/* * Copyright (c) 2016-2017, 2019-2020, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "RRADC: %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #define FG_ADC_RR_EN_CTL 0x46 #define FG_ADC_RR_SKIN_TEMP_LSB 0x50 #define FG_ADC_RR_SKIN_TEMP_MSB 0x51 #define FG_ADC_RR_RR_ADC_CTL 0x52 #define FG_ADC_RR_ADC_CTL_CONTINUOUS_SEL_MASK 0x8 #define FG_ADC_RR_ADC_CTL_CONTINUOUS_SEL BIT(3) #define FG_ADC_RR_ADC_LOG 0x53 #define FG_ADC_RR_ADC_LOG_CLR_CTRL BIT(0) #define FG_ADC_RR_FAKE_BATT_LOW_LSB 0x58 #define FG_ADC_RR_FAKE_BATT_LOW_MSB 0x59 #define FG_ADC_RR_FAKE_BATT_HIGH_LSB 0x5A #define FG_ADC_RR_FAKE_BATT_HIGH_MSB 0x5B #define FG_ADC_RR_BATT_ID_CTRL 0x60 #define FG_ADC_RR_BATT_ID_CTRL_CHANNEL_CONV BIT(0) #define FG_ADC_RR_BATT_ID_TRIGGER 0x61 #define FG_ADC_RR_BATT_ID_TRIGGER_CTL BIT(0) #define FG_ADC_RR_BATT_ID_STS 0x62 #define FG_ADC_RR_BATT_ID_CFG 0x63 #define FG_ADC_RR_BATT_ID_5_LSB 0x66 #define FG_ADC_RR_BATT_ID_5_MSB 0x67 #define FG_ADC_RR_BATT_ID_15_LSB 0x68 #define FG_ADC_RR_BATT_ID_15_MSB 0x69 #define FG_ADC_RR_BATT_ID_150_LSB 0x6A #define FG_ADC_RR_BATT_ID_150_MSB 0x6B #define FG_ADC_RR_BATT_THERM_CTRL 0x70 #define FG_ADC_RR_BATT_THERM_TRIGGER 0x71 #define FG_ADC_RR_BATT_THERM_STS 0x72 #define FG_ADC_RR_BATT_THERM_CFG 0x73 #define FG_ADC_RR_BATT_THERM_LSB 0x74 #define FG_ADC_RR_BATT_THERM_MSB 0x75 #define FG_ADC_RR_BATT_THERM_FREQ 0x76 #define FG_ADC_RR_AUX_THERM_CTRL 0x80 #define FG_ADC_RR_AUX_THERM_TRIGGER 0x81 #define FG_ADC_RR_AUX_THERM_STS 0x82 #define FG_ADC_RR_AUX_THERM_CFG 0x83 #define FG_ADC_RR_AUX_THERM_LSB 0x84 #define FG_ADC_RR_AUX_THERM_MSB 0x85 #define FG_ADC_RR_SKIN_HOT 0x86 #define FG_ADC_RR_SKIN_TOO_HOT 0x87 #define FG_ADC_RR_AUX_THERM_C1 0x88 #define FG_ADC_RR_AUX_THERM_C2 0x89 #define FG_ADC_RR_AUX_THERM_C3 0x8A #define FG_ADC_RR_AUX_THERM_HALF_RANGE 0x8B #define FG_ADC_RR_USB_IN_V_CTRL 0x90 #define FG_ADC_RR_USB_IN_V_TRIGGER 0x91 #define FG_ADC_RR_USB_IN_V_EVERY_CYCLE_MASK 0x80 #define FG_ADC_RR_USB_IN_V_EVERY_CYCLE BIT(7) #define FG_ADC_RR_USB_IN_V_STS 0x92 #define FG_ADC_RR_USB_IN_V_LSB 0x94 #define FG_ADC_RR_USB_IN_V_MSB 0x95 #define FG_ADC_RR_USB_IN_I_CTRL 0x98 #define FG_ADC_RR_USB_IN_I_TRIGGER 0x99 #define FG_ADC_RR_USB_IN_I_STS 0x9A #define FG_ADC_RR_USB_IN_I_LSB 0x9C #define FG_ADC_RR_USB_IN_I_MSB 0x9D #define FG_ADC_RR_DC_IN_V_CTRL 0xA0 #define FG_ADC_RR_DC_IN_V_TRIGGER 0xA1 #define FG_ADC_RR_DC_IN_V_STS 0xA2 #define FG_ADC_RR_DC_IN_V_LSB 0xA4 #define FG_ADC_RR_DC_IN_V_MSB 0xA5 #define FG_ADC_RR_DC_IN_I_CTRL 0xA8 #define FG_ADC_RR_DC_IN_I_TRIGGER 0xA9 #define FG_ADC_RR_DC_IN_I_STS 0xAA #define FG_ADC_RR_DC_IN_I_LSB 0xAC #define FG_ADC_RR_DC_IN_I_MSB 0xAD #define FG_ADC_RR_PMI_DIE_TEMP_CTRL 0xB0 #define FG_ADC_RR_PMI_DIE_TEMP_TRIGGER 0xB1 #define FG_ADC_RR_PMI_DIE_TEMP_STS 0xB2 #define FG_ADC_RR_PMI_DIE_TEMP_CFG 0xB3 #define FG_ADC_RR_PMI_DIE_TEMP_LSB 0xB4 #define FG_ADC_RR_PMI_DIE_TEMP_MSB 0xB5 #define FG_ADC_RR_CHARGER_TEMP_CTRL 0xB8 #define FG_ADC_RR_CHARGER_TEMP_TRIGGER 0xB9 #define FG_ADC_RR_CHARGER_TEMP_STS 0xBA #define FG_ADC_RR_CHARGER_TEMP_CFG 0xBB #define FG_ADC_RR_CHARGER_TEMP_LSB 0xBC #define FG_ADC_RR_CHARGER_TEMP_MSB 0xBD #define FG_ADC_RR_CHARGER_HOT 0xBE #define FG_ADC_RR_CHARGER_TOO_HOT 0xBF #define FG_ADC_RR_GPIO_CTRL 0xC0 #define FG_ADC_RR_GPIO_TRIGGER 0xC1 #define FG_ADC_RR_GPIO_STS 0xC2 #define FG_ADC_RR_GPIO_LSB 0xC4 #define FG_ADC_RR_GPIO_MSB 0xC5 #define FG_ADC_RR_ATEST_CTRL 0xC8 #define FG_ADC_RR_ATEST_TRIGGER 0xC9 #define FG_ADC_RR_ATEST_STS 0xCA #define FG_ADC_RR_ATEST_LSB 0xCC #define FG_ADC_RR_ATEST_MSB 0xCD #define FG_ADC_RR_SEC_ACCESS 0xD0 #define FG_ADC_RR_PERPH_RESET_CTL2 0xD9 #define FG_ADC_RR_PERPH_RESET_CTL3 0xDA #define FG_ADC_RR_PERPH_RESET_CTL4 0xDB #define FG_ADC_RR_INT_TEST1 0xE0 #define FG_ADC_RR_INT_TEST_VAL 0xE1 #define FG_ADC_RR_TM_TRIGGER_CTRLS 0xE2 #define FG_ADC_RR_TM_ADC_CTRLS 0xE3 #define FG_ADC_RR_TM_CNL_CTRL 0xE4 #define FG_ADC_RR_TM_BATT_ID_CTRL 0xE5 #define FG_ADC_RR_TM_THERM_CTRL 0xE6 #define FG_ADC_RR_TM_CONV_STS 0xE7 #define FG_ADC_RR_TM_ADC_READ_LSB 0xE8 #define FG_ADC_RR_TM_ADC_READ_MSB 0xE9 #define FG_ADC_RR_TM_ATEST_MUX_1 0xEA #define FG_ADC_RR_TM_ATEST_MUX_2 0xEB #define FG_ADC_RR_TM_REFERENCES 0xED #define FG_ADC_RR_TM_MISC_CTL 0xEE #define FG_ADC_RR_TM_RR_CTRL 0xEF #define FG_ADC_RR_BATT_ID_5_MA 5 #define FG_ADC_RR_BATT_ID_15_MA 15 #define FG_ADC_RR_BATT_ID_150_MA 150 #define FG_ADC_RR_BATT_ID_RANGE 820 #define FG_ADC_BITS 10 #define FG_MAX_ADC_READINGS (1 << FG_ADC_BITS) #define FG_ADC_RR_FS_VOLTAGE_MV 2500 /* BATT_THERM 0.25K/LSB */ #define FG_ADC_RR_BATT_THERM_LSB_K 4 #define FG_ADC_RR_TEMP_FS_VOLTAGE_NUM 5000000 #define FG_ADC_RR_TEMP_FS_VOLTAGE_DEN 3 #define FG_ADC_RR_DIE_TEMP_OFFSET 601400 #define FG_ADC_RR_DIE_TEMP_SLOPE 2 #define FG_ADC_RR_DIE_TEMP_OFFSET_MILLI_DEGC 25000 #define FG_ADC_RR_CHG_TEMP_GF_OFFSET_UV 1303168 #define FG_ADC_RR_CHG_TEMP_GF_SLOPE_UV_PER_C 3784 #define FG_ADC_RR_CHG_TEMP_SMIC_OFFSET_UV 1338433 #define FG_ADC_RR_CHG_TEMP_SMIC_SLOPE_UV_PER_C 3655 #define FG_ADC_RR_CHG_TEMP_660_GF_OFFSET_UV 1309001 #define FG_RR_CHG_TEMP_660_GF_SLOPE_UV_PER_C 3403 #define FG_ADC_RR_CHG_TEMP_660_SMIC_OFFSET_UV 1295898 #define FG_RR_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C 3596 #define FG_ADC_RR_CHG_TEMP_660_MGNA_OFFSET_UV 1314779 #define FG_RR_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C 3496 #define FG_ADC_RR_CHG_TEMP_OFFSET_MILLI_DEGC 25000 #define FG_ADC_RR_CHG_THRESHOLD_SCALE 4 #define FG_ADC_RR_VOLT_INPUT_FACTOR 8 #define FG_ADC_RR_CURR_INPUT_FACTOR 2000 #define FG_ADC_RR_CURR_USBIN_INPUT_FACTOR_MIL 1886 #define FG_ADC_RR_CURR_USBIN_660_FACTOR_MIL 9 #define FG_ADC_RR_CURR_USBIN_660_UV_VAL 579500 #define FG_ADC_SCALE_MILLI_FACTOR 1000 #define FG_ADC_KELVINMIL_CELSIUSMIL 273150 #define FG_ADC_RR_GPIO_FS_RANGE 5000 #define FG_RR_ADC_COHERENT_CHECK_RETRY 5 #define FG_RR_ADC_MAX_CONTINUOUS_BUFFER_LEN 16 #define FG_RR_ADC_STS_CHANNEL_READING_MASK 0x3 #define FG_RR_ADC_STS_CHANNEL_STS 0x2 #define FG_RR_CONV_CONTINUOUS_TIME_MIN_MS 50 #define FG_RR_CONV_MAX_RETRY_CNT 50 #define FG_RR_TP_REV_VERSION1 21 #define FG_RR_TP_REV_VERSION2 29 #define FG_RR_TP_REV_VERSION3 32 #define BATT_ID_SETTLE_SHIFT 5 #define RRADC_BATT_ID_DELAY_MAX 8 /* * The channel number is not a physical index in hardware, * rather it's a list of supported channels and an index to * select the respective channel properties such as scaling * the result. Add any new additional channels supported by * the RR ADC before RR_ADC_MAX. */ enum rradc_channel_id { RR_ADC_BATT_ID = 0, RR_ADC_BATT_THERM, RR_ADC_SKIN_TEMP, RR_ADC_USBIN_I, RR_ADC_USBIN_V, RR_ADC_DCIN_I, RR_ADC_DCIN_V, RR_ADC_DIE_TEMP, RR_ADC_CHG_TEMP, RR_ADC_GPIO, RR_ADC_CHG_HOT_TEMP, RR_ADC_CHG_TOO_HOT_TEMP, RR_ADC_SKIN_HOT_TEMP, RR_ADC_SKIN_TOO_HOT_TEMP, RR_ADC_MAX }; struct rradc_chip { struct device *dev; struct mutex lock; struct regmap *regmap; u16 base; int batt_id_delay; struct iio_chan_spec *iio_chans; unsigned int nchannels; struct rradc_chan_prop *chan_props; struct device_node *revid_dev_node; struct pmic_revid_data *pmic_fab_id; int volt; struct power_supply *usb_trig; }; struct rradc_channels { const char *datasheet_name; enum iio_chan_type type; long info_mask; u8 lsb; u8 msb; u8 sts; int (*scale)(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result); }; struct rradc_chan_prop { enum rradc_channel_id channel; uint32_t channel_data; int (*scale)(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result); }; static const int batt_id_delays[] = {0, 1, 4, 12, 20, 40, 60, 80}; static int rradc_masked_write(struct rradc_chip *rr_adc, u16 offset, u8 mask, u8 val) { int rc; rc = regmap_update_bits(rr_adc->regmap, rr_adc->base + offset, mask, val); if (rc) { pr_err("spmi write failed: addr=%03X, rc=%d\n", offset, rc); return rc; } return rc; } static int rradc_read(struct rradc_chip *rr_adc, u16 offset, u8 *data, int len) { int rc = 0, retry_cnt = 0, i = 0; u8 data_check[FG_RR_ADC_MAX_CONTINUOUS_BUFFER_LEN]; bool coherent_err = false; if (len > FG_RR_ADC_MAX_CONTINUOUS_BUFFER_LEN) { pr_err("Increase the buffer length\n"); return -EINVAL; } while (retry_cnt < FG_RR_ADC_COHERENT_CHECK_RETRY) { rc = regmap_bulk_read(rr_adc->regmap, rr_adc->base + offset, data, len); if (rc < 0) { pr_err("rr_adc reg 0x%x failed :%d\n", offset, rc); return rc; } rc = regmap_bulk_read(rr_adc->regmap, rr_adc->base + offset, data_check, len); if (rc < 0) { pr_err("rr_adc reg 0x%x failed :%d\n", offset, rc); return rc; } for (i = 0; i < len; i++) { if (data[i] != data_check[i]) coherent_err = true; } if (coherent_err) { retry_cnt++; coherent_err = false; pr_debug("retry_cnt:%d\n", retry_cnt); } else { break; } } if (retry_cnt == FG_RR_ADC_COHERENT_CHECK_RETRY) pr_err("Retry exceeded for coherrency check\n"); return rc; } static int rradc_post_process_batt_id(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_ohms) { uint32_t current_value; int64_t r_id; current_value = prop->channel_data; r_id = ((int64_t)adc_code * FG_ADC_RR_FS_VOLTAGE_MV); r_id = div64_s64(r_id, (FG_MAX_ADC_READINGS * current_value)); *result_ohms = (r_id * FG_ADC_SCALE_MILLI_FACTOR); return 0; } static int rradc_post_process_therm(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_millidegc) { int64_t temp; /* K = code/4 */ temp = ((int64_t)adc_code * FG_ADC_SCALE_MILLI_FACTOR); temp = div64_s64(temp, FG_ADC_RR_BATT_THERM_LSB_K); *result_millidegc = temp - FG_ADC_KELVINMIL_CELSIUSMIL; return 0; } static int rradc_post_process_volt(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_uv) { int64_t uv = 0; /* 8x input attenuation; 2.5V ADC full scale */ uv = ((int64_t)adc_code * FG_ADC_RR_VOLT_INPUT_FACTOR); uv *= (FG_ADC_RR_FS_VOLTAGE_MV * FG_ADC_SCALE_MILLI_FACTOR); uv = div64_s64(uv, FG_MAX_ADC_READINGS); *result_uv = uv; return 0; } static int rradc_post_process_usbin_curr(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_ua) { int64_t ua = 0, scale = 0; if (!prop) return -EINVAL; if (chip->revid_dev_node) { switch (chip->pmic_fab_id->pmic_subtype) { case PM660_SUBTYPE: if (((chip->pmic_fab_id->tp_rev >= FG_RR_TP_REV_VERSION1) && (chip->pmic_fab_id->tp_rev <= FG_RR_TP_REV_VERSION2)) || (chip->pmic_fab_id->tp_rev >= FG_RR_TP_REV_VERSION3)) { chip->volt = div64_s64(chip->volt, 1000); chip->volt = chip->volt * FG_ADC_RR_CURR_USBIN_660_FACTOR_MIL; chip->volt = FG_ADC_RR_CURR_USBIN_660_UV_VAL - (chip->volt); chip->volt = div64_s64(1000000000, chip->volt); scale = chip->volt; } else scale = FG_ADC_RR_CURR_USBIN_INPUT_FACTOR_MIL; break; case PMI8998_SUBTYPE: scale = FG_ADC_RR_CURR_USBIN_INPUT_FACTOR_MIL; break; default: pr_err("No PMIC subtype found\n"); return -EINVAL; } } /* scale * V/A; 2.5V ADC full scale */ ua = ((int64_t)adc_code * scale); ua *= (FG_ADC_RR_FS_VOLTAGE_MV * FG_ADC_SCALE_MILLI_FACTOR); ua = div64_s64(ua, (FG_MAX_ADC_READINGS * 1000)); *result_ua = ua; return 0; } static int rradc_post_process_dcin_curr(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_ua) { int64_t ua = 0; if (!prop) return -EINVAL; /* 0.5 V/A; 2.5V ADC full scale */ ua = ((int64_t)adc_code * FG_ADC_RR_CURR_INPUT_FACTOR); ua *= (FG_ADC_RR_FS_VOLTAGE_MV * FG_ADC_SCALE_MILLI_FACTOR); ua = div64_s64(ua, (FG_MAX_ADC_READINGS * 1000)); *result_ua = ua; return 0; } static int rradc_post_process_die_temp(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_millidegc) { int64_t temp = 0; temp = ((int64_t)adc_code * FG_ADC_RR_TEMP_FS_VOLTAGE_NUM); temp = div64_s64(temp, (FG_ADC_RR_TEMP_FS_VOLTAGE_DEN * FG_MAX_ADC_READINGS)); temp -= FG_ADC_RR_DIE_TEMP_OFFSET; temp = div64_s64(temp, FG_ADC_RR_DIE_TEMP_SLOPE); temp += FG_ADC_RR_DIE_TEMP_OFFSET_MILLI_DEGC; *result_millidegc = temp; return 0; } static int rradc_get_660_fab_coeff(struct rradc_chip *chip, int64_t *offset, int64_t *slope) { switch (chip->pmic_fab_id->fab_id) { case PM660_FAB_ID_GF: *offset = FG_ADC_RR_CHG_TEMP_660_GF_OFFSET_UV; *slope = FG_RR_CHG_TEMP_660_GF_SLOPE_UV_PER_C; break; case PM660_FAB_ID_TSMC: *offset = FG_ADC_RR_CHG_TEMP_660_SMIC_OFFSET_UV; *slope = FG_RR_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C; break; default: *offset = FG_ADC_RR_CHG_TEMP_660_MGNA_OFFSET_UV; *slope = FG_RR_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C; } return 0; } static int rradc_get_8998_fab_coeff(struct rradc_chip *chip, int64_t *offset, int64_t *slope) { switch (chip->pmic_fab_id->fab_id) { case PMI8998_FAB_ID_GF: *offset = FG_ADC_RR_CHG_TEMP_GF_OFFSET_UV; *slope = FG_ADC_RR_CHG_TEMP_GF_SLOPE_UV_PER_C; break; case PMI8998_FAB_ID_SMIC: *offset = FG_ADC_RR_CHG_TEMP_SMIC_OFFSET_UV; *slope = FG_ADC_RR_CHG_TEMP_SMIC_SLOPE_UV_PER_C; break; default: return -EINVAL; } return 0; } static int rradc_post_process_chg_temp_hot(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_millidegc) { int64_t uv = 0, offset = 0, slope = 0; int rc = 0; if (chip->revid_dev_node) { switch (chip->pmic_fab_id->pmic_subtype) { case PM660_SUBTYPE: rc = rradc_get_660_fab_coeff(chip, &offset, &slope); if (rc < 0) { pr_err("Unable to get fab id coefficients\n"); return -EINVAL; } break; case PMI8998_SUBTYPE: rc = rradc_get_8998_fab_coeff(chip, &offset, &slope); if (rc < 0) { pr_err("Unable to get fab id coefficients\n"); return -EINVAL; } break; default: pr_err("No PMIC subtype found\n"); return -EINVAL; } } else { pr_err("No temperature scaling coefficients\n"); return -EINVAL; } uv = (int64_t) adc_code * FG_ADC_RR_CHG_THRESHOLD_SCALE; uv = uv * FG_ADC_RR_TEMP_FS_VOLTAGE_NUM; uv = div64_s64(uv, (FG_ADC_RR_TEMP_FS_VOLTAGE_DEN * FG_MAX_ADC_READINGS)); uv = offset - uv; uv = div64_s64((uv * FG_ADC_SCALE_MILLI_FACTOR), slope); uv = uv + FG_ADC_RR_CHG_TEMP_OFFSET_MILLI_DEGC; *result_millidegc = uv; return 0; } static int rradc_post_process_skin_temp_hot(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_millidegc) { int64_t temp = 0; temp = (int64_t) adc_code; temp = div64_s64(temp, 2); temp = temp - 30; temp *= FG_ADC_SCALE_MILLI_FACTOR; *result_millidegc = temp; return 0; } static int rradc_post_process_chg_temp(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_millidegc) { int64_t uv = 0, offset = 0, slope = 0; int rc = 0; if (chip->revid_dev_node) { switch (chip->pmic_fab_id->pmic_subtype) { case PM660_SUBTYPE: rc = rradc_get_660_fab_coeff(chip, &offset, &slope); if (rc < 0) { pr_err("Unable to get fab id coefficients\n"); return -EINVAL; } break; case PMI8998_SUBTYPE: rc = rradc_get_8998_fab_coeff(chip, &offset, &slope); if (rc < 0) { pr_err("Unable to get fab id coefficients\n"); return -EINVAL; } break; default: pr_err("No PMIC subtype found\n"); return -EINVAL; } } else { pr_err("No temperature scaling coefficients\n"); return -EINVAL; } uv = ((int64_t) adc_code * FG_ADC_RR_TEMP_FS_VOLTAGE_NUM); uv = div64_s64(uv, (FG_ADC_RR_TEMP_FS_VOLTAGE_DEN * FG_MAX_ADC_READINGS)); uv = offset - uv; uv = div64_s64((uv * FG_ADC_SCALE_MILLI_FACTOR), slope); uv += FG_ADC_RR_CHG_TEMP_OFFSET_MILLI_DEGC; *result_millidegc = uv; return 0; } static int rradc_post_process_gpio(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 adc_code, int *result_mv) { int64_t mv = 0; /* 5V ADC full scale, 10 bit */ mv = ((int64_t)adc_code * FG_ADC_RR_GPIO_FS_RANGE); mv = div64_s64(mv, FG_MAX_ADC_READINGS); *result_mv = mv; return 0; } #define RR_ADC_CHAN(_dname, _type, _mask, _scale, _lsb, _msb, _sts) \ { \ .datasheet_name = (_dname), \ .type = _type, \ .info_mask = _mask, \ .scale = _scale, \ .lsb = _lsb, \ .msb = _msb, \ .sts = _sts, \ }, \ #define RR_ADC_CHAN_TEMP(_dname, _scale, mask, _lsb, _msb, _sts) \ RR_ADC_CHAN(_dname, IIO_TEMP, \ mask, \ _scale, _lsb, _msb, _sts) \ #define RR_ADC_CHAN_VOLT(_dname, _scale, _lsb, _msb, _sts) \ RR_ADC_CHAN(_dname, IIO_VOLTAGE, \ BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\ _scale, _lsb, _msb, _sts) \ #define RR_ADC_CHAN_CURRENT(_dname, _scale, _lsb, _msb, _sts) \ RR_ADC_CHAN(_dname, IIO_CURRENT, \ BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\ _scale, _lsb, _msb, _sts) \ #define RR_ADC_CHAN_RESISTANCE(_dname, _scale, _lsb, _msb, _sts) \ RR_ADC_CHAN(_dname, IIO_RESISTANCE, \ BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\ _scale, _lsb, _msb, _sts) \ static const struct rradc_channels rradc_chans[] = { RR_ADC_CHAN_RESISTANCE("batt_id", rradc_post_process_batt_id, FG_ADC_RR_BATT_ID_5_LSB, FG_ADC_RR_BATT_ID_5_MSB, FG_ADC_RR_BATT_ID_STS) RR_ADC_CHAN_TEMP("batt_therm", &rradc_post_process_therm, BIT(IIO_CHAN_INFO_RAW), FG_ADC_RR_BATT_THERM_LSB, FG_ADC_RR_BATT_THERM_MSB, FG_ADC_RR_BATT_THERM_STS) RR_ADC_CHAN_TEMP("skin_temp", &rradc_post_process_therm, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), FG_ADC_RR_SKIN_TEMP_LSB, FG_ADC_RR_SKIN_TEMP_MSB, FG_ADC_RR_AUX_THERM_STS) RR_ADC_CHAN_CURRENT("usbin_i", &rradc_post_process_usbin_curr, FG_ADC_RR_USB_IN_I_LSB, FG_ADC_RR_USB_IN_I_MSB, FG_ADC_RR_USB_IN_I_STS) RR_ADC_CHAN_VOLT("usbin_v", &rradc_post_process_volt, FG_ADC_RR_USB_IN_V_LSB, FG_ADC_RR_USB_IN_V_MSB, FG_ADC_RR_USB_IN_V_STS) RR_ADC_CHAN_CURRENT("dcin_i", &rradc_post_process_dcin_curr, FG_ADC_RR_DC_IN_I_LSB, FG_ADC_RR_DC_IN_I_MSB, FG_ADC_RR_DC_IN_I_STS) RR_ADC_CHAN_VOLT("dcin_v", &rradc_post_process_volt, FG_ADC_RR_DC_IN_V_LSB, FG_ADC_RR_DC_IN_V_MSB, FG_ADC_RR_DC_IN_V_STS) RR_ADC_CHAN_TEMP("die_temp", &rradc_post_process_die_temp, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), FG_ADC_RR_PMI_DIE_TEMP_LSB, FG_ADC_RR_PMI_DIE_TEMP_MSB, FG_ADC_RR_PMI_DIE_TEMP_STS) RR_ADC_CHAN_TEMP("chg_temp", &rradc_post_process_chg_temp, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), FG_ADC_RR_CHARGER_TEMP_LSB, FG_ADC_RR_CHARGER_TEMP_MSB, FG_ADC_RR_CHARGER_TEMP_STS) RR_ADC_CHAN_VOLT("gpio", &rradc_post_process_gpio, FG_ADC_RR_GPIO_LSB, FG_ADC_RR_GPIO_MSB, FG_ADC_RR_GPIO_STS) RR_ADC_CHAN_TEMP("chg_temp_hot", &rradc_post_process_chg_temp_hot, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), FG_ADC_RR_CHARGER_HOT, FG_ADC_RR_CHARGER_HOT, FG_ADC_RR_CHARGER_TEMP_STS) RR_ADC_CHAN_TEMP("chg_temp_too_hot", &rradc_post_process_chg_temp_hot, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), FG_ADC_RR_CHARGER_TOO_HOT, FG_ADC_RR_CHARGER_TOO_HOT, FG_ADC_RR_CHARGER_TEMP_STS) RR_ADC_CHAN_TEMP("skin_temp_hot", &rradc_post_process_skin_temp_hot, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), FG_ADC_RR_SKIN_HOT, FG_ADC_RR_SKIN_HOT, FG_ADC_RR_AUX_THERM_STS) RR_ADC_CHAN_TEMP("skin_temp_too_hot", &rradc_post_process_skin_temp_hot, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), FG_ADC_RR_SKIN_TOO_HOT, FG_ADC_RR_SKIN_TOO_HOT, FG_ADC_RR_AUX_THERM_STS) }; static int rradc_enable_continuous_mode(struct rradc_chip *chip) { int rc = 0; /* Clear channel log */ rc = rradc_masked_write(chip, FG_ADC_RR_ADC_LOG, FG_ADC_RR_ADC_LOG_CLR_CTRL, FG_ADC_RR_ADC_LOG_CLR_CTRL); if (rc < 0) { pr_err("log ctrl update to clear failed:%d\n", rc); return rc; } rc = rradc_masked_write(chip, FG_ADC_RR_ADC_LOG, FG_ADC_RR_ADC_LOG_CLR_CTRL, 0); if (rc < 0) { pr_err("log ctrl update to not clear failed:%d\n", rc); return rc; } /* Switch to continuous mode */ rc = rradc_masked_write(chip, FG_ADC_RR_RR_ADC_CTL, FG_ADC_RR_ADC_CTL_CONTINUOUS_SEL_MASK, FG_ADC_RR_ADC_CTL_CONTINUOUS_SEL); if (rc < 0) { pr_err("Update to continuous mode failed:%d\n", rc); return rc; } return rc; } static int rradc_disable_continuous_mode(struct rradc_chip *chip) { int rc = 0; /* Switch to non continuous mode */ rc = rradc_masked_write(chip, FG_ADC_RR_RR_ADC_CTL, FG_ADC_RR_ADC_CTL_CONTINUOUS_SEL_MASK, 0); if (rc < 0) { pr_err("Update to non-continuous mode failed:%d\n", rc); return rc; } return rc; } static bool rradc_is_usb_present(struct rradc_chip *chip) { union power_supply_propval pval; int rc; bool usb_present = false; if (!chip->usb_trig) { pr_debug("USB property not present\n"); return usb_present; } rc = power_supply_get_property(chip->usb_trig, POWER_SUPPLY_PROP_PRESENT, &pval); usb_present = (rc < 0) ? 0 : pval.intval; return usb_present; } static int rradc_check_status_ready_with_retry(struct rradc_chip *chip, struct rradc_chan_prop *prop, u8 *buf, u16 status) { int rc = 0, retry_cnt = 0, mask = 0; switch (prop->channel) { case RR_ADC_BATT_ID: /* BATT_ID STS bit does not get set initially */ mask = FG_RR_ADC_STS_CHANNEL_STS; break; default: mask = FG_RR_ADC_STS_CHANNEL_READING_MASK; break; } while (((buf[0] & mask) != mask) && (retry_cnt < FG_RR_CONV_MAX_RETRY_CNT)) { pr_debug("%s is not ready; nothing to read:0x%x\n", rradc_chans[prop->channel].datasheet_name, buf[0]); if (((prop->channel == RR_ADC_CHG_TEMP) || (prop->channel == RR_ADC_SKIN_TEMP) || (prop->channel == RR_ADC_USBIN_I)) && ((!rradc_is_usb_present(chip)))) { pr_debug("USB not present for %d\n", prop->channel); rc = -ENODATA; break; } msleep(FG_RR_CONV_CONTINUOUS_TIME_MIN_MS); retry_cnt++; rc = rradc_read(chip, status, buf, 1); if (rc < 0) { pr_err("status read failed:%d\n", rc); return rc; } } if (retry_cnt >= FG_RR_CONV_MAX_RETRY_CNT) rc = -ENODATA; return rc; } static int rradc_read_channel_with_continuous_mode(struct rradc_chip *chip, struct rradc_chan_prop *prop, u8 *buf) { int rc = 0, ret = 0; u16 status = 0; rc = rradc_enable_continuous_mode(chip); if (rc < 0) { pr_err("Failed to switch to continuous mode\n"); return rc; } status = rradc_chans[prop->channel].sts; rc = rradc_read(chip, status, buf, 1); if (rc < 0) { pr_err("status read failed:%d\n", rc); ret = rc; goto disable; } rc = rradc_check_status_ready_with_retry(chip, prop, buf, status); if (rc < 0) { pr_err("Status read failed:%d\n", rc); ret = rc; } disable: rc = rradc_disable_continuous_mode(chip); if (rc < 0) { pr_err("Failed to switch to non continuous mode\n"); ret = rc; } return ret; } static int rradc_enable_batt_id_channel(struct rradc_chip *chip, bool enable) { int rc = 0; if (enable) { rc = rradc_masked_write(chip, FG_ADC_RR_BATT_ID_CTRL, FG_ADC_RR_BATT_ID_CTRL_CHANNEL_CONV, FG_ADC_RR_BATT_ID_CTRL_CHANNEL_CONV); if (rc < 0) { pr_err("Enabling BATT ID channel failed:%d\n", rc); return rc; } } else { rc = rradc_masked_write(chip, FG_ADC_RR_BATT_ID_CTRL, FG_ADC_RR_BATT_ID_CTRL_CHANNEL_CONV, 0); if (rc < 0) { pr_err("Disabling BATT ID channel failed:%d\n", rc); return rc; } } return rc; } static int rradc_do_batt_id_conversion(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 *data, u8 *buf) { int rc = 0, ret = 0, batt_id_delay; rc = rradc_enable_batt_id_channel(chip, true); if (rc < 0) { pr_err("Enabling BATT ID channel failed:%d\n", rc); return rc; } if (chip->batt_id_delay != -EINVAL) { batt_id_delay = chip->batt_id_delay << BATT_ID_SETTLE_SHIFT; rc = rradc_masked_write(chip, FG_ADC_RR_BATT_ID_CFG, batt_id_delay, batt_id_delay); if (rc < 0) pr_err("BATT_ID settling time config failed:%d\n", rc); } rc = rradc_masked_write(chip, FG_ADC_RR_BATT_ID_TRIGGER, FG_ADC_RR_BATT_ID_TRIGGER_CTL, FG_ADC_RR_BATT_ID_TRIGGER_CTL); if (rc < 0) { pr_err("BATT_ID trigger set failed:%d\n", rc); ret = rc; rc = rradc_enable_batt_id_channel(chip, false); if (rc < 0) pr_err("Disabling BATT ID channel failed:%d\n", rc); return ret; } rc = rradc_read_channel_with_continuous_mode(chip, prop, buf); if (rc < 0) { pr_err("Error reading in continuous mode:%d\n", rc); ret = rc; } rc = rradc_masked_write(chip, FG_ADC_RR_BATT_ID_TRIGGER, FG_ADC_RR_BATT_ID_TRIGGER_CTL, 0); if (rc < 0) { pr_err("BATT_ID trigger re-set failed:%d\n", rc); ret = rc; } rc = rradc_enable_batt_id_channel(chip, false); if (rc < 0) { pr_err("Disabling BATT ID channel failed:%d\n", rc); ret = rc; } return ret; } static int rradc_do_conversion(struct rradc_chip *chip, struct rradc_chan_prop *prop, u16 *data) { int rc = 0, bytes_to_read = 0; u8 buf[6]; u16 offset = 0, batt_id_5 = 0, batt_id_15 = 0, batt_id_150 = 0; u16 status = 0; mutex_lock(&chip->lock); switch (prop->channel) { case RR_ADC_BATT_ID: rc = rradc_do_batt_id_conversion(chip, prop, data, buf); if (rc < 0) { pr_err("Battery ID conversion failed:%d\n", rc); goto fail; } break; case RR_ADC_USBIN_V: /* Force conversion every cycle */ rc = rradc_masked_write(chip, FG_ADC_RR_USB_IN_V_TRIGGER, FG_ADC_RR_USB_IN_V_EVERY_CYCLE_MASK, FG_ADC_RR_USB_IN_V_EVERY_CYCLE); if (rc < 0) { pr_err("Force every cycle update failed:%d\n", rc); goto fail; } rc = rradc_read_channel_with_continuous_mode(chip, prop, buf); if (rc < 0) { pr_err("Error reading in continuous mode:%d\n", rc); goto fail; } /* Restore usb_in trigger */ rc = rradc_masked_write(chip, FG_ADC_RR_USB_IN_V_TRIGGER, FG_ADC_RR_USB_IN_V_EVERY_CYCLE_MASK, 0); if (rc < 0) { pr_err("Restore every cycle update failed:%d\n", rc); goto fail; } break; case RR_ADC_DIE_TEMP: /* Force conversion every cycle */ rc = rradc_masked_write(chip, FG_ADC_RR_PMI_DIE_TEMP_TRIGGER, FG_ADC_RR_USB_IN_V_EVERY_CYCLE_MASK, FG_ADC_RR_USB_IN_V_EVERY_CYCLE); if (rc < 0) { pr_err("Force every cycle update failed:%d\n", rc); goto fail; } rc = rradc_read_channel_with_continuous_mode(chip, prop, buf); if (rc < 0) { pr_err("Error reading in continuous mode:%d\n", rc); goto fail; } /* Restore aux_therm trigger */ rc = rradc_masked_write(chip, FG_ADC_RR_PMI_DIE_TEMP_TRIGGER, FG_ADC_RR_USB_IN_V_EVERY_CYCLE_MASK, 0); if (rc < 0) { pr_err("Restore every cycle update failed:%d\n", rc); goto fail; } break; case RR_ADC_CHG_HOT_TEMP: case RR_ADC_CHG_TOO_HOT_TEMP: case RR_ADC_SKIN_HOT_TEMP: case RR_ADC_SKIN_TOO_HOT_TEMP: pr_debug("Read only the data registers\n"); break; default: status = rradc_chans[prop->channel].sts; rc = rradc_read(chip, status, buf, 1); if (rc < 0) { pr_err("status read failed:%d\n", rc); goto fail; } rc = rradc_check_status_ready_with_retry(chip, prop, buf, status); if (rc < 0) { pr_debug("Status read failed:%d\n", rc); rc = -ENODATA; goto fail; } break; } offset = rradc_chans[prop->channel].lsb; if (prop->channel == RR_ADC_BATT_ID) bytes_to_read = 6; else if ((prop->channel == RR_ADC_CHG_HOT_TEMP) || (prop->channel == RR_ADC_CHG_TOO_HOT_TEMP) || (prop->channel == RR_ADC_SKIN_HOT_TEMP) || (prop->channel == RR_ADC_SKIN_TOO_HOT_TEMP)) bytes_to_read = 1; else bytes_to_read = 2; buf[0] = 0; rc = rradc_read(chip, offset, buf, bytes_to_read); if (rc) { pr_err("read data failed\n"); goto fail; } if (prop->channel == RR_ADC_BATT_ID) { batt_id_150 = (buf[5] << 8) | buf[4]; batt_id_15 = (buf[3] << 8) | buf[2]; batt_id_5 = (buf[1] << 8) | buf[0]; if ((!batt_id_150) && (!batt_id_15) && (!batt_id_5)) { pr_err("Invalid batt_id values with all zeros\n"); rc = -EINVAL; goto fail; } if (batt_id_150 <= FG_ADC_RR_BATT_ID_RANGE) { pr_debug("Batt_id_150 is chosen\n"); *data = batt_id_150; prop->channel_data = FG_ADC_RR_BATT_ID_150_MA; } else if (batt_id_15 <= FG_ADC_RR_BATT_ID_RANGE) { pr_debug("Batt_id_15 is chosen\n"); *data = batt_id_15; prop->channel_data = FG_ADC_RR_BATT_ID_15_MA; } else { pr_debug("Batt_id_5 is chosen\n"); *data = batt_id_5; prop->channel_data = FG_ADC_RR_BATT_ID_5_MA; } } else if ((prop->channel == RR_ADC_CHG_HOT_TEMP) || (prop->channel == RR_ADC_CHG_TOO_HOT_TEMP) || (prop->channel == RR_ADC_SKIN_HOT_TEMP) || (prop->channel == RR_ADC_SKIN_TOO_HOT_TEMP)) { *data = buf[0]; } else { *data = (buf[1] << 8) | buf[0]; } fail: mutex_unlock(&chip->lock); return rc; } static int rradc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct rradc_chip *chip = iio_priv(indio_dev); struct rradc_chan_prop *prop; u16 adc_code; int rc = 0; if (chan->address >= RR_ADC_MAX) { pr_err("Invalid channel index:%ld\n", chan->address); return -EINVAL; } switch (mask) { case IIO_CHAN_INFO_PROCESSED: if (((chip->pmic_fab_id->tp_rev >= FG_RR_TP_REV_VERSION1) && (chip->pmic_fab_id->tp_rev <= FG_RR_TP_REV_VERSION2)) || (chip->pmic_fab_id->tp_rev >= FG_RR_TP_REV_VERSION3)) { if (chan->address == RR_ADC_USBIN_I) { prop = &chip->chan_props[RR_ADC_USBIN_V]; rc = rradc_do_conversion(chip, prop, &adc_code); if (rc) break; prop->scale(chip, prop, adc_code, &chip->volt); } } prop = &chip->chan_props[chan->address]; rc = rradc_do_conversion(chip, prop, &adc_code); if (rc) break; prop->scale(chip, prop, adc_code, val); return IIO_VAL_INT; case IIO_CHAN_INFO_RAW: prop = &chip->chan_props[chan->address]; rc = rradc_do_conversion(chip, prop, &adc_code); if (rc) break; *val = (int) adc_code; return IIO_VAL_INT; default: rc = -EINVAL; break; } return rc; } static const struct iio_info rradc_info = { .read_raw = &rradc_read_raw, .driver_module = THIS_MODULE, }; static int rradc_get_dt_data(struct rradc_chip *chip, struct device_node *node) { const struct rradc_channels *rradc_chan; struct iio_chan_spec *iio_chan; unsigned int i = 0, base; int rc = 0; struct rradc_chan_prop prop; chip->nchannels = RR_ADC_MAX; chip->iio_chans = devm_kcalloc(chip->dev, chip->nchannels, sizeof(*chip->iio_chans), GFP_KERNEL); if (!chip->iio_chans) return -ENOMEM; chip->chan_props = devm_kcalloc(chip->dev, chip->nchannels, sizeof(*chip->chan_props), GFP_KERNEL); if (!chip->chan_props) return -ENOMEM; /* Get the peripheral address */ rc = of_property_read_u32(node, "reg", &base); if (rc < 0) { dev_err(chip->dev, "Couldn't find reg in node = %s rc = %d\n", node->name, rc); return rc; } chip->batt_id_delay = -EINVAL; rc = of_property_read_u32(node, "qcom,batt-id-delay-ms", &chip->batt_id_delay); if (!rc) { for (i = 0; i < RRADC_BATT_ID_DELAY_MAX; i++) { if (chip->batt_id_delay == batt_id_delays[i]) break; } if (i == RRADC_BATT_ID_DELAY_MAX) pr_err("Invalid batt_id_delay, rc=%d\n", rc); else chip->batt_id_delay = i; } chip->base = base; chip->revid_dev_node = of_parse_phandle(node, "qcom,pmic-revid", 0); if (chip->revid_dev_node) { chip->pmic_fab_id = get_revid_data(chip->revid_dev_node); if (IS_ERR(chip->pmic_fab_id)) { rc = PTR_ERR(chip->pmic_fab_id); if (rc != -EPROBE_DEFER) pr_err("Unable to get pmic_revid rc=%d\n", rc); return rc; } if (!chip->pmic_fab_id) return -EINVAL; if (chip->pmic_fab_id->fab_id == -EINVAL) { rc = chip->pmic_fab_id->fab_id; pr_debug("Unable to read fabid rc=%d\n", rc); } } iio_chan = chip->iio_chans; for (i = 0; i < RR_ADC_MAX; i++) { prop.channel = i; prop.scale = rradc_chans[i].scale; /* Private channel data used for selecting batt_id */ prop.channel_data = 0; chip->chan_props[i] = prop; rradc_chan = &rradc_chans[i]; iio_chan->channel = prop.channel; iio_chan->datasheet_name = rradc_chan->datasheet_name; iio_chan->extend_name = rradc_chan->datasheet_name; iio_chan->info_mask_separate = rradc_chan->info_mask; iio_chan->type = rradc_chan->type; iio_chan->address = i; iio_chan++; } return 0; } static int rradc_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct rradc_chip *chip; int rc = 0; indio_dev = devm_iio_device_alloc(dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); chip->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!chip->regmap) { dev_err(&pdev->dev, "Couldn't get parent's regmap\n"); return -EINVAL; } chip->dev = dev; mutex_init(&chip->lock); rc = rradc_get_dt_data(chip, node); if (rc) return rc; indio_dev->dev.parent = dev; indio_dev->dev.of_node = node; indio_dev->name = pdev->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &rradc_info; indio_dev->channels = chip->iio_chans; indio_dev->num_channels = chip->nchannels; chip->usb_trig = power_supply_get_by_name("usb"); if (!chip->usb_trig) pr_debug("Error obtaining usb power supply\n"); return devm_iio_device_register(dev, indio_dev); } static const struct of_device_id rradc_match_table[] = { { .compatible = "qcom,rradc" }, { } }; MODULE_DEVICE_TABLE(of, rradc_match_table); static struct platform_driver rradc_driver = { .driver = { .name = "qcom-rradc", .of_match_table = rradc_match_table, }, .probe = rradc_probe, }; module_platform_driver(rradc_driver); MODULE_DESCRIPTION("QPNP PMIC RR ADC driver"); MODULE_LICENSE("GPL v2");