/* * drivers/dma-buf/sync_file.c * * Copyright (C) 2012 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include static const struct file_operations sync_file_fops; static struct sync_file *sync_file_alloc(void) { struct sync_file *sync_file; sync_file = kzalloc(sizeof(*sync_file), GFP_KERNEL); if (!sync_file) return NULL; sync_file->file = anon_inode_getfile("sync_file", &sync_file_fops, sync_file, 0); if (IS_ERR(sync_file->file)) goto err; init_waitqueue_head(&sync_file->wq); INIT_LIST_HEAD(&sync_file->cb.node); return sync_file; err: kfree(sync_file); return NULL; } static void fence_check_cb_func(struct dma_fence *f, struct dma_fence_cb *cb) { struct sync_file *sync_file; sync_file = container_of(cb, struct sync_file, cb); wake_up_all(&sync_file->wq); } /** * sync_file_create() - creates a sync file * @fence: fence to add to the sync_fence * * Creates a sync_file containg @fence. This function acquires and additional * reference of @fence for the newly-created &sync_file, if it succeeds. The * sync_file can be released with fput(sync_file->file). Returns the * sync_file or NULL in case of error. */ struct sync_file *sync_file_create(struct dma_fence *fence) { struct sync_file *sync_file; sync_file = sync_file_alloc(); if (!sync_file) return NULL; sync_file->fence = dma_fence_get(fence); return sync_file; } EXPORT_SYMBOL(sync_file_create); static struct sync_file *sync_file_fdget(int fd) { struct file *file = fget(fd); if (!file) return NULL; if (file->f_op != &sync_file_fops) goto err; return file->private_data; err: fput(file); return NULL; } /** * sync_file_get_fence - get the fence related to the sync_file fd * @fd: sync_file fd to get the fence from * * Ensures @fd references a valid sync_file and returns a fence that * represents all fence in the sync_file. On error NULL is returned. */ struct dma_fence *sync_file_get_fence(int fd) { struct sync_file *sync_file; struct dma_fence *fence; sync_file = sync_file_fdget(fd); if (!sync_file) return NULL; fence = dma_fence_get(sync_file->fence); fput(sync_file->file); return fence; } EXPORT_SYMBOL(sync_file_get_fence); static int sync_file_set_fence(struct sync_file *sync_file, struct dma_fence **fences, int num_fences) { struct dma_fence_array *array; /* * The reference for the fences in the new sync_file and held * in add_fence() during the merge procedure, so for num_fences == 1 * we already own a new reference to the fence. For num_fence > 1 * we own the reference of the dma_fence_array creation. */ if (num_fences == 1) { sync_file->fence = fences[0]; kfree(fences); } else { array = dma_fence_array_create(num_fences, fences, dma_fence_context_alloc(1), 1, false); if (!array) return -ENOMEM; sync_file->fence = &array->base; } return 0; } static struct dma_fence **get_fences(struct sync_file *sync_file, int *num_fences) { if (dma_fence_is_array(sync_file->fence)) { struct dma_fence_array *array = to_dma_fence_array(sync_file->fence); *num_fences = array->num_fences; return array->fences; } *num_fences = 1; return &sync_file->fence; } static void add_fence(struct dma_fence **fences, int *i, struct dma_fence *fence) { fences[*i] = fence; if (!dma_fence_is_signaled(fence)) { dma_fence_get(fence); (*i)++; } } /** * sync_file_merge() - merge two sync_files * @name: name of new fence * @a: sync_file a * @b: sync_file b * * Creates a new sync_file which contains copies of all the fences in both * @a and @b. @a and @b remain valid, independent sync_file. Returns the * new merged sync_file or NULL in case of error. */ static struct sync_file *sync_file_merge(struct sync_file *a, struct sync_file *b) { struct sync_file *sync_file; struct dma_fence **fences, **nfences, **a_fences, **b_fences; int i, i_a, i_b, num_fences, a_num_fences, b_num_fences; sync_file = sync_file_alloc(); if (!sync_file) return NULL; a_fences = get_fences(a, &a_num_fences); b_fences = get_fences(b, &b_num_fences); if (a_num_fences > INT_MAX - b_num_fences) goto err; num_fences = a_num_fences + b_num_fences; fences = kcalloc(num_fences, sizeof(*fences), GFP_KERNEL); if (!fences) goto err; /* * Assume sync_file a and b are both ordered and have no * duplicates with the same context. * * If a sync_file can only be created with sync_file_merge * and sync_file_create, this is a reasonable assumption. */ for (i = i_a = i_b = 0; i_a < a_num_fences && i_b < b_num_fences; ) { struct dma_fence *pt_a = a_fences[i_a]; struct dma_fence *pt_b = b_fences[i_b]; if (pt_a->context < pt_b->context) { add_fence(fences, &i, pt_a); i_a++; } else if (pt_a->context > pt_b->context) { add_fence(fences, &i, pt_b); i_b++; } else { if (pt_a->seqno - pt_b->seqno <= INT_MAX) add_fence(fences, &i, pt_a); else add_fence(fences, &i, pt_b); i_a++; i_b++; } } for (; i_a < a_num_fences; i_a++) add_fence(fences, &i, a_fences[i_a]); for (; i_b < b_num_fences; i_b++) add_fence(fences, &i, b_fences[i_b]); if (i == 0) fences[i++] = dma_fence_get(a_fences[0]); if (num_fences > i) { nfences = krealloc(fences, i * sizeof(*fences), GFP_KERNEL); if (!nfences) goto err; fences = nfences; } if (sync_file_set_fence(sync_file, fences, i) < 0) { kfree(fences); goto err; } return sync_file; err: fput(sync_file->file); return NULL; } static int sync_file_release(struct inode *inode, struct file *file) { struct sync_file *sync_file = file->private_data; if (test_bit(POLL_ENABLED, &sync_file->flags)) dma_fence_remove_callback(sync_file->fence, &sync_file->cb); dma_fence_put(sync_file->fence); kfree(sync_file); return 0; } static unsigned int sync_file_poll(struct file *file, poll_table *wait) { struct sync_file *sync_file = file->private_data; poll_wait(file, &sync_file->wq, wait); if (list_empty(&sync_file->cb.node) && !test_and_set_bit(POLL_ENABLED, &sync_file->flags)) { if (dma_fence_add_callback(sync_file->fence, &sync_file->cb, fence_check_cb_func) < 0) wake_up_all(&sync_file->wq); } return dma_fence_is_signaled(sync_file->fence) ? POLLIN : 0; } static long sync_file_ioctl_merge(struct sync_file *sync_file, unsigned long arg) { int fd = get_unused_fd_flags(O_CLOEXEC); int err; struct sync_file *fence2, *fence3; struct sync_merge_data data; size_t len; if (fd < 0) return fd; arg += offsetof(typeof(data), fd2); len = sizeof(data) - offsetof(typeof(data), fd2); if (copy_from_user(&data.fd2, (void __user *)arg, len)) { err = -EFAULT; goto err_put_fd; } if (data.flags || data.pad) { err = -EINVAL; goto err_put_fd; } fence2 = sync_file_fdget(data.fd2); if (!fence2) { err = -ENOENT; goto err_put_fd; } fence3 = sync_file_merge(sync_file, fence2); if (!fence3) { err = -ENOMEM; goto err_put_fence2; } data.fence = fd; if (copy_to_user((void __user *)arg, &data.fd2, len)) { err = -EFAULT; goto err_put_fence3; } fd_install(fd, fence3->file); fput(fence2->file); return 0; err_put_fence3: fput(fence3->file); err_put_fence2: fput(fence2->file); err_put_fd: put_unused_fd(fd); return err; } static int sync_fill_fence_info(struct dma_fence *fence, struct sync_fence_info *info) { info->status = dma_fence_get_status(fence); while (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && !test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags)) cpu_relax(); info->timestamp_ns = test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags) ? ktime_to_ns(fence->timestamp) : ktime_set(0, 0); return info->status; } static long sync_file_ioctl_fence_info(struct sync_file *sync_file, unsigned long arg) { struct sync_file_info info; struct dma_fence **fences; size_t len, offset; int num_fences, i; arg += offsetof(typeof(info), status); len = sizeof(info) - offsetof(typeof(info), status); if (copy_from_user(&info.status, (void __user *)arg, len)) return -EFAULT; if (info.flags || info.pad) return -EINVAL; fences = get_fences(sync_file, &num_fences); /* * Passing num_fences = 0 means that userspace doesn't want to * retrieve any sync_fence_info. If num_fences = 0 we skip filling * sync_fence_info and return the actual number of fences on * info->num_fences. */ if (!info.num_fences) { info.status = dma_fence_is_signaled(sync_file->fence); goto no_fences; } else { info.status = 1; } if (info.num_fences < num_fences) return -EINVAL; offset = offsetof(struct sync_fence_info, status); for (i = 0; i < num_fences; i++) { struct { __s32 status; __u32 flags; __u64 timestamp_ns; } fence_info; struct sync_fence_info *finfo = (void *)&fence_info - offset; int status = sync_fill_fence_info(fences[i], finfo); u64 dest; /* Don't leak kernel memory to userspace via finfo->flags */ finfo->flags = 0; info.status = info.status <= 0 ? info.status : status; dest = info.sync_fence_info + i * sizeof(*finfo) + offset; if (copy_to_user(u64_to_user_ptr(dest), &fence_info, sizeof(fence_info))) return -EFAULT; } no_fences: info.num_fences = num_fences; if (copy_to_user((void __user *)arg, &info.status, len)) return -EFAULT; return 0; } static long sync_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct sync_file *sync_file = file->private_data; switch (cmd) { case SYNC_IOC_MERGE: return sync_file_ioctl_merge(sync_file, arg); case SYNC_IOC_FILE_INFO: return sync_file_ioctl_fence_info(sync_file, arg); default: return -ENOTTY; } } static const struct file_operations sync_file_fops = { .release = sync_file_release, .poll = sync_file_poll, .unlocked_ioctl = sync_file_ioctl, .compat_ioctl = sync_file_ioctl, };