/* Copyright (c) 2002,2007-2020,2021, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include "kgsl.h" #include "kgsl_sharedmem.h" #include "kgsl_device.h" #include "kgsl_log.h" #include "kgsl_mmu.h" /* * The user can set this from debugfs to force failed memory allocations to * fail without trying OOM first. This is a debug setting useful for * stress applications that want to test failure cases without pushing the * system into unrecoverable OOM panics */ static bool sharedmem_noretry_flag; static DEFINE_MUTEX(kernel_map_global_lock); struct cp2_mem_chunks { unsigned int chunk_list; unsigned int chunk_list_size; unsigned int chunk_size; } __attribute__ ((__packed__)); struct cp2_lock_req { struct cp2_mem_chunks chunks; unsigned int mem_usage; unsigned int lock; } __attribute__ ((__packed__)); #define MEM_PROTECT_LOCK_ID2 0x0A #define MEM_PROTECT_LOCK_ID2_FLAT 0x11 /* An attribute for showing per-process memory statistics */ struct kgsl_mem_entry_attribute { struct attribute attr; int memtype; ssize_t (*show)(struct kgsl_process_private *priv, int type, char *buf); }; #define to_mem_entry_attr(a) \ container_of(a, struct kgsl_mem_entry_attribute, attr) #define __MEM_ENTRY_ATTR(_type, _name, _show) \ { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .memtype = _type, \ .show = _show, \ } /* * A structure to hold the attributes for a particular memory type. * For each memory type in each process we store the current and maximum * memory usage and display the counts in sysfs. This structure and * the following macro allow us to simplify the definition for those * adding new memory types */ struct mem_entry_stats { int memtype; struct kgsl_mem_entry_attribute attr; struct kgsl_mem_entry_attribute max_attr; }; #define MEM_ENTRY_STAT(_type, _name) \ { \ .memtype = _type, \ .attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \ .max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \ mem_entry_max_show), \ } static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc); static ssize_t imported_mem_show(struct kgsl_process_private *priv, int type, char *buf) { struct kgsl_mem_entry *entry; uint64_t imported_mem = 0; int id = 0; spin_lock(&priv->mem_lock); for (entry = idr_get_next(&priv->mem_idr, &id); entry; id++, entry = idr_get_next(&priv->mem_idr, &id)) { int egl_surface_count = 0, egl_image_count = 0; struct kgsl_memdesc *m; if (kgsl_mem_entry_get(entry) == 0) continue; spin_unlock(&priv->mem_lock); m = &entry->memdesc; if (kgsl_memdesc_usermem_type(m) == KGSL_MEM_ENTRY_ION) { kgsl_get_egl_counts(entry, &egl_surface_count, &egl_image_count); if (kgsl_memdesc_get_memtype(m) == KGSL_MEMTYPE_EGL_SURFACE) imported_mem += m->size; else if (egl_surface_count == 0) { uint64_t size = m->size; do_div(size, (egl_image_count ? egl_image_count : 1)); imported_mem += size; } } kgsl_mem_entry_put(entry); spin_lock(&priv->mem_lock); } spin_unlock(&priv->mem_lock); return scnprintf(buf, PAGE_SIZE, "%llu\n", imported_mem); } static ssize_t gpumem_mapped_show(struct kgsl_process_private *priv, int type, char *buf) { return scnprintf(buf, PAGE_SIZE, "%llu\n", (u64)atomic64_read(&priv->gpumem_mapped)); } static ssize_t gpumem_unmapped_show(struct kgsl_process_private *priv, int type, char *buf) { u64 gpumem_total = atomic64_read(&priv->stats[type].cur); u64 gpumem_mapped = atomic64_read(&priv->gpumem_mapped); if (gpumem_mapped > gpumem_total) return -EIO; return scnprintf(buf, PAGE_SIZE, "%llu\n", gpumem_total - gpumem_mapped); } static struct kgsl_mem_entry_attribute debug_memstats[] = { __MEM_ENTRY_ATTR(0, imported_mem, imported_mem_show), __MEM_ENTRY_ATTR(0, gpumem_mapped, gpumem_mapped_show), __MEM_ENTRY_ATTR(KGSL_MEM_ENTRY_KERNEL, gpumem_unmapped, gpumem_unmapped_show), }; /** * Show the current amount of memory allocated for the given memtype */ static ssize_t mem_entry_show(struct kgsl_process_private *priv, int type, char *buf) { return scnprintf(buf, PAGE_SIZE, "%llu\n", (u64)atomic64_read(&priv->stats[type].cur)); } /** * Show the maximum memory allocated for the given memtype through the life of * the process */ static ssize_t mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf) { return scnprintf(buf, PAGE_SIZE, "%llu\n", (u64)atomic64_read(&priv->stats[type].max)); } static ssize_t mem_entry_sysfs_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr); struct kgsl_process_private *priv; ssize_t ret; /* * kgsl_process_init_sysfs takes a refcount to the process_private, * which is put when the kobj is released. This implies that priv will * not be freed until this function completes, and no further locking * is needed. */ priv = kobj ? container_of(kobj, struct kgsl_process_private, kobj) : NULL; if (priv && pattr->show) ret = pattr->show(priv, pattr->memtype, buf); else ret = -EIO; return ret; } static void mem_entry_release(struct kobject *kobj) { struct kgsl_process_private *priv; priv = container_of(kobj, struct kgsl_process_private, kobj); /* Put the refcount we got in kgsl_process_init_sysfs */ kgsl_process_private_put(priv); } static const struct sysfs_ops mem_entry_sysfs_ops = { .show = mem_entry_sysfs_show, }; static struct kobj_type ktype_mem_entry = { .sysfs_ops = &mem_entry_sysfs_ops, .release = &mem_entry_release, }; static struct mem_entry_stats mem_stats[] = { MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel), MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user), #ifdef CONFIG_ION MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion), #endif }; void kgsl_process_uninit_sysfs(struct kgsl_process_private *private) { int i; for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr); sysfs_remove_file(&private->kobj, &mem_stats[i].max_attr.attr); } kobject_put(&private->kobj); } /** * kgsl_process_init_sysfs() - Initialize and create sysfs files for a process * * @device: Pointer to kgsl device struct * @private: Pointer to the structure for the process * * kgsl_process_init_sysfs() is called at the time of creating the * process struct when a process opens the kgsl device for the first time. * This function creates the sysfs files for the process. */ void kgsl_process_init_sysfs(struct kgsl_device *device, struct kgsl_process_private *private) { unsigned char name[16]; int i; /* Keep private valid until the sysfs enries are removed. */ kgsl_process_private_get(private); snprintf(name, sizeof(name), "%d", pid_nr(private->pid)); if (kobject_init_and_add(&private->kobj, &ktype_mem_entry, kgsl_driver.prockobj, name)) { WARN(1, "Unable to add sysfs dir '%s'\n", name); return; } for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { if (sysfs_create_file(&private->kobj, &mem_stats[i].attr.attr)) WARN(1, "Couldn't create sysfs file '%s'\n", mem_stats[i].attr.attr.name); if (sysfs_create_file(&private->kobj, &mem_stats[i].max_attr.attr)) WARN(1, "Couldn't create sysfs file '%s'\n", mem_stats[i].max_attr.attr.name); } for (i = 0; i < ARRAY_SIZE(debug_memstats); i++) { if (sysfs_create_file(&private->kobj, &debug_memstats[i].attr)) WARN(1, "Couldn't create sysfs file '%s'\n", debug_memstats[i].attr.name); } } static ssize_t kgsl_drv_memstat_show(struct device *dev, struct device_attribute *attr, char *buf) { uint64_t val = 0; if (!strcmp(attr->attr.name, "vmalloc")) val = atomic_long_read(&kgsl_driver.stats.vmalloc); else if (!strcmp(attr->attr.name, "vmalloc_max")) val = atomic_long_read(&kgsl_driver.stats.vmalloc_max); else if (!strcmp(attr->attr.name, "page_alloc")) val = atomic_long_read(&kgsl_driver.stats.page_alloc); else if (!strcmp(attr->attr.name, "page_alloc_max")) val = atomic_long_read(&kgsl_driver.stats.page_alloc_max); else if (!strcmp(attr->attr.name, "coherent")) val = atomic_long_read(&kgsl_driver.stats.coherent); else if (!strcmp(attr->attr.name, "coherent_max")) val = atomic_long_read(&kgsl_driver.stats.coherent_max); else if (!strcmp(attr->attr.name, "secure")) val = atomic_long_read(&kgsl_driver.stats.secure); else if (!strcmp(attr->attr.name, "secure_max")) val = atomic_long_read(&kgsl_driver.stats.secure_max); else if (!strcmp(attr->attr.name, "mapped")) val = atomic_long_read(&kgsl_driver.stats.mapped); else if (!strcmp(attr->attr.name, "mapped_max")) val = atomic_long_read(&kgsl_driver.stats.mapped_max); return snprintf(buf, PAGE_SIZE, "%llu\n", val); } static ssize_t kgsl_drv_full_cache_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; unsigned int thresh = 0; ret = kgsl_sysfs_store(buf, &thresh); if (ret) return ret; kgsl_driver.full_cache_threshold = thresh; return count; } static ssize_t kgsl_drv_full_cache_threshold_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", kgsl_driver.full_cache_threshold); } static DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(page_alloc, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(page_alloc_max, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(secure, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(secure_max, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL); static DEVICE_ATTR(full_cache_threshold, 0644, kgsl_drv_full_cache_threshold_show, kgsl_drv_full_cache_threshold_store); static const struct device_attribute *drv_attr_list[] = { &dev_attr_vmalloc, &dev_attr_vmalloc_max, &dev_attr_page_alloc, &dev_attr_page_alloc_max, &dev_attr_coherent, &dev_attr_coherent_max, &dev_attr_secure, &dev_attr_secure_max, &dev_attr_mapped, &dev_attr_mapped_max, &dev_attr_full_cache_threshold, NULL }; void kgsl_sharedmem_uninit_sysfs(void) { kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list); } int kgsl_sharedmem_init_sysfs(void) { return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list); } static int kgsl_cma_alloc_secure(struct kgsl_device *device, struct kgsl_memdesc *memdesc, uint64_t size); static int kgsl_allocate_secure(struct kgsl_device *device, struct kgsl_memdesc *memdesc, uint64_t size) { int ret; if (MMU_FEATURE(&device->mmu, KGSL_MMU_HYP_SECURE_ALLOC)) ret = kgsl_sharedmem_page_alloc_user(memdesc, size); else ret = kgsl_cma_alloc_secure(device, memdesc, size); return ret; } int kgsl_allocate_user(struct kgsl_device *device, struct kgsl_memdesc *memdesc, uint64_t size, uint64_t flags) { int ret; kgsl_memdesc_init(device, memdesc, flags); if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE) ret = kgsl_sharedmem_alloc_contig(device, memdesc, size); else if (flags & KGSL_MEMFLAGS_SECURE) ret = kgsl_allocate_secure(device, memdesc, size); else ret = kgsl_sharedmem_page_alloc_user(memdesc, size); return ret; } static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc, struct vm_area_struct *vma, struct vm_fault *vmf) { int pgoff; unsigned int offset; offset = vmf->address - vma->vm_start; if (offset >= memdesc->size) return VM_FAULT_SIGBUS; pgoff = offset >> PAGE_SHIFT; if (pgoff < memdesc->page_count) { struct page *page = memdesc->pages[pgoff]; get_page(page); vmf->page = page; return 0; } return VM_FAULT_SIGBUS; } /* * kgsl_page_alloc_unmap_kernel() - Unmap the memory in memdesc * * @memdesc: The memory descriptor which contains information about the memory * * Unmaps the memory mapped into kernel address space */ static void kgsl_page_alloc_unmap_kernel(struct kgsl_memdesc *memdesc) { mutex_lock(&kernel_map_global_lock); if (!memdesc->hostptr) { /* If already unmapped the refcount should be 0 */ WARN_ON(memdesc->hostptr_count); goto done; } memdesc->hostptr_count--; if (memdesc->hostptr_count) goto done; vunmap(memdesc->hostptr); atomic_long_sub(memdesc->size, &kgsl_driver.stats.vmalloc); memdesc->hostptr = NULL; done: mutex_unlock(&kernel_map_global_lock); } int kgsl_lock_sgt(struct sg_table *sgt, uint64_t size) { struct scatterlist *sg; int dest_perms = PERM_READ | PERM_WRITE; int source_vm = VMID_HLOS; int dest_vm = VMID_CP_PIXEL; int ret; int i; unsigned long j; j = jiffies; ret = hyp_assign_table(sgt, &source_vm, 1, &dest_vm, &dest_perms, 1); j = (jiffies - j)/HZ; if (j > 2) KGSL_CORE_ERR("hyp_assign_table took %lusecs\n", j); if (ret) { /* * If returned error code is EADDRNOTAVAIL, then this * memory may no longer be in a usable state as security * state of the pages is unknown after this failure. This * memory can neither be added back to the pool nor buddy * system. */ if (ret == -EADDRNOTAVAIL) pr_err("Failure to lock secure GPU memory 0x%llx bytes will not be recoverable\n", size); return ret; } /* Set private bit for each sg to indicate that its secured */ for_each_sg(sgt->sgl, sg, sgt->nents, i) SetPagePrivate(sg_page(sg)); return 0; } int kgsl_unlock_sgt(struct sg_table *sgt) { int dest_perms = PERM_READ | PERM_WRITE | PERM_EXEC; int source_vm = VMID_CP_PIXEL; int dest_vm = VMID_HLOS; int ret; struct sg_page_iter sg_iter; unsigned long j; j = jiffies; ret = hyp_assign_table(sgt, &source_vm, 1, &dest_vm, &dest_perms, 1); if (j > 2) KGSL_CORE_ERR("hyp_assign_table took %lusecs\n", j); if (ret) { pr_err("kgsl: hyp_assign_table failed ret: %d\n", ret); return ret; } for_each_sg_page(sgt->sgl, &sg_iter, sgt->nents, 0) ClearPagePrivate(sg_page_iter_page(&sg_iter)); return 0; } static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc) { kgsl_page_alloc_unmap_kernel(memdesc); /* we certainly do not expect the hostptr to still be mapped */ BUG_ON(memdesc->hostptr); /* Secure buffers need to be unlocked before being freed */ if (memdesc->priv & KGSL_MEMDESC_TZ_LOCKED) { int ret; ret = kgsl_unlock_sgt(memdesc->sgt); if (ret) { pr_err("Failure to unlock secure GPU memory 0x%llx. %llx bytes will not be recoverable\n", memdesc->gpuaddr, memdesc->size); return; } kgsl_pool_free_sgt(memdesc->sgt); atomic_long_sub(memdesc->size, &kgsl_driver.stats.secure); } else { atomic_long_add(memdesc->size, &kgsl_driver.stats.page_free_pending); /* Free pages using pages array for non secure paged memory */ kgsl_pool_free_pages(memdesc->pages, memdesc->page_count); atomic_long_sub(memdesc->size, &kgsl_driver.stats.page_alloc); atomic_long_sub(memdesc->size, &kgsl_driver.stats.page_free_pending); } } /* * kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address * space * * @memdesc - The memory descriptor which contains information about the memory * * Return: 0 on success else error code */ static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc) { int ret = 0; /* Sanity check - don't map more than we could possibly chew */ if (memdesc->size > ULONG_MAX) return -ENOMEM; mutex_lock(&kernel_map_global_lock); if ((!memdesc->hostptr) && (memdesc->pages != NULL)) { pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL); memdesc->hostptr = vmap(memdesc->pages, memdesc->page_count, VM_IOREMAP, page_prot); if (memdesc->hostptr) KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.vmalloc, &kgsl_driver.stats.vmalloc_max); else ret = -ENOMEM; } if (memdesc->hostptr) memdesc->hostptr_count++; mutex_unlock(&kernel_map_global_lock); return ret; } static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc, struct vm_area_struct *vma, struct vm_fault *vmf) { unsigned long offset, pfn; int ret; offset = ((unsigned long) vmf->address - vma->vm_start) >> PAGE_SHIFT; pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset; ret = vm_insert_pfn(vma, (unsigned long) vmf->address, pfn); if (ret == -ENOMEM || ret == -EAGAIN) return VM_FAULT_OOM; else if (ret == -EFAULT) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } static void kgsl_cma_coherent_free(struct kgsl_memdesc *memdesc) { unsigned long attrs = 0; if (memdesc->hostptr) { if (memdesc->priv & KGSL_MEMDESC_SECURE) { atomic_long_sub(memdesc->size, &kgsl_driver.stats.secure); kgsl_cma_unlock_secure(memdesc); attrs = memdesc->attrs; } else atomic_long_sub(memdesc->size, &kgsl_driver.stats.coherent); mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)), NR_UNRECLAIMABLE_PAGES, -(memdesc->size >> PAGE_SHIFT)); dma_free_attrs(memdesc->dev, (size_t) memdesc->size, memdesc->hostptr, memdesc->physaddr, attrs); } } /* Global */ static struct kgsl_memdesc_ops kgsl_page_alloc_ops = { .free = kgsl_page_alloc_free, .vmflags = VM_DONTDUMP | VM_DONTEXPAND | VM_DONTCOPY, .vmfault = kgsl_page_alloc_vmfault, .map_kernel = kgsl_page_alloc_map_kernel, .unmap_kernel = kgsl_page_alloc_unmap_kernel, }; /* CMA ops - used during NOMMU mode */ static struct kgsl_memdesc_ops kgsl_cma_ops = { .free = kgsl_cma_coherent_free, .vmflags = VM_DONTDUMP | VM_PFNMAP | VM_DONTEXPAND | VM_DONTCOPY, .vmfault = kgsl_contiguous_vmfault, }; #ifdef CONFIG_ARM64 /* * For security reasons, ARMv8 doesn't allow invalidate only on read-only * mapping. It would be performance prohibitive to read the permissions on * the buffer before the operation. Every use case that we have found does not * assume that an invalidate operation is invalidate only, so we feel * comfortable turning invalidates into flushes for these targets */ static inline unsigned int _fixup_cache_range_op(unsigned int op) { if (op == KGSL_CACHE_OP_INV) return KGSL_CACHE_OP_FLUSH; return op; } #else static inline unsigned int _fixup_cache_range_op(unsigned int op) { return op; } #endif static inline void _cache_op(unsigned int op, const void *start, const void *end) { /* * The dmac_xxx_range functions handle addresses and sizes that * are not aligned to the cacheline size correctly. */ switch (_fixup_cache_range_op(op)) { case KGSL_CACHE_OP_FLUSH: dmac_flush_range(start, end); break; case KGSL_CACHE_OP_CLEAN: dmac_clean_range(start, end); break; case KGSL_CACHE_OP_INV: dmac_inv_range(start, end); break; } } static int kgsl_do_cache_op(struct page *page, void *addr, uint64_t offset, uint64_t size, unsigned int op) { if (page != NULL) { unsigned long pfn = page_to_pfn(page) + offset / PAGE_SIZE; /* * page_address() returns the kernel virtual address of page. * For high memory kernel virtual address exists only if page * has been mapped. So use a version of kmap rather than * page_address() for high memory. */ if (PageHighMem(page)) { offset &= ~PAGE_MASK; do { unsigned int len = size; if (len + offset > PAGE_SIZE) len = PAGE_SIZE - offset; page = pfn_to_page(pfn++); addr = kmap_atomic(page); _cache_op(op, addr + offset, addr + offset + len); kunmap_atomic(addr); size -= len; offset = 0; } while (size); return 0; } addr = page_address(page); } _cache_op(op, addr + offset, addr + offset + (size_t) size); return 0; } int kgsl_cache_range_op(struct kgsl_memdesc *memdesc, uint64_t offset, uint64_t size, unsigned int op) { void *addr = NULL; struct sg_table *sgt = NULL; struct scatterlist *sg; unsigned int i, pos = 0; int ret = 0; if (size == 0 || size > UINT_MAX) return -EINVAL; /* Make sure that the offset + size does not overflow */ if ((offset + size < offset) || (offset + size < size)) return -ERANGE; /* Check that offset+length does not exceed memdesc->size */ if (offset + size > memdesc->size) return -ERANGE; if (memdesc->hostptr) { addr = memdesc->hostptr; /* Make sure the offset + size do not overflow the address */ if (addr + ((size_t) offset + (size_t) size) < addr) return -ERANGE; ret = kgsl_do_cache_op(NULL, addr, offset, size, op); return ret; } /* * If the buffer is not to mapped to kernel, perform cache * operations after mapping to kernel. */ if (memdesc->sgt != NULL) sgt = memdesc->sgt; else { if (memdesc->pages == NULL) return ret; sgt = kgsl_alloc_sgt_from_pages(memdesc); if (IS_ERR(sgt)) return PTR_ERR(sgt); } for_each_sg(sgt->sgl, sg, sgt->nents, i) { uint64_t sg_offset, sg_left; if (offset >= (pos + sg->length)) { pos += sg->length; continue; } sg_offset = offset > pos ? offset - pos : 0; sg_left = (sg->length - sg_offset > size) ? size : sg->length - sg_offset; ret = kgsl_do_cache_op(sg_page(sg), NULL, sg_offset, sg_left, op); size -= sg_left; if (size == 0) break; pos += sg->length; } if (memdesc->sgt == NULL) kgsl_free_sgt(sgt); return ret; } EXPORT_SYMBOL(kgsl_cache_range_op); void kgsl_memdesc_init(struct kgsl_device *device, struct kgsl_memdesc *memdesc, uint64_t flags) { struct kgsl_mmu *mmu = &device->mmu; unsigned int align; memset(memdesc, 0, sizeof(*memdesc)); /* Turn off SVM if the system doesn't support it */ if (!kgsl_mmu_use_cpu_map(mmu)) flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP); /* Secure memory disables advanced addressing modes */ if (flags & KGSL_MEMFLAGS_SECURE) flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP); /* Disable IO coherence if it is not supported on the chip */ if (!MMU_FEATURE(mmu, KGSL_MMU_IO_COHERENT)) flags &= ~((uint64_t) KGSL_MEMFLAGS_IOCOHERENT); if (MMU_FEATURE(mmu, KGSL_MMU_NEED_GUARD_PAGE)) memdesc->priv |= KGSL_MEMDESC_GUARD_PAGE; if (flags & KGSL_MEMFLAGS_SECURE) memdesc->priv |= KGSL_MEMDESC_SECURE; memdesc->flags = flags; memdesc->pad_to = mmu->va_padding; memdesc->dev = device->dev->parent; align = max_t(unsigned int, (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT, ilog2(PAGE_SIZE)); kgsl_memdesc_set_align(memdesc, align); spin_lock_init(&memdesc->lock); } int kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc, uint64_t size) { int ret = 0; unsigned int j, page_size, len_alloc; unsigned int pcount = 0; size_t len; unsigned int align; static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); size = PAGE_ALIGN(size); if (size == 0 || size > UINT_MAX) return -EINVAL; align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT; /* * As 1MB is the max supported page size, use the alignment * corresponding to 1MB page to make sure higher order pages * are used if possible for a given memory size. Also, we * don't need to update alignment in memdesc flags in case * higher order page is used, as memdesc flags represent the * virtual alignment specified by the user which is anyways * getting satisfied. */ if (align < ilog2(SZ_1M)) align = ilog2(SZ_1M); page_size = kgsl_get_page_size(size, align); /* * The alignment cannot be less than the intended page size - it can be * larger however to accommodate hardware quirks */ if (align < ilog2(page_size)) { kgsl_memdesc_set_align(memdesc, ilog2(page_size)); align = ilog2(page_size); } /* * There needs to be enough room in the page array to be able to * service the allocation entirely with PAGE_SIZE sized chunks */ len_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT; memdesc->ops = &kgsl_page_alloc_ops; /* * Allocate space to store the list of pages. This is an array of * pointers so we can track 1024 pages per page of allocation. * Keep this array around for non global non secure buffers that * are allocated by kgsl. This helps with improving the vm fault * routine by finding the faulted page in constant time. */ if (!(memdesc->flags & KGSL_MEMFLAGS_SECURE)) atomic_long_add(size, &kgsl_driver.stats.page_alloc_pending); memdesc->pages = kgsl_malloc(len_alloc * sizeof(struct page *)); memdesc->page_count = 0; memdesc->size = 0; if (memdesc->pages == NULL) { ret = -ENOMEM; goto done; } len = size; while (len > 0) { int page_count; page_count = kgsl_pool_alloc_page(&page_size, memdesc->pages + pcount, len_alloc - pcount, &align); if (page_count <= 0) { if (page_count == -EAGAIN) continue; /* * Update sglen and memdesc size,as requested allocation * not served fully. So that they can be correctly freed * in kgsl_sharedmem_free(). */ memdesc->size = (size - len); if (sharedmem_noretry_flag != true && __ratelimit(&_rs)) KGSL_CORE_ERR( "Out of memory: only allocated %lldKB of %lldKB requested\n", (size - len) >> 10, size >> 10); ret = -ENOMEM; goto done; } pcount += page_count; len -= page_size; memdesc->size += page_size; memdesc->page_count += page_count; /* Get the needed page size for the next iteration */ page_size = kgsl_get_page_size(len, align); } /* Call to the hypervisor to lock any secure buffer allocations */ if (memdesc->flags & KGSL_MEMFLAGS_SECURE) { memdesc->sgt = kmalloc(sizeof(struct sg_table), GFP_KERNEL); if (memdesc->sgt == NULL) { ret = -ENOMEM; goto done; } ret = sg_alloc_table_from_pages(memdesc->sgt, memdesc->pages, memdesc->page_count, 0, memdesc->size, GFP_KERNEL); if (ret) { kfree(memdesc->sgt); goto done; } ret = kgsl_lock_sgt(memdesc->sgt, memdesc->size); if (ret) { sg_free_table(memdesc->sgt); kfree(memdesc->sgt); memdesc->sgt = NULL; if (ret == -EADDRNOTAVAIL) { kgsl_free(memdesc->pages); memset(memdesc, 0, sizeof(*memdesc)); return ret; } goto done; } memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED; /* Record statistics */ KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.secure, &kgsl_driver.stats.secure_max); /* * We don't need the array for secure buffers because they are * not mapped to CPU */ kgsl_free(memdesc->pages); memdesc->pages = NULL; memdesc->page_count = 0; /* Don't map and zero the locked secure buffer */ goto done; } KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.page_alloc, &kgsl_driver.stats.page_alloc_max); done: if (!(memdesc->flags & KGSL_MEMFLAGS_SECURE)) atomic_long_sub(size, &kgsl_driver.stats.page_alloc_pending); if (ret) { if (memdesc->pages) { unsigned int count = 1; for (j = 0; j < pcount; j += count) { count = 1 << compound_order(memdesc->pages[j]); kgsl_pool_free_page(memdesc->pages[j]); } } kgsl_free(memdesc->pages); memset(memdesc, 0, sizeof(*memdesc)); } return ret; } void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc) { if (memdesc == NULL || memdesc->size == 0) return; /* Make sure the memory object has been unmapped */ kgsl_mmu_put_gpuaddr(memdesc); if (memdesc->ops && memdesc->ops->free) memdesc->ops->free(memdesc); if (memdesc->sgt) { sg_free_table(memdesc->sgt); kfree(memdesc->sgt); } memdesc->page_count = 0; if (memdesc->pages) kgsl_free(memdesc->pages); memdesc->pages = NULL; } EXPORT_SYMBOL(kgsl_sharedmem_free); void kgsl_free_secure_page(struct page *page) { struct sg_table sgt; struct scatterlist sgl; if (!page) return; sgt.sgl = &sgl; sgt.nents = 1; sgt.orig_nents = 1; sg_init_table(&sgl, 1); sg_set_page(&sgl, page, PAGE_SIZE, 0); if (!kgsl_unlock_sgt(&sgt)) __free_page(page); } struct page *kgsl_alloc_secure_page(void) { struct page *page; struct sg_table sgt; struct scatterlist sgl; int status; page = alloc_page(GFP_KERNEL | __GFP_ZERO | __GFP_NORETRY | __GFP_HIGHMEM); if (!page) return NULL; sgt.sgl = &sgl; sgt.nents = 1; sgt.orig_nents = 1; sg_init_table(&sgl, 1); sg_set_page(&sgl, page, PAGE_SIZE, 0); status = kgsl_lock_sgt(&sgt, PAGE_SIZE); if (status) { if (status == -EADDRNOTAVAIL) return NULL; __free_page(page); return NULL; } return page; } int kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc, uint32_t *dst, uint64_t offsetbytes) { uint32_t *src; if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL)) return -EINVAL; WARN_ON(offsetbytes % sizeof(uint32_t) != 0); if (offsetbytes % sizeof(uint32_t) != 0) return -EINVAL; WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); if (offsetbytes > (memdesc->size - sizeof(uint32_t))) return -ERANGE; /* * We are reading shared memory between CPU and GPU. * Make sure reads before this are complete */ rmb(); src = (uint32_t *)(memdesc->hostptr + offsetbytes); *dst = *src; return 0; } EXPORT_SYMBOL(kgsl_sharedmem_readl); int kgsl_sharedmem_writel(struct kgsl_device *device, const struct kgsl_memdesc *memdesc, uint64_t offsetbytes, uint32_t src) { uint32_t *dst; if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL)) return -EINVAL; WARN_ON(offsetbytes % sizeof(uint32_t) != 0); if (offsetbytes % sizeof(uint32_t) != 0) return -EINVAL; WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); if (offsetbytes > (memdesc->size - sizeof(uint32_t))) return -ERANGE; dst = (uint32_t *)(memdesc->hostptr + offsetbytes); *dst = src; /* * We are writing to shared memory between CPU and GPU. * Make sure write above is posted immediately */ wmb(); return 0; } EXPORT_SYMBOL(kgsl_sharedmem_writel); int kgsl_sharedmem_readq(const struct kgsl_memdesc *memdesc, uint64_t *dst, uint64_t offsetbytes) { uint64_t *src; if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL)) return -EINVAL; WARN_ON(offsetbytes % sizeof(uint32_t) != 0); if (offsetbytes % sizeof(uint32_t) != 0) return -EINVAL; WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); if (offsetbytes > (memdesc->size - sizeof(uint32_t))) return -ERANGE; /* * We are reading shared memory between CPU and GPU. * Make sure reads before this are complete */ rmb(); src = (uint64_t *)(memdesc->hostptr + offsetbytes); *dst = *src; return 0; } EXPORT_SYMBOL(kgsl_sharedmem_readq); int kgsl_sharedmem_writeq(struct kgsl_device *device, const struct kgsl_memdesc *memdesc, uint64_t offsetbytes, uint64_t src) { uint64_t *dst; if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL)) return -EINVAL; WARN_ON(offsetbytes % sizeof(uint32_t) != 0); if (offsetbytes % sizeof(uint32_t) != 0) return -EINVAL; WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); if (offsetbytes > (memdesc->size - sizeof(uint32_t))) return -ERANGE; dst = (uint64_t *)(memdesc->hostptr + offsetbytes); *dst = src; /* * We are writing to shared memory between CPU and GPU. * Make sure write above is posted immediately */ wmb(); return 0; } EXPORT_SYMBOL(kgsl_sharedmem_writeq); int kgsl_sharedmem_set(struct kgsl_device *device, const struct kgsl_memdesc *memdesc, uint64_t offsetbytes, unsigned int value, uint64_t sizebytes) { if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL)) return -EINVAL; if (WARN_ON(offsetbytes + sizebytes > memdesc->size)) return -EINVAL; memset(memdesc->hostptr + offsetbytes, value, sizebytes); return 0; } EXPORT_SYMBOL(kgsl_sharedmem_set); static const char * const memtype_str[] = { [KGSL_MEMTYPE_OBJECTANY] = "any(0)", [KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer", [KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer", [KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer", [KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer", [KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer", [KGSL_MEMTYPE_TEXTURE] = "texture", [KGSL_MEMTYPE_SURFACE] = "surface", [KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface", [KGSL_MEMTYPE_GL] = "gl", [KGSL_MEMTYPE_CL] = "cl", [KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map", [KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap", [KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map", [KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap", [KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack", [KGSL_MEMTYPE_COMMAND] = "command", [KGSL_MEMTYPE_2D] = "2d", [KGSL_MEMTYPE_EGL_IMAGE] = "egl_image", [KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow", [KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample", /* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */ }; void kgsl_get_memory_usage(char *name, size_t name_size, uint64_t memflags) { unsigned int type = MEMFLAGS(memflags, KGSL_MEMTYPE_MASK, KGSL_MEMTYPE_SHIFT); if (type == KGSL_MEMTYPE_KERNEL) strlcpy(name, "kernel", name_size); else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL) strlcpy(name, memtype_str[type], name_size); else snprintf(name, name_size, "VK/others(%3d)", type); } EXPORT_SYMBOL(kgsl_get_memory_usage); int kgsl_sharedmem_alloc_contig(struct kgsl_device *device, struct kgsl_memdesc *memdesc, uint64_t size) { int result = 0; size = PAGE_ALIGN(size); if (size == 0 || size > SIZE_MAX) return -EINVAL; memdesc->size = size; memdesc->ops = &kgsl_cma_ops; memdesc->dev = device->dev->parent; memdesc->hostptr = dma_alloc_attrs(memdesc->dev, (size_t) size, &memdesc->physaddr, GFP_KERNEL, 0); if (memdesc->hostptr == NULL) { result = -ENOMEM; goto err; } result = memdesc_sg_dma(memdesc, memdesc->physaddr, size); if (result) goto err; /* Record statistics */ if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE) memdesc->gpuaddr = memdesc->physaddr; KGSL_STATS_ADD(size, &kgsl_driver.stats.coherent, &kgsl_driver.stats.coherent_max); mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)), NR_UNRECLAIMABLE_PAGES, (size >> PAGE_SHIFT)); err: if (result) kgsl_sharedmem_free(memdesc); return result; } EXPORT_SYMBOL(kgsl_sharedmem_alloc_contig); static int scm_lock_chunk(struct kgsl_memdesc *memdesc, int lock) { struct cp2_lock_req request; unsigned int resp; unsigned int *chunk_list; struct scm_desc desc = {0}; int result; /* * Flush the virt addr range before sending the memory to the * secure environment to ensure the data is actually present * in RAM * * Chunk_list holds the physical address of secure memory. * Pass in the virtual address of chunk_list to flush. * Chunk_list size is 1 because secure memory is physically * contiguous. */ chunk_list = kzalloc(sizeof(unsigned int), GFP_KERNEL); if (!chunk_list) return -ENOMEM; chunk_list[0] = memdesc->physaddr; dmac_flush_range((void *)chunk_list, (void *)chunk_list + 1); request.chunks.chunk_list = virt_to_phys(chunk_list); /* * virt_to_phys(chunk_list) may be an address > 4GB. It is guaranteed * that when using scm_call (the older interface), the phys addresses * will be restricted to below 4GB. */ desc.args[0] = virt_to_phys(chunk_list); desc.args[1] = request.chunks.chunk_list_size = 1; desc.args[2] = request.chunks.chunk_size = (unsigned int) memdesc->size; desc.args[3] = request.mem_usage = 0; desc.args[4] = request.lock = lock; desc.args[5] = 0; desc.arginfo = SCM_ARGS(6, SCM_RW, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL); kmap_flush_unused(); kmap_atomic_flush_unused(); /* * scm_call2 now supports both 32 and 64 bit calls * so we dont need scm_call separately. */ result = scm_call2(SCM_SIP_FNID(SCM_SVC_MP, MEM_PROTECT_LOCK_ID2_FLAT), &desc); resp = desc.ret[0]; kfree(chunk_list); return result; } static int kgsl_cma_alloc_secure(struct kgsl_device *device, struct kgsl_memdesc *memdesc, uint64_t size) { struct kgsl_iommu *iommu = KGSL_IOMMU_PRIV(device); int result = 0; size_t aligned; /* Align size to 1M boundaries */ aligned = ALIGN(size, SZ_1M); /* The SCM call uses an unsigned int for the size */ if (aligned == 0 || aligned > UINT_MAX) return -EINVAL; /* * If there is more than a page gap between the requested size and the * aligned size we don't need to add more memory for a guard page. Yay! */ if (memdesc->priv & KGSL_MEMDESC_GUARD_PAGE) if (aligned - size >= SZ_4K) memdesc->priv &= ~KGSL_MEMDESC_GUARD_PAGE; memdesc->size = aligned; memdesc->ops = &kgsl_cma_ops; memdesc->dev = iommu->ctx[KGSL_IOMMU_CONTEXT_SECURE].dev; memdesc->attrs |= DMA_ATTR_STRONGLY_ORDERED; memdesc->hostptr = dma_alloc_attrs(memdesc->dev, aligned, &memdesc->physaddr, GFP_KERNEL, memdesc->attrs); if (memdesc->hostptr == NULL) { result = -ENOMEM; goto err; } result = memdesc_sg_dma(memdesc, memdesc->physaddr, aligned); if (result) goto err; result = scm_lock_chunk(memdesc, 1); if (result != 0) goto err; /* Set the private bit to indicate that we've secured this */ SetPagePrivate(sg_page(memdesc->sgt->sgl)); memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED; /* Record statistics */ KGSL_STATS_ADD(aligned, &kgsl_driver.stats.secure, &kgsl_driver.stats.secure_max); mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)), NR_UNRECLAIMABLE_PAGES, (aligned >> PAGE_SHIFT)); err: if (result) kgsl_sharedmem_free(memdesc); return result; } /** * kgsl_cma_unlock_secure() - Unlock secure memory by calling TZ * @memdesc: memory descriptor */ static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc) { if (memdesc->size == 0 || !(memdesc->priv & KGSL_MEMDESC_TZ_LOCKED)) return; if (!scm_lock_chunk(memdesc, 0)) ClearPagePrivate(sg_page(memdesc->sgt->sgl)); } void kgsl_sharedmem_set_noretry(bool val) { sharedmem_noretry_flag = val; } bool kgsl_sharedmem_get_noretry(void) { return sharedmem_noretry_flag; }