout(mmc, 0xf); if (cq_host->ops->clear_set_dumpregs) cq_host->ops->clear_set_dumpregs(mmc, 1); if (cq_host->ops->enhanced_strobe_mask) cq_host->ops->enhanced_strobe_mask(mmc, true); pm_ref_count: cmdq_runtime_pm_put(cq_host); out: if (err) mmc_cmdq_error_logging(mmc->card, NULL, CQ_EN_DIS_ERR); MMC_TRACE(mmc, "%s: CQ enabled err: %d\n", __func__, err); return err; } static void cmdq_disable_nosync(struct mmc_host *mmc, bool soft) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); if (cmdq_host_is_crypto_supported(cq_host)) cmdq_crypto_disable(cq_host); if (soft) { cmdq_writel(cq_host, cmdq_readl( cq_host, CQCFG) & ~(CQ_ENABLE), CQCFG); } if (cq_host->ops->enhanced_strobe_mask) cq_host->ops->enhanced_strobe_mask(mmc, false); cq_host->enabled = false; mmc_host_set_cq_disable(mmc); MMC_TRACE(mmc, "%s: CQ disabled\n", __func__); } static void cmdq_disable(struct mmc_host *mmc, bool soft) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); cmdq_runtime_pm_get(cq_host); cmdq_disable_nosync(mmc, soft); cmdq_runtime_pm_put(cq_host); } static void cmdq_reset(struct mmc_host *mmc, bool soft) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); unsigned int cqcfg; unsigned int tdlba; unsigned int tdlbau; unsigned int rca; int ret; cmdq_runtime_pm_get(cq_host); cqcfg = cmdq_readl(cq_host, CQCFG); tdlba = cmdq_readl(cq_host, CQTDLBA); tdlbau = cmdq_readl(cq_host, CQTDLBAU); rca = cmdq_readl(cq_host, CQSSC2); cmdq_disable(mmc, true); cmdq_crypto_reset(cq_host); if (cq_host->ops->reset) { ret = cq_host->ops->reset(mmc); if (ret) { pr_crit("%s: reset CMDQ controller: failed\n", mmc_hostname(mmc)); BUG(); } } cmdq_writel(cq_host, tdlba, CQTDLBA); cmdq_writel(cq_host, tdlbau, CQTDLBAU); if (cq_host->ops->clear_set_irqs) cq_host->ops->clear_set_irqs(mmc, true); cmdq_clear_set_irqs(cq_host, 0x0, CQ_INT_ALL); /* cq_host would use this rca to address the card */ cmdq_writel(cq_host, rca, CQSSC2); /* ensure the writes are done before enabling CQE */ mb(); cmdq_writel(cq_host, cqcfg, CQCFG); cmdq_runtime_pm_put(cq_host); cq_host->enabled = true; mmc_host_clr_cq_disable(mmc); } static inline void cmdq_prep_crypto_desc(struct cmdq_host *cq_host, u64 *task_desc, u64 ice_ctx) { u64 *ice_desc = NULL; if (cq_host->caps & CMDQ_CAP_CRYPTO_SUPPORT) { /* * Get the address of ice context for the given task descriptor. * ice context is present in the upper 64bits of task descriptor * ice_conext_base_address = task_desc + 8-bytes */ ice_desc = (u64 *)((u8 *)task_desc + CQ_TASK_DESC_ICE_PARAM_OFFSET); memset(ice_desc, 0, CQ_TASK_DESC_ICE_PARAMS_SIZE); /* * Assign upper 64bits data of task descritor with ice context */ if (ice_ctx) *ice_desc = ice_ctx; } } static void cmdq_prep_task_desc(struct mmc_request *mrq, u64 *data, bool intr, bool qbr) { struct mmc_cmdq_req *cmdq_req = mrq->cmdq_req; u32 req_flags = cmdq_req->cmdq_req_flags; pr_debug("%s: %s: data-tag: 0x%08x - dir: %d - prio: %d - cnt: 0x%08x - addr: 0x%llx\n", mmc_hostname(mrq->host), __func__, !!(req_flags & DAT_TAG), !!(req_flags & DIR), !!(req_flags & PRIO), cmdq_req->data.blocks, (u64)mrq->cmdq_req->blk_addr); *data = VALID(1) | END(1) | INT(intr) | ACT(0x5) | FORCED_PROG(!!(req_flags & FORCED_PRG)) | CONTEXT(mrq->cmdq_req->ctx_id) | DATA_TAG(!!(req_flags & DAT_TAG)) | DATA_DIR(!!(req_flags & DIR)) | PRIORITY(!!(req_flags & PRIO)) | QBAR(qbr) | REL_WRITE(!!(req_flags & REL_WR)) | BLK_COUNT(mrq->cmdq_req->data.blocks) | BLK_ADDR((u64)mrq->cmdq_req->blk_addr); MMC_TRACE(mrq->host, "%s: Task: 0x%08x | Args: 0x%08x | cnt: 0x%08x\n", __func__, lower_32_bits(*data), upper_32_bits(*data), mrq->cmdq_req->data.blocks); } static int cmdq_dma_map(struct mmc_host *host, struct mmc_request *mrq) { int sg_count; struct mmc_data *data = mrq->data; if (!data) return -EINVAL; sg_count = dma_map_sg(mmc_dev(host), data->sg, data->sg_len, (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (!sg_count) { pr_err("%s: sg-len: %d\n", __func__, data->sg_len); return -ENOMEM; } return sg_count; } static void cmdq_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end, bool is_dma64) { __le32 *attr = (__le32 __force *)desc; *attr = (VALID(1) | END(end ? 1 : 0) | INT(0) | ACT(0x4) | DAT_LENGTH(len)); if (is_dma64) { __le64 *dataddr = (__le64 __force *)(desc + 4); dataddr[0] = cpu_to_le64(addr); } else { __le32 *dataddr = (__le32 __force *)(desc + 4); dataddr[0] = cpu_to_le32(addr); } } static int cmdq_prep_tran_desc(struct mmc_request *mrq, struct cmdq_host *cq_host, int tag) { struct mmc_data *data = mrq->data; int i, sg_count, len; bool end = false; dma_addr_t addr; u8 *desc; struct scatterlist *sg; sg_count = cmdq_dma_map(mrq->host, mrq); if (sg_count < 0) { pr_err("%s: %s: unable to map sg lists, %d\n", mmc_hostname(mrq->host), __func__, sg_count); return sg_count; } desc = get_trans_desc(cq_host, tag); memset(desc, 0, cq_host->trans_desc_len * cq_host->mmc->max_segs); for_each_sg(data->sg, sg, sg_count, i) { addr = sg_dma_address(sg); len = sg_dma_len(sg); if ((i+1) == sg_count) end = true; cmdq_set_tran_desc(desc, addr, len, end, cq_host->dma64); desc += cq_host->trans_desc_len; } pr_debug("%s: req: 0x%p tag: %d calc_trans_des: 0x%p sg-cnt: %d\n", __func__, mrq->req, tag, desc, sg_count); return 0; } static void cmdq_log_task_desc_history(struct cmdq_host *cq_host, u64 task, bool is_dcmd, u32 tag) { if (likely(!cq_host->mmc->cmdq_thist_enabled)) return; if (!cq_host->thist) { pr_err("%s: %s: CMDQ task history buffer not allocated\n", mmc_hostname(cq_host->mmc), __func__); return; } if (cq_host->thist_idx >= cq_host->num_slots) cq_host->thist_idx = 0; cq_host->thist[cq_host->thist_idx].is_dcmd = is_dcmd; cq_host->thist[cq_host->thist_idx].tag = tag; cq_host->thist[cq_host->thist_idx].issue_time = ktime_get(); cq_host->thist[cq_host->thist_idx++].task = task; } static void cmdq_prep_dcmd_desc(struct mmc_host *mmc, struct mmc_request *mrq) { u64 *task_desc = NULL; u64 data = 0; u8 resp_type; u8 *desc; __le64 *dataddr; struct cmdq_host *cq_host = mmc_cmdq_private(mmc); u8 timing; if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) { resp_type = 0x0; timing = 0x1; } else { if (mrq->cmd->flags & MMC_RSP_BUSY) { resp_type = 0x3; timing = 0x0; } else { resp_type = 0x2; timing = 0x1; } } task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot); memset(task_desc, 0, cq_host->task_desc_len); data |= (VALID(1) | END(1) | INT(1) | QBAR(1) | ACT(0x5) | CMD_INDEX(mrq->cmd->opcode) | CMD_TIMING(timing) | RESP_TYPE(resp_type)); *task_desc |= data; desc = (u8 *)task_desc; pr_debug("cmdq: dcmd: cmd: %d timing: %d resp: %d\n", mrq->cmd->opcode, timing, resp_type); dataddr = (__le64 __force *)(desc + 4); dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg); cmdq_log_task_desc_history(cq_host, *task_desc, true, DCMD_SLOT); MMC_TRACE(mrq->host, "%s: DCMD: Task: 0x%08x | Args: 0x%08x\n", __func__, lower_32_bits(*task_desc), upper_32_bits(*task_desc)); } static void cmdq_pm_qos_vote(struct sdhci_host *host, struct mmc_request *mrq) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; sdhci_msm_pm_qos_cpu_vote(host, msm_host->pdata->pm_qos_data.cmdq_latency, mrq->req->cpu); } static void cmdq_pm_qos_unvote(struct sdhci_host *host, struct mmc_request *mrq) { /* use async as we're inside an atomic context (soft-irq) */ sdhci_msm_pm_qos_cpu_unvote(host, mrq->req->cpu, true); } static int cmdq_request(struct mmc_host *mmc, struct mmc_request *mrq) { int err = 0; u64 data = 0; u64 *task_desc = NULL; u32 tag = mrq->cmdq_req->tag; struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); struct sdhci_host *host = mmc_priv(mmc); u64 ice_ctx = 0; if (!cq_host->enabled) { pr_err("%s: CMDQ host not enabled yet !!!\n", mmc_hostname(mmc)); err = -EINVAL; goto out; } cmdq_runtime_pm_get(cq_host); if (mrq->cmdq_req->cmdq_req_flags & DCMD) { cmdq_prep_dcmd_desc(mmc, mrq); cq_host->mrq_slot[DCMD_SLOT] = mrq; /* DCMD's are always issued on a fixed slot */ tag = DCMD_SLOT; goto ring_doorbell; } err = cmdq_crypto_get_ctx(cq_host, mrq, &ice_ctx); if (err) { mmc->err_stats[MMC_ERR_ICE_CFG]++; pr_err("%s: failed to retrieve crypto ctx for tag %d\n", mmc_hostname(mmc), tag); goto ice_err; } task_desc = (__le64 __force *)get_desc(cq_host, tag); cmdq_prep_task_desc(mrq, &data, 1, (mrq->cmdq_req->cmdq_req_flags & QBR)); *task_desc = cpu_to_le64(data); cmdq_prep_crypto_desc(cq_host, task_desc, ice_ctx); cmdq_log_task_desc_history(cq_host, *task_desc, false, tag); err = cmdq_prep_tran_desc(mrq, cq_host, tag); if (err) { pr_err("%s: %s: failed to setup tx desc: %d\n", mmc_hostname(mmc), __func__, err); goto out; } cq_host->mrq_slot[tag] = mrq; /* PM QoS */ sdhci_msm_pm_qos_irq_vote(host); cmdq_pm_qos_vote(host, mrq); ring_doorbell: /* Ensure the task descriptor list is flushed before ringing doorbell */ wmb(); if (cmdq_readl(cq_host, CQTDBR) & (1 << tag)) { cmdq_dumpregs(cq_host); BUG_ON(1); } MMC_TRACE(mmc, "%s: tag: %d\n", __func__, tag); cmdq_writel(cq_host, 1 << tag, CQTDBR); /* Commit the doorbell write immediately */ wmb(); return err; ice_err: if (err) cmdq_runtime_pm_put(cq_host); out: return err; } static void cmdq_finish_data(struct mmc_host *mmc, unsigned int tag) { struct mmc_request *mrq; struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); int offset = 0; if (cq_host->offset_changed) offset = CQ_V5_VENDOR_CFG; mrq = get_req_by_tag(cq_host, tag); if (tag == cq_host->dcmd_slot) mrq->cmd->resp[0] = cmdq_readl(cq_host, CQCRDCT); cmdq_complete_crypto_desc(cq_host, mrq, NULL); if (mrq->cmdq_req->cmdq_req_flags & DCMD) cmdq_writel(cq_host, cmdq_readl(cq_host, CQ_VENDOR_CFG + offset) | CMDQ_SEND_STATUS_TRIGGER, CQ_VENDOR_CFG + offset); cmdq_runtime_pm_put(cq_host); mrq->done(mrq); } #ifdef CONFIG_FAIL_MMC_REQUEST static int cmdq_should_inject_err(struct mmc_host *mmc, int *err, unsigned int *dbr_set, unsigned int *status) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); static const int errors[] = { -ETIMEDOUT, -EILSEQ, -EIO, }; *dbr_set = cmdq_readl(cq_host, CQTDBR); if (*dbr_set && should_fail(&mmc->fail_mmc_request, (prandom_u32() % 1024) * 512)) { pr_err("%s *** Before inducing force err, status (%d) error(%d) dbr(0x%x), active_reqs(0x%lx), data_active_reqs(0x%lx)\n", __func__, *status, *err, *dbr_set, mmc->cmdq_ctx.active_reqs, mmc->cmdq_ctx.data_active_reqs); *err = errors[prandom_u32() % ARRAY_SIZE(errors)]; *status = 0; pr_err("%s *** After inducing force err, status (%d) error(%d) dbr(0x%x), active_reqs(0x%lx), data_active_reqs(0x%lx)\n", __func__, *status, *err, *dbr_set, mmc->cmdq_ctx.active_reqs, mmc->cmdq_ctx.data_active_reqs); return true; } return false; } #else static int cmdq_should_inject_err(struct mmc_host *mmc, int *err, unsigned int *dbr_set, unsigned int *status) { return false; } #endif irqreturn_t cmdq_irq(struct mmc_host *mmc, int err) { u32 status; unsigned long tag = 0, comp_status; struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); unsigned long err_info = 0; struct mmc_request *mrq; int ret; u32 dbr_set = 0; u32 dev_pend_set = 0; int stat_err = 0; bool err_inject = false; status = cmdq_readl(cq_host, CQIS); err_inject = cmdq_should_inject_err(mmc, &err, &dbr_set, &status); if (!status && !err) return IRQ_NONE; MMC_TRACE(mmc, "%s: CQIS: 0x%x err: %d\n", __func__, status, err); stat_err = status & (CQIS_RED | CQIS_GCE | CQIS_ICCE); if (err || stat_err) { err_info = cmdq_readl(cq_host, CQTERRI); pr_err("%s: err: %d status: 0x%08x task-err-info (0x%08lx)\n", mmc_hostname(mmc), err, status, err_info); cmdq_dumpregs(cq_host); /* * Need to halt CQE in case of error in interrupt context itself * otherwise CQE may proceed with sending CMD to device even if * CQE/card is in error state. * CMDQ error handling will make sure that it is unhalted after * handling all the errors. */ ret = cmdq_halt_poll(mmc, true); if (ret) pr_err("%s: %s: halt failed ret=%d\n", mmc_hostname(mmc), __func__, ret); /* * Clear the CQIS after halting incase of error. This is done * because if CQIS is cleared before halting, the CQ will * continue with issueing commands for rest of requests with * Doorbell rung. This will overwrite the Resp Arg register. * So CQ must be halted first and then CQIS cleared incase * of error */ cmdq_writel(cq_host, status, CQIS); if (!err_info) { /* * It may so happen sometimes for few errors(like ADMA) * that HW cannot give CQTERRI info. * Thus below is a HW WA for recovering from such * scenario. * - To halt/disable CQE and do reset_all. * Since there is no way to know which tag would * have caused such error, so check for any first * bit set in doorbell and proceed with an error. */ if (!dbr_set) dbr_set = cmdq_readl(cq_host, CQTDBR); if (!dbr_set) { pr_err("%s: spurious/force error interrupt\n", mmc_hostname(mmc)); cmdq_halt_poll(mmc, false); mmc_host_clr_halt(mmc); return IRQ_HANDLED; } tag = ffs(dbr_set) - 1; pr_err("%s: error tag selected: tag = %lu\n", mmc_hostname(mmc), tag); mrq = get_req_by_tag(cq_host, tag); if (mrq->data) mrq->data->error = err; else mrq->cmd->error = err; /* * Get ADMA descriptor memory in case of real ADMA * error for debug. */ if (err == -EIO && !err_inject) cmdq_dump_adma_mem(cq_host); goto skip_cqterri; } if (err_info & CQ_RMEFV) { tag = GET_CMD_ERR_TAG(err_info); pr_err("%s: CMD err tag: %lu\n", __func__, tag); mrq = get_req_by_tag(cq_host, tag); /* CMD44/45/46/47 will not have a valid cmd */ if (mrq->cmd) mrq->cmd->error = err; else mrq->data->error = err; } else { tag = GET_DAT_ERR_TAG(err_info); pr_err("%s: Dat err tag: %lu\n", __func__, tag); mrq = get_req_by_tag(cq_host, tag); mrq->data->error = err; } skip_cqterri: /* * If CQE halt fails then, disable CQE * from processing any further requests */ if (ret) { cmdq_disable_nosync(mmc, true); /* * Enable legacy interrupts as CQE halt has failed. * This is needed to send legacy commands like status * cmd as part of error handling work. */ if (cq_host->ops->clear_set_irqs) cq_host->ops->clear_set_irqs(mmc, false); } /* * CQE detected a response error from device * In most cases, this would require a reset. */ if (stat_err & CQIS_RED) { /* * will check if the RED error is due to a bkops * exception once the queue is empty */ BUG_ON(!mmc->card); if (mmc_card_configured_manual_bkops(mmc->card) || mmc_card_configured_auto_bkops(mmc->card)) mmc->card->bkops.needs_check = true; mrq->cmdq_req->resp_err = true; mmc->err_stats[MMC_ERR_CMDQ_RED]++; pr_err("%s: Response error (0x%08x) from card !!!", mmc_hostname(mmc), cmdq_readl(cq_host, CQCRA)); } else { mrq->cmdq_req->resp_idx = cmdq_readl(cq_host, CQCRI); mrq->cmdq_req->resp_arg = cmdq_readl(cq_host, CQCRA); } /* * Generic Crypto error detected by CQE. * Its a fatal, would require cmdq reset. */ if (stat_err & CQIS_GCE) { if (mrq->data) mrq->data->error = -EIO; mmc->err_stats[MMC_ERR_CMDQ_GCE]++; pr_err("%s: Crypto generic error while processing task %lu!", mmc_hostname(mmc), tag); MMC_TRACE(mmc, "%s: GCE error detected with tag %lu\n", __func__, tag); } /* * Invalid crypto config error detected by CQE, clear the task. * Task can be cleared only when CQE is halt state. */ if (stat_err & CQIS_ICCE) { /* * Invalid Crypto Config Error is detected at the * beginning of the transfer before the actual execution * started. So just clear the task in CQE. No need to * clear in device. Only the task which caused ICCE has * to be cleared. Other tasks can be continue processing * The first task which is about to be prepared would * cause ICCE Error. */ dbr_set = cmdq_readl(cq_host, CQTDBR); dev_pend_set = cmdq_readl(cq_host, CQDPT); if (dbr_set ^ dev_pend_set) tag = ffs(dbr_set ^ dev_pend_set) - 1; mrq = get_req_by_tag(cq_host, tag); mmc->err_stats[MMC_ERR_CMDQ_ICCE]++; pr_err("%s: Crypto config error while processing task %lu!", mmc_hostname(mmc), tag); MMC_TRACE(mmc, "%s: ICCE error with tag %lu\n", __func__, tag); if (mrq->data) mrq->data->error = -EIO; else if (mrq->cmd) mrq->cmd->error = -EIO; /* * If CQE is halted and tag is valid then clear the task * then un-halt CQE and set flag to skip error recovery. * If any of the condtions is not met thene it will * enter into default error recovery path. */ if (!ret && (dbr_set ^ dev_pend_set)) { ret = cmdq_clear_task_poll(cq_host, tag); if (ret) { pr_err("%s: %s: task[%lu] clear failed ret=%d\n", mmc_hostname(mmc), __func__, tag, ret); } else if (!cmdq_halt_poll(mmc, false)) { mrq->cmdq_req->skip_err_handling = true; } } } if (err_inject && err == -ETIMEDOUT) goto hac; cmdq_finish_data(mmc, tag); goto hac; } else { cmdq_writel(cq_host, status, CQIS); } if (status & CQIS_TCC) { /* read CQTCN and complete the request */ comp_status = cmdq_readl(cq_host, CQTCN); if (!comp_status) goto hac; /* * The CQTCN must be cleared before notifying req completion * to upper layers to avoid missing completion notification * of new requests with the same tag. */ cmdq_writel(cq_host, comp_status, CQTCN); /* * A write memory barrier is necessary to guarantee that CQTCN * gets cleared first before next doorbell for the same tag is * set but that is already achieved by the barrier present * before setting doorbell, hence one is not needed here. */ for_each_set_bit(tag, &comp_status, cq_host->num_slots) { mrq = get_req_by_tag(cq_host, tag); if (!((mrq->cmd && mrq->cmd->error) || mrq->cmdq_req->resp_err || (mrq->data && mrq->data->error))) { /* complete the corresponding mrq */ pr_debug("%s: completing tag -> %lu\n", mmc_hostname(mmc), tag); MMC_TRACE(mmc, "%s: completing tag -> %lu\n", __func__, tag); cmdq_finish_data(mmc, tag); } } } hac: if (status & CQIS_HAC) { if (cq_host->ops->post_cqe_halt) cq_host->ops->post_cqe_halt(mmc); /* halt done: re-enable legacy interrupts */ if (cq_host->ops->clear_set_irqs) cq_host->ops->clear_set_irqs(mmc, false); /* halt is completed, wakeup waiting thread */ complete(&cq_host->halt_comp); } return IRQ_HANDLED; } EXPORT_SYMBOL(cmdq_irq); /* cmdq_halt_poll - Halting CQE using polling method. * @mmc: struct mmc_host * @halt: bool halt * This is used mainly from interrupt context to halt/unhalt * CQE engine. */ static int cmdq_halt_poll(struct mmc_host *mmc, bool halt) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); int retries = 100; if (!halt) { if (cq_host->ops->set_data_timeout) cq_host->ops->set_data_timeout(mmc, 0xf); if (cq_host->ops->clear_set_irqs) cq_host->ops->clear_set_irqs(mmc, true); cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) & ~HALT, CQCTL); mmc_host_clr_halt(mmc); return 0; } cmdq_set_halt_irq(cq_host, false); cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) | HALT, CQCTL); while (retries) { if (!(cmdq_readl(cq_host, CQCTL) & HALT)) { udelay(5); retries--; continue; } else { if (cq_host->ops->post_cqe_halt) cq_host->ops->post_cqe_halt(mmc); /* halt done: re-enable legacy interrupts */ if (cq_host->ops->clear_set_irqs) cq_host->ops->clear_set_irqs(mmc, false); mmc_host_set_halt(mmc); break; } } cmdq_set_halt_irq(cq_host, true); return retries ? 0 : -ETIMEDOUT; } /* May sleep */ static int cmdq_halt(struct mmc_host *mmc, bool halt) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); u32 ret = 0; u32 config = 0; int retries = 3; cmdq_runtime_pm_get(cq_host); if (halt) { while (retries) { cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) | HALT, CQCTL); ret = wait_for_completion_timeout(&cq_host->halt_comp, msecs_to_jiffies(HALT_TIMEOUT_MS)); if (!ret) { pr_warn("%s: %s: HAC int timeout\n", mmc_hostname(mmc), __func__); if ((cmdq_readl(cq_host, CQCTL) & HALT)) { /* * Don't retry if CQE is halted but irq * is not triggered in timeout period. * And since we are returning error, * un-halt CQE. Since irq was not fired * yet, no need to set other params */ retries = 0; config = cmdq_readl(cq_host, CQCTL); config &= ~HALT; cmdq_writel(cq_host, config, CQCTL); } else { pr_warn("%s: %s: retryng halt (%d)\n", mmc_hostname(mmc), __func__, retries); retries--; continue; } } else { MMC_TRACE(mmc, "%s: halt done , retries: %d\n", __func__, retries); break; } } ret = retries ? 0 : -ETIMEDOUT; } else { if (cq_host->ops->set_transfer_params) cq_host->ops->set_transfer_params(mmc); if (cq_host->ops->set_block_size) cq_host->ops->set_block_size(mmc); if (cq_host->ops->set_data_timeout) cq_host->ops->set_data_timeout(mmc, 0xf); if (cq_host->ops->clear_set_irqs) cq_host->ops->clear_set_irqs(mmc, true); MMC_TRACE(mmc, "%s: unhalt done\n", __func__); cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) & ~HALT, CQCTL); } cmdq_runtime_pm_put(cq_host); return ret; } static void cmdq_post_req(struct mmc_host *mmc, int tag, int err) { struct cmdq_host *cq_host; struct mmc_request *mrq; struct mmc_data *data; struct sdhci_host *sdhci_host = mmc_priv(mmc); if (WARN_ON(!mmc)) return; cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); mrq = get_req_by_tag(cq_host, tag); data = mrq->data; if (data) { data->error = err; dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, (data->flags & MMC_DATA_READ) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); if (err) data->bytes_xfered = 0; else data->bytes_xfered = blk_rq_bytes(mrq->req); /* we're in atomic context (soft-irq) so unvote async. */ sdhci_msm_pm_qos_irq_unvote(sdhci_host, true); cmdq_pm_qos_unvote(sdhci_host, mrq); } } static void cmdq_dumpstate(struct mmc_host *mmc) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); cmdq_runtime_pm_get(cq_host); cmdq_dumpregs(cq_host); cmdq_runtime_pm_put(cq_host); } static int cmdq_late_init(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; /* * TODO: This should basically move to something like "sdhci-cmdq-msm" * for msm specific implementation. */ sdhci_msm_pm_qos_irq_init(host); if (msm_host->pdata->pm_qos_data.cmdq_valid) sdhci_msm_pm_qos_cpu_init(host, msm_host->pdata->pm_qos_data.cmdq_latency); return 0; } static void cqhci_crypto_update_queue(struct mmc_host *mmc, struct request_queue *queue) { struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc); if (cq_host->caps & CMDQ_CAP_CRYPTO_SUPPORT) { if (queue) cmdq_crypto_setup_rq_keyslot_manager(cq_host, queue); else pr_err("%s can not register keyslot manager\n", __func__); } } static const struct mmc_cmdq_host_ops cmdq_host_ops = { .init = cmdq_late_init, .enable = cmdq_enable, .disable = cmdq_disable, .request = cmdq_request, .post_req = cmdq_post_req, .halt = cmdq_halt, .reset = cmdq_reset, .dumpstate = cmdq_dumpstate, .cqe_crypto_update_queue = cqhci_crypto_update_queue, }; struct cmdq_host *cmdq_pltfm_init(struct platform_device *pdev) { struct cmdq_host *cq_host; struct resource *cmdq_memres = NULL; /* check and setup CMDQ interface */ cmdq_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cmdq_mem"); if (!cmdq_memres) { dev_dbg(&pdev->dev, "CMDQ not supported\n"); return ERR_PTR(-EINVAL); } cq_host = kzalloc(sizeof(*cq_host), GFP_KERNEL); if (!cq_host) return ERR_PTR(-ENOMEM); cq_host->mmio = devm_ioremap(&pdev->dev, cmdq_memres->start, resource_size(cmdq_memres)); if (!cq_host->mmio) { dev_err(&pdev->dev, "failed to remap cmdq regs\n"); kfree(cq_host); return ERR_PTR(-EBUSY); } dev_dbg(&pdev->dev, "CMDQ ioremap: done\n"); return cq_host; } EXPORT_SYMBOL(cmdq_pltfm_init); int cmdq_init(struct cmdq_host *cq_host, struct mmc_host *mmc, bool dma64) { int err = 0; cq_host->dma64 = dma64; cq_host->mmc = mmc; cq_host->mmc->cmdq_private = cq_host; cq_host->num_slots = NUM_SLOTS; cq_host->dcmd_slot = DCMD_SLOT; mmc->cmdq_ops = &cmdq_host_ops; mmc->num_cq_slots = NUM_SLOTS; mmc->dcmd_cq_slot = DCMD_SLOT; /* cmdq_task_history */ mmc->cmdq_thist_enabled = true; cq_host->mrq_slot = kcalloc(cq_host->num_slots, sizeof(cq_host->mrq_slot), GFP_KERNEL); if (!cq_host->mrq_slot) return -ENOMEM; err = cmdq_host_init_crypto(cq_host); if (err) pr_err("%s: CMDQ Crypto init failed err %d\n", err); init_completion(&cq_host->halt_comp); return err; } EXPORT_SYMBOL(cmdq_init);