/* * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adsprpc_compat.h" #include "adsprpc_shared.h" #include #include #include #include #define TZ_PIL_PROTECT_MEM_SUBSYS_ID 0x0C #define TZ_PIL_CLEAR_PROTECT_MEM_SUBSYS_ID 0x0D #define TZ_PIL_AUTH_QDSP6_PROC 1 #define ADSP_MMAP_HEAP_ADDR 4 #define ADSP_MMAP_REMOTE_HEAP_ADDR 8 #define ADSP_MMAP_ADD_PAGES 0x1000 #define FASTRPC_DMAHANDLE_NOMAP (16) #define FASTRPC_ENOSUCH 39 #define VMID_SSC_Q6 5 #define VMID_ADSP_Q6 6 #define DEBUGFS_SIZE 3072 #define UL_SIZE 25 #define PID_SIZE 10 #define AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME "audio_pdr_adsprpc" #define AUDIO_PDR_ADSP_SERVICE_NAME "avs/audio" #define SENSORS_PDR_SERVICE_LOCATION_CLIENT_NAME "sensors_pdr_adsprpc" #define SENSORS_PDR_ADSP_SERVICE_NAME "tms/servreg" #define RPC_TIMEOUT (5 * HZ) #define BALIGN 128 #define NUM_CHANNELS 4 /* adsp, mdsp, slpi, cdsp*/ #define NUM_SESSIONS 9 /*8 compute, 1 cpz*/ #define M_FDLIST (16) #define M_CRCLIST (64) #define SESSION_ID_INDEX (30) #define FASTRPC_CTX_MAGIC (0xbeeddeed) #define FASTRPC_CTX_MAX (256) #define FASTRPC_CTXID_MASK (0xFF0) #define NUM_DEVICES 2 /* adsprpc-smd, adsprpc-smd-secure */ #define MINOR_NUM_DEV 0 #define MINOR_NUM_SECURE_DEV 1 #define NON_SECURE_CHANNEL 0 #define SECURE_CHANNEL 1 #define IS_CACHE_ALIGNED(x) (((x) & ((L1_CACHE_BYTES)-1)) == 0) #ifndef ION_FLAG_CACHED #define ION_FLAG_CACHED (1) #endif #define ADSP_DOMAIN_ID (0) #define MDSP_DOMAIN_ID (1) #define SDSP_DOMAIN_ID (2) #define CDSP_DOMAIN_ID (3) #define PERF_KEYS \ "count:flush:map:copy:rpmsg:getargs:putargs:invalidate:invoke:tid:ptr" #define FASTRPC_STATIC_HANDLE_KERNEL (1) #define FASTRPC_STATIC_HANDLE_LISTENER (3) #define FASTRPC_STATIC_HANDLE_MAX (20) #define FASTRPC_LATENCY_CTRL_ENB (1) #define MAX_SIZE_LIMIT (0x78000000) #define INIT_FILELEN_MAX (2*1024*1024) #define INIT_MEMLEN_MAX (8*1024*1024) #define MAX_CACHE_BUF_SIZE (8*1024*1024) #define PERF_END (void)0 #define PERF(enb, cnt, ff) \ {\ struct timespec64 startT = {0};\ int64_t *counter = cnt;\ if (enb && counter) {\ ktime_get_real_ts64(&startT);\ } \ ff ;\ if (enb && counter) {\ *counter += getnstimediff(&startT);\ } \ } #define GET_COUNTER(perf_ptr, offset) \ (perf_ptr != NULL ?\ (((offset >= 0) && (offset < PERF_KEY_MAX)) ?\ (int64_t *)(perf_ptr + offset)\ : (int64_t *)NULL) : (int64_t *)NULL) static int fastrpc_pdr_notifier_cb(struct notifier_block *nb, unsigned long code, void *data); static struct dentry *debugfs_root; static struct dentry *debugfs_global_file; static inline uint64_t buf_page_start(uint64_t buf) { uint64_t start = (uint64_t) buf & PAGE_MASK; return start; } static inline uint64_t buf_page_offset(uint64_t buf) { uint64_t offset = (uint64_t) buf & (PAGE_SIZE - 1); return offset; } static inline uint64_t buf_num_pages(uint64_t buf, size_t len) { uint64_t start = buf_page_start(buf) >> PAGE_SHIFT; uint64_t end = (((uint64_t) buf + len - 1) & PAGE_MASK) >> PAGE_SHIFT; uint64_t nPages = end - start + 1; return nPages; } static inline uint64_t buf_page_size(uint32_t size) { uint64_t sz = (size + (PAGE_SIZE - 1)) & PAGE_MASK; return sz > PAGE_SIZE ? sz : PAGE_SIZE; } static inline void *uint64_to_ptr(uint64_t addr) { void *ptr = (void *)((uintptr_t)addr); return ptr; } static inline uint64_t ptr_to_uint64(void *ptr) { uint64_t addr = (uint64_t)((uintptr_t)ptr); return addr; } struct secure_vm { int *vmid; int *vmperm; int vmcount; }; struct fastrpc_file; struct fastrpc_buf { struct hlist_node hn; struct hlist_node hn_rem; struct fastrpc_file *fl; void *virt; uint64_t phys; size_t size; unsigned long dma_attr; uintptr_t raddr; uint32_t flags; int remote; }; struct fastrpc_ctx_lst; struct overlap { uintptr_t start; uintptr_t end; int raix; uintptr_t mstart; uintptr_t mend; uintptr_t offset; }; struct smq_invoke_ctx { struct hlist_node hn; struct completion work; int retval; int pid; int tgid; remote_arg_t *lpra; remote_arg64_t *rpra; remote_arg64_t *lrpra; /* Local copy of rpra for put_args */ int *fds; unsigned int *attrs; struct fastrpc_mmap **maps; struct fastrpc_buf *buf; struct fastrpc_buf *lbuf; size_t used; struct fastrpc_file *fl; uint32_t handle; uint32_t sc; struct overlap *overs; struct overlap **overps; struct smq_msg msg; uint32_t *crc; unsigned int magic; uint64_t ctxid; bool pm_awake_voted; }; struct fastrpc_ctx_lst { struct hlist_head pending; struct hlist_head interrupted; }; struct fastrpc_smmu { struct device *dev; struct dma_iommu_mapping *mapping; const char *dev_name; int cb; int enabled; int faults; int secure; int coherent; }; struct fastrpc_session_ctx { struct device *dev; struct fastrpc_smmu smmu; int used; }; struct fastrpc_static_pd { char *spdname; struct notifier_block pdrnb; struct notifier_block get_service_nb; void *pdrhandle; uint64_t pdrcount; uint64_t prevpdrcount; int ispdup; int cid; }; struct fastrpc_channel_ctx { char *name; char *subsys; struct rpmsg_device *rpdev; struct device *dev; struct fastrpc_session_ctx session[NUM_SESSIONS]; struct fastrpc_static_pd spd[NUM_SESSIONS]; struct completion work; struct completion workport; struct notifier_block nb; struct mutex smd_mutex; struct mutex rpmsg_mutex; uint64_t sesscount; uint64_t ssrcount; int in_hib; void *handle; uint64_t prevssrcount; int issubsystemup; int vmid; struct secure_vm rhvm; int ramdumpenabled; void *remoteheap_ramdump_dev; /* Indicates, if channel is restricted to secure node only */ int secure; }; struct fastrpc_apps { struct fastrpc_channel_ctx *channel; struct cdev cdev; struct class *class; struct smq_phy_page range; struct hlist_head maps; uint32_t staticpd_flags; dev_t dev_no; int compat; struct hlist_head drivers; spinlock_t hlock; struct device *dev; unsigned int latency; int rpmsg_register; spinlock_t ctxlock; struct smq_invoke_ctx *ctxtable[FASTRPC_CTX_MAX]; bool legacy_remote_heap; /* Secure subsystems like ADSP/SLPI will use secure client */ struct wakeup_source *wake_source_secure; /* Non-secure subsystem like CDSP will use regular client */ struct wakeup_source *wake_source; }; struct fastrpc_mmap { struct hlist_node hn; struct fastrpc_file *fl; struct fastrpc_apps *apps; int fd; uint32_t flags; struct dma_buf *buf; struct sg_table *table; struct dma_buf_attachment *attach; struct ion_handle *handle; uint64_t phys; size_t size; uintptr_t va; size_t len; int refs; uintptr_t raddr; int uncached; int secure; uintptr_t attr; bool is_filemap; /* flag to indicate map used in process init */ unsigned int ctx_refs; /* Indicates reference count for context map */ }; enum fastrpc_perfkeys { PERF_COUNT = 0, PERF_FLUSH = 1, PERF_MAP = 2, PERF_COPY = 3, PERF_LINK = 4, PERF_GETARGS = 5, PERF_PUTARGS = 6, PERF_INVARGS = 7, PERF_INVOKE = 8, PERF_KEY_MAX = 9, }; struct fastrpc_perf { int64_t count; int64_t flush; int64_t map; int64_t copy; int64_t link; int64_t getargs; int64_t putargs; int64_t invargs; int64_t invoke; int64_t tid; struct hlist_node hn; }; struct fastrpc_file { struct hlist_node hn; spinlock_t hlock; struct hlist_head maps; struct hlist_head cached_bufs; struct hlist_head remote_bufs; struct fastrpc_ctx_lst clst; struct fastrpc_session_ctx *sctx; struct fastrpc_buf *init_mem; struct fastrpc_session_ctx *secsctx; uint32_t mode; uint32_t profile; int sessionid; int tgid; int cid; uint64_t ssrcount; int pd; char *spdname; int file_close; int dsp_proc_init; struct fastrpc_apps *apps; struct hlist_head perf; struct dentry *debugfs_file; struct mutex perf_mutex; struct pm_qos_request pm_qos_req; int qos_request; struct mutex map_mutex; struct mutex internal_map_mutex; /* Identifies the device (MINOR_NUM_DEV / MINOR_NUM_SECURE_DEV) */ int dev_minor; char *debug_buf; /* Flag to enable PM wake/relax voting for every remote invoke */ int wake_enable; /* To indicate attempt has been made to allocate memory for debug_buf */ int debug_buf_alloced_attempted; /* Flag to indicate dynamic process creation status */ bool in_process_create; }; static struct fastrpc_apps gfa; static struct fastrpc_channel_ctx gcinfo[NUM_CHANNELS] = { { .name = "adsprpc-smd", .subsys = "adsp", .spd = { { .spdname = AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, .pdrnb.notifier_call = fastrpc_pdr_notifier_cb, .cid = ADSP_DOMAIN_ID, }, { .spdname = SENSORS_PDR_SERVICE_LOCATION_CLIENT_NAME, .pdrnb.notifier_call = fastrpc_pdr_notifier_cb, .cid = ADSP_DOMAIN_ID, } }, }, { .name = "mdsprpc-smd", .subsys = "modem", .spd = { { .cid = MDSP_DOMAIN_ID, } }, }, { .name = "sdsprpc-smd", .subsys = "slpi", .spd = { { .cid = SDSP_DOMAIN_ID, } }, }, { .name = "cdsprpc-smd", .subsys = "cdsp", .spd = { { .cid = CDSP_DOMAIN_ID, } }, }, }; static int hlosvm[1] = {VMID_HLOS}; static int hlosvmperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; static void fastrpc_pm_awake(int fl_wake_enable, bool *pm_awake_voted, int channel_type); static void fastrpc_pm_relax(bool *pm_awake_voted, int channel_type); static inline int64_t getnstimediff(struct timespec64 *start) { int64_t ns; struct timespec64 ts, b; ktime_get_real_ts64(&ts); b = timespec64_sub(ts, *start); ns = timespec64_to_ns(&b); return ns; } static inline int64_t *getperfcounter(struct fastrpc_file *fl, int key) { int err = 0; int64_t *val = NULL; struct fastrpc_perf *perf = NULL, *fperf = NULL; struct hlist_node *n = NULL; VERIFY(err, !IS_ERR_OR_NULL(fl)); if (err) goto bail; mutex_lock(&fl->perf_mutex); hlist_for_each_entry_safe(perf, n, &fl->perf, hn) { if (perf->tid == current->pid) { fperf = perf; break; } } if (IS_ERR_OR_NULL(fperf)) { fperf = kzalloc(sizeof(*fperf), GFP_KERNEL); VERIFY(err, !IS_ERR_OR_NULL(fperf)); if (err) { mutex_unlock(&fl->perf_mutex); kfree(fperf); goto bail; } fperf->tid = current->pid; hlist_add_head(&fperf->hn, &fl->perf); } val = ((int64_t *)fperf) + key; mutex_unlock(&fl->perf_mutex); bail: return val; } static void fastrpc_buf_free(struct fastrpc_buf *buf, int cache) { struct fastrpc_file *fl = buf == NULL ? NULL : buf->fl; int vmid; struct fastrpc_apps *me = &gfa; if (!fl) return; if (cache && buf->size < MAX_CACHE_BUF_SIZE) { spin_lock(&fl->hlock); hlist_add_head(&buf->hn, &fl->cached_bufs); spin_unlock(&fl->hlock); return; } if (buf->remote) { spin_lock(&fl->hlock); hlist_del_init(&buf->hn_rem); spin_unlock(&fl->hlock); buf->remote = 0; buf->raddr = 0; } if (!IS_ERR_OR_NULL(buf->virt)) { int destVM[1] = {VMID_HLOS}; int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; if (fl->sctx->smmu.cb && fl->cid != SDSP_DOMAIN_ID) buf->phys &= ~((uint64_t)fl->sctx->smmu.cb << 32); vmid = fl->apps->channel[fl->cid].vmid; if ((vmid) && (me->channel[fl->cid].in_hib == 0)) { int srcVM[2] = {VMID_HLOS, vmid}; hyp_assign_phys(buf->phys, buf_page_size(buf->size), srcVM, 2, destVM, destVMperm, 1); } dma_free_attrs(fl->sctx->smmu.dev, buf->size, buf->virt, buf->phys, buf->dma_attr); } kfree(buf); } static void fastrpc_cached_buf_list_free(struct fastrpc_file *fl) { struct fastrpc_buf *buf, *free; do { struct hlist_node *n; free = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) { hlist_del_init(&buf->hn); free = buf; break; } spin_unlock(&fl->hlock); if (free) fastrpc_buf_free(free, 0); } while (free); } static void fastrpc_remote_buf_list_free(struct fastrpc_file *fl) { struct fastrpc_buf *buf, *free; do { struct hlist_node *n; free = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(buf, n, &fl->remote_bufs, hn_rem) { free = buf; break; } spin_unlock(&fl->hlock); if (free) fastrpc_buf_free(free, 0); } while (free); } static void fastrpc_mmap_add(struct fastrpc_mmap *map) { if (map->flags == ADSP_MMAP_HEAP_ADDR || map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { struct fastrpc_apps *me = &gfa; spin_lock(&me->hlock); hlist_add_head(&map->hn, &me->maps); spin_unlock(&me->hlock); } else { struct fastrpc_file *fl = map->fl; hlist_add_head(&map->hn, &fl->maps); } } static int fastrpc_mmap_find(struct fastrpc_file *fl, int fd, uintptr_t va, size_t len, int mflags, int refs, struct fastrpc_mmap **ppmap) { struct fastrpc_apps *me = &gfa; struct fastrpc_mmap *match = NULL, *map = NULL; struct hlist_node *n; if ((va + len) < va) return -EOVERFLOW; if (mflags == ADSP_MMAP_HEAP_ADDR || mflags == ADSP_MMAP_REMOTE_HEAP_ADDR) { spin_lock(&me->hlock); hlist_for_each_entry_safe(map, n, &me->maps, hn) { if (va >= map->va && va + len <= map->va + map->len && map->fd == fd) { if (refs) { if (map->refs + 1 == INT_MAX) { spin_unlock(&me->hlock); return -ETOOMANYREFS; } map->refs++; } match = map; break; } } spin_unlock(&me->hlock); } else { hlist_for_each_entry_safe(map, n, &fl->maps, hn) { if (va >= map->va && va + len <= map->va + map->len && map->fd == fd) { if (refs) { if (map->refs + 1 == INT_MAX) return -ETOOMANYREFS; map->refs++; } match = map; break; } } } if (match) { *ppmap = match; return 0; } return -ENOTTY; } static int dma_alloc_memory(dma_addr_t *region_phys, void **vaddr, size_t size, unsigned long dma_attr) { int err = 0; struct fastrpc_apps *me = &gfa; if (me->dev == NULL) { pr_err("device adsprpc-mem is not initialized\n"); return -ENODEV; } VERIFY(err, size > 0 && size < MAX_SIZE_LIMIT); if (err) { err = -EFAULT; pr_err("adsprpc: %s: invalid allocation size 0x%zx\n", __func__, size); return err; } *vaddr = dma_alloc_attrs(me->dev, size, region_phys, GFP_KERNEL, dma_attr); if (IS_ERR_OR_NULL(*vaddr)) { pr_err("adsprpc: %s: %s: dma_alloc_attrs failed for size 0x%zx, returned %ld\n", current->comm, __func__, size, PTR_ERR(*vaddr)); return -ENOMEM; } return 0; } static int fastrpc_mmap_remove(struct fastrpc_file *fl, uintptr_t va, size_t len, struct fastrpc_mmap **ppmap) { struct fastrpc_mmap *match = NULL, *map; struct hlist_node *n; struct fastrpc_apps *me = &gfa; spin_lock(&me->hlock); hlist_for_each_entry_safe(map, n, &me->maps, hn) { if (map->raddr == va && map->raddr + map->len == va + len && map->refs == 1 && /* Remove map if not used in process initialization*/ !map->is_filemap) { match = map; hlist_del_init(&map->hn); break; } } spin_unlock(&me->hlock); if (match) { *ppmap = match; return 0; } hlist_for_each_entry_safe(map, n, &fl->maps, hn) { if (map->raddr == va && !map->ctx_refs && map->raddr + map->len == va + len && map->refs == 1 && /* Remove map if not used in process initialization*/ !map->is_filemap) { match = map; hlist_del_init(&map->hn); break; } } if (match) { *ppmap = match; return 0; } return -ENOTTY; } static void fastrpc_mmap_free(struct fastrpc_mmap *map, uint32_t flags) { struct fastrpc_apps *me = &gfa; struct fastrpc_file *fl; int vmid, cid = -1, err = 0; struct fastrpc_session_ctx *sess; if (!map) return; fl = map->fl; if (fl && !(map->flags == ADSP_MMAP_HEAP_ADDR || map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR)) { cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; pr_err("adsprpc: ERROR:%s, Invalid channel id: %d, err:%d", __func__, cid, err); return; } } if (map->flags == ADSP_MMAP_HEAP_ADDR || map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { spin_lock(&me->hlock); map->refs--; if (!map->refs && !map->ctx_refs) hlist_del_init(&map->hn); spin_unlock(&me->hlock); if (map->refs > 0) return; } else { map->refs--; if (!map->refs && !map->ctx_refs) hlist_del_init(&map->hn); if (map->refs > 0 && !flags) return; } if (map->flags == ADSP_MMAP_HEAP_ADDR || map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { if (me->dev == NULL) { pr_err("failed to free remote heap allocation\n"); return; } if (map->phys) { dma_free_attrs(me->dev, map->size, (void *)map->va, (dma_addr_t)map->phys, (unsigned long)map->attr); } } else if (map->flags == FASTRPC_DMAHANDLE_NOMAP) { if (!IS_ERR_OR_NULL(map->table)) dma_buf_unmap_attachment(map->attach, map->table, DMA_BIDIRECTIONAL); if (!IS_ERR_OR_NULL(map->attach)) dma_buf_detach(map->buf, map->attach); if (!IS_ERR_OR_NULL(map->buf)) dma_buf_put(map->buf); } else { int destVM[1] = {VMID_HLOS}; int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; if (map->secure) sess = fl->secsctx; else sess = fl->sctx; vmid = fl->apps->channel[fl->cid].vmid; if (vmid && map->phys && (me->channel[fl->cid].in_hib == 0)) { int srcVM[2] = {VMID_HLOS, vmid}; hyp_assign_phys(map->phys, buf_page_size(map->size), srcVM, 2, destVM, destVMperm, 1); } if (!IS_ERR_OR_NULL(map->table)) dma_buf_unmap_attachment(map->attach, map->table, DMA_BIDIRECTIONAL); if (!IS_ERR_OR_NULL(map->attach)) dma_buf_detach(map->buf, map->attach); if (!IS_ERR_OR_NULL(map->buf)) dma_buf_put(map->buf); } kfree(map); } static int fastrpc_session_alloc(struct fastrpc_channel_ctx *chan, int secure, struct fastrpc_session_ctx **session); static int fastrpc_mmap_create(struct fastrpc_file *fl, int fd, unsigned int attr, uintptr_t va, size_t len, int mflags, struct fastrpc_mmap **ppmap) { struct fastrpc_apps *me = &gfa; struct fastrpc_session_ctx *sess; struct fastrpc_apps *apps = fl->apps; struct fastrpc_channel_ctx *chan = NULL; struct fastrpc_mmap *map = NULL; dma_addr_t region_phys = 0; void *region_vaddr = NULL; unsigned long flags; int err = 0, vmid, sgl_index = 0, cid = -1; struct scatterlist *sgl = NULL; cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; goto bail; } chan = &apps->channel[cid]; if (!fastrpc_mmap_find(fl, fd, va, len, mflags, 1, ppmap)) return 0; map = kzalloc(sizeof(*map), GFP_KERNEL); VERIFY(err, !IS_ERR_OR_NULL(map)); if (err) goto bail; INIT_HLIST_NODE(&map->hn); map->flags = mflags; map->refs = 1; map->fl = fl; map->fd = fd; map->attr = attr; map->is_filemap = false; map->ctx_refs = 0; if (mflags == ADSP_MMAP_HEAP_ADDR || mflags == ADSP_MMAP_REMOTE_HEAP_ADDR) { map->apps = me; map->fl = NULL; map->attr |= DMA_ATTR_SKIP_ZEROING | DMA_ATTR_NO_KERNEL_MAPPING; VERIFY(err, !dma_alloc_memory(®ion_phys, ®ion_vaddr, len, (unsigned long) map->attr)); if (err) goto bail; map->phys = (uintptr_t)region_phys; map->size = len; map->va = (uintptr_t)region_vaddr; } else if (mflags == FASTRPC_DMAHANDLE_NOMAP) { VERIFY(err, !IS_ERR_OR_NULL(map->buf = dma_buf_get(fd))); if (err) goto bail; VERIFY(err, !dma_buf_get_flags(map->buf, &flags)); if (err) goto bail; map->secure = flags & ION_FLAG_SECURE; map->uncached = 1; map->va = 0; map->phys = 0; VERIFY(err, !IS_ERR_OR_NULL(map->attach = dma_buf_attach(map->buf, me->dev))); if (err) goto bail; map->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC; VERIFY(err, !IS_ERR_OR_NULL(map->table = dma_buf_map_attachment(map->attach, DMA_BIDIRECTIONAL))); if (err) goto bail; VERIFY(err, map->table->nents == 1); if (err) goto bail; map->phys = sg_dma_address(map->table->sgl); } else { if (map->attr && (map->attr & FASTRPC_ATTR_KEEP_MAP)) { pr_info("adsprpc: buffer mapped with persist attr %x\n", (unsigned int)map->attr); map->refs = 2; } VERIFY(err, !IS_ERR_OR_NULL(map->buf = dma_buf_get(fd))); if (err) goto bail; VERIFY(err, !dma_buf_get_flags(map->buf, &flags)); if (err) goto bail; map->secure = flags & ION_FLAG_SECURE; if (map->secure) { if (!fl->secsctx) err = fastrpc_session_alloc(chan, 1, &fl->secsctx); if (err) goto bail; } if (map->secure) sess = fl->secsctx; else sess = fl->sctx; VERIFY(err, !IS_ERR_OR_NULL(sess)); if (err) goto bail; map->uncached = !(flags & ION_FLAG_CACHED); if (map->attr & FASTRPC_ATTR_NOVA && !sess->smmu.coherent) map->uncached = 1; VERIFY(err, !IS_ERR_OR_NULL(map->attach = dma_buf_attach(map->buf, sess->smmu.dev))); if (err) goto bail; map->attach->dma_map_attrs |= DMA_ATTR_DELAYED_UNMAP; map->attach->dma_map_attrs |= DMA_ATTR_EXEC_MAPPING; if (map->attr & FASTRPC_ATTR_NON_COHERENT || (sess->smmu.coherent && map->uncached)) map->attach->dma_map_attrs |= DMA_ATTR_FORCE_NON_COHERENT | DMA_ATTR_SKIP_CPU_SYNC; else if (map->attr & FASTRPC_ATTR_COHERENT) map->attach->dma_map_attrs |= DMA_ATTR_FORCE_COHERENT; /* * Skip CPU sync if IO Cohernecy is not supported * as we flush later */ else if (!sess->smmu.coherent) map->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC; VERIFY(err, !IS_ERR_OR_NULL(map->table = dma_buf_map_attachment(map->attach, DMA_BIDIRECTIONAL))); if (err) goto bail; if (!sess->smmu.enabled) { VERIFY(err, map->table->nents == 1); if (err) goto bail; } map->phys = sg_dma_address(map->table->sgl); if (sess->smmu.cb) { if (fl->cid != SDSP_DOMAIN_ID) map->phys += ((uint64_t)sess->smmu.cb << 32); for_each_sg(map->table->sgl, sgl, map->table->nents, sgl_index) map->size += sg_dma_len(sgl); } else { map->size = buf_page_size(len); } VERIFY(err, map->size >= len && map->size < MAX_SIZE_LIMIT); if (err) { err = -EFAULT; goto bail; } vmid = fl->apps->channel[fl->cid].vmid; if (!sess->smmu.enabled && !vmid) { VERIFY(err, map->phys >= me->range.addr && map->phys + map->size <= me->range.addr + me->range.size); if (err) { pr_err("adsprpc: %s: phys addr 0x%llx (size 0x%zx) out of CMA heap range\n", __func__, map->phys, map->size); goto bail; } } if (vmid) { int srcVM[1] = {VMID_HLOS}; int destVM[2] = {VMID_HLOS, vmid}; int destVMperm[2] = {PERM_READ | PERM_WRITE, PERM_READ | PERM_WRITE | PERM_EXEC}; VERIFY(err, !hyp_assign_phys(map->phys, buf_page_size(map->size), srcVM, 1, destVM, destVMperm, 2)); if (err) goto bail; } map->va = va; } map->len = len; fastrpc_mmap_add(map); *ppmap = map; bail: if (err && map) fastrpc_mmap_free(map, 0); return err; } static int fastrpc_buf_alloc(struct fastrpc_file *fl, size_t size, unsigned long dma_attr, uint32_t rflags, int remote, struct fastrpc_buf **obuf) { int err = 0, vmid; struct fastrpc_buf *buf = NULL, *fr = NULL; struct hlist_node *n; VERIFY(err, size > 0 && size < MAX_SIZE_LIMIT); if (err) { err = -EFAULT; goto bail; } if (!remote) { /* find the smallest buffer that fits in the cache */ spin_lock(&fl->hlock); hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) { if (buf->size >= size && (!fr || fr->size > buf->size)) fr = buf; } if (fr) hlist_del_init(&fr->hn); spin_unlock(&fl->hlock); if (fr) { *obuf = fr; return 0; } } buf = NULL; VERIFY(err, NULL != (buf = kzalloc(sizeof(*buf), GFP_KERNEL))); if (err) goto bail; INIT_HLIST_NODE(&buf->hn); buf->fl = fl; buf->virt = NULL; buf->phys = 0; buf->size = size; buf->dma_attr = dma_attr; buf->flags = rflags; buf->raddr = 0; buf->remote = 0; buf->virt = dma_alloc_attrs(fl->sctx->smmu.dev, buf->size, (dma_addr_t *)&buf->phys, GFP_KERNEL, buf->dma_attr); if (IS_ERR_OR_NULL(buf->virt)) { /* free cache and retry */ fastrpc_cached_buf_list_free(fl); buf->virt = dma_alloc_attrs(fl->sctx->smmu.dev, buf->size, (dma_addr_t *)&buf->phys, GFP_KERNEL, buf->dma_attr); VERIFY(err, !IS_ERR_OR_NULL(buf->virt)); } if (err) { err = -ENOMEM; pr_err("adsprpc: %s: %s: dma_alloc_attrs failed for size 0x%zx, returned %ld\n", current->comm, __func__, size, PTR_ERR(buf->virt)); goto bail; } if (fl->sctx->smmu.cb && fl->cid != SDSP_DOMAIN_ID) buf->phys += ((uint64_t)fl->sctx->smmu.cb << 32); vmid = fl->apps->channel[fl->cid].vmid; if (vmid) { int srcVM[1] = {VMID_HLOS}; int destVM[2] = {VMID_HLOS, vmid}; int destVMperm[2] = {PERM_READ | PERM_WRITE, PERM_READ | PERM_WRITE | PERM_EXEC}; VERIFY(err, !hyp_assign_phys(buf->phys, buf_page_size(size), srcVM, 1, destVM, destVMperm, 2)); if (err) goto bail; } if (remote) { INIT_HLIST_NODE(&buf->hn_rem); spin_lock(&fl->hlock); hlist_add_head(&buf->hn_rem, &fl->remote_bufs); spin_unlock(&fl->hlock); buf->remote = remote; } *obuf = buf; bail: if (err && buf) fastrpc_buf_free(buf, 0); return err; } static int context_restore_interrupted(struct fastrpc_file *fl, struct fastrpc_ioctl_invoke_crc *inv, struct smq_invoke_ctx **po) { int err = 0; struct smq_invoke_ctx *ctx = NULL, *ictx = NULL; struct hlist_node *n; struct fastrpc_ioctl_invoke *invoke = &inv->inv; spin_lock(&fl->hlock); hlist_for_each_entry_safe(ictx, n, &fl->clst.interrupted, hn) { if (ictx->pid == current->pid) { if (invoke->sc != ictx->sc || ictx->fl != fl) err = -1; else { ctx = ictx; hlist_del_init(&ctx->hn); hlist_add_head(&ctx->hn, &fl->clst.pending); } break; } } spin_unlock(&fl->hlock); if (ctx) *po = ctx; return err; } #define CMP(aa, bb) ((aa) == (bb) ? 0 : (aa) < (bb) ? -1 : 1) static int overlap_ptr_cmp(const void *a, const void *b) { struct overlap *pa = *((struct overlap **)a); struct overlap *pb = *((struct overlap **)b); /* sort with lowest starting buffer first */ int st = CMP(pa->start, pb->start); /* sort with highest ending buffer first */ int ed = CMP(pb->end, pa->end); return st == 0 ? ed : st; } static int context_build_overlap(struct smq_invoke_ctx *ctx) { int i, err = 0; remote_arg_t *lpra = ctx->lpra; int inbufs = REMOTE_SCALARS_INBUFS(ctx->sc); int outbufs = REMOTE_SCALARS_OUTBUFS(ctx->sc); int nbufs = inbufs + outbufs; struct overlap max; for (i = 0; i < nbufs; ++i) { ctx->overs[i].start = (uintptr_t)lpra[i].buf.pv; ctx->overs[i].end = ctx->overs[i].start + lpra[i].buf.len; if (lpra[i].buf.len) { VERIFY(err, ctx->overs[i].end > ctx->overs[i].start); if (err) goto bail; } ctx->overs[i].raix = i; ctx->overps[i] = &ctx->overs[i]; } sort(ctx->overps, nbufs, sizeof(*ctx->overps), overlap_ptr_cmp, NULL); max.start = 0; max.end = 0; for (i = 0; i < nbufs; ++i) { if (ctx->overps[i]->start < max.end) { ctx->overps[i]->mstart = max.end; ctx->overps[i]->mend = ctx->overps[i]->end; ctx->overps[i]->offset = max.end - ctx->overps[i]->start; if (ctx->overps[i]->end > max.end) { max.end = ctx->overps[i]->end; } else { ctx->overps[i]->mend = 0; ctx->overps[i]->mstart = 0; } } else { ctx->overps[i]->mend = ctx->overps[i]->end; ctx->overps[i]->mstart = ctx->overps[i]->start; ctx->overps[i]->offset = 0; max = *ctx->overps[i]; } } bail: return err; } #define K_COPY_FROM_USER(err, kernel, dst, src, size) \ do {\ if (!(kernel))\ VERIFY(err, 0 == copy_from_user((dst),\ (void const __user *)(src),\ (size)));\ else\ memmove((dst), (src), (size));\ } while (0) #define K_COPY_TO_USER(err, kernel, dst, src, size) \ do {\ if (!(kernel))\ VERIFY(err, 0 == copy_to_user((void __user *)(dst),\ (src), (size)));\ else\ memmove((dst), (src), (size));\ } while (0) static void context_free(struct smq_invoke_ctx *ctx); static int context_alloc(struct fastrpc_file *fl, uint32_t kernel, struct fastrpc_ioctl_invoke_crc *invokefd, struct smq_invoke_ctx **po) { struct fastrpc_apps *me = &gfa; int err = 0, bufs, ii, size = 0; struct smq_invoke_ctx *ctx = NULL; struct fastrpc_ctx_lst *clst = &fl->clst; struct fastrpc_ioctl_invoke *invoke = &invokefd->inv; bufs = REMOTE_SCALARS_LENGTH(invoke->sc); size = bufs * sizeof(*ctx->lpra) + bufs * sizeof(*ctx->maps) + sizeof(*ctx->fds) * (bufs) + sizeof(*ctx->attrs) * (bufs) + sizeof(*ctx->overs) * (bufs) + sizeof(*ctx->overps) * (bufs); VERIFY(err, NULL != (ctx = kzalloc(sizeof(*ctx) + size, GFP_KERNEL))); if (err) goto bail; INIT_HLIST_NODE(&ctx->hn); hlist_add_fake(&ctx->hn); ctx->fl = fl; ctx->maps = (struct fastrpc_mmap **)(&ctx[1]); ctx->lpra = (remote_arg_t *)(&ctx->maps[bufs]); ctx->fds = (int *)(&ctx->lpra[bufs]); ctx->attrs = (unsigned int *)(&ctx->fds[bufs]); ctx->overs = (struct overlap *)(&ctx->attrs[bufs]); ctx->overps = (struct overlap **)(&ctx->overs[bufs]); K_COPY_FROM_USER(err, kernel, (void *)ctx->lpra, invoke->pra, bufs * sizeof(*ctx->lpra)); if (err) goto bail; if (invokefd->fds) { K_COPY_FROM_USER(err, kernel, ctx->fds, invokefd->fds, bufs * sizeof(*ctx->fds)); if (err) goto bail; } else { ctx->fds = NULL; } if (invokefd->attrs) { K_COPY_FROM_USER(err, kernel, ctx->attrs, invokefd->attrs, bufs * sizeof(*ctx->attrs)); if (err) goto bail; } ctx->crc = (uint32_t *)invokefd->crc; ctx->handle = invoke->handle; ctx->sc = invoke->sc; if (bufs) { VERIFY(err, 0 == context_build_overlap(ctx)); if (err) goto bail; } ctx->retval = -1; ctx->pid = current->pid; ctx->tgid = fl->tgid; init_completion(&ctx->work); ctx->magic = FASTRPC_CTX_MAGIC; ctx->pm_awake_voted = false; spin_lock(&fl->hlock); hlist_add_head(&ctx->hn, &clst->pending); spin_unlock(&fl->hlock); spin_lock(&me->ctxlock); for (ii = 0; ii < FASTRPC_CTX_MAX; ii++) { if (!me->ctxtable[ii]) { me->ctxtable[ii] = ctx; ctx->ctxid = (ptr_to_uint64(ctx) & ~0xFFF)|(ii << 4); break; } } spin_unlock(&me->ctxlock); VERIFY(err, ii < FASTRPC_CTX_MAX); if (err) { pr_err("adsprpc: out of context memory\n"); goto bail; } *po = ctx; bail: if (ctx && err) context_free(ctx); return err; } static void context_save_interrupted(struct smq_invoke_ctx *ctx) { struct fastrpc_ctx_lst *clst = &ctx->fl->clst; spin_lock(&ctx->fl->hlock); hlist_del_init(&ctx->hn); hlist_add_head(&ctx->hn, &clst->interrupted); spin_unlock(&ctx->fl->hlock); } static void context_free(struct smq_invoke_ctx *ctx) { int i; struct fastrpc_apps *me = &gfa; int nbufs = REMOTE_SCALARS_INBUFS(ctx->sc) + REMOTE_SCALARS_OUTBUFS(ctx->sc); spin_lock(&ctx->fl->hlock); hlist_del_init(&ctx->hn); spin_unlock(&ctx->fl->hlock); mutex_lock(&ctx->fl->map_mutex); for (i = 0; i < nbufs; ++i) { if (ctx->maps[i] && ctx->maps[i]->ctx_refs) ctx->maps[i]->ctx_refs--; fastrpc_mmap_free(ctx->maps[i], 0); } mutex_unlock(&ctx->fl->map_mutex); fastrpc_buf_free(ctx->buf, 1); fastrpc_buf_free(ctx->lbuf, 1); ctx->magic = 0; ctx->ctxid = 0; spin_lock(&me->ctxlock); for (i = 0; i < FASTRPC_CTX_MAX; i++) { if (me->ctxtable[i] == ctx) { me->ctxtable[i] = NULL; break; } } spin_unlock(&me->ctxlock); kfree(ctx); } static void context_notify_user(struct smq_invoke_ctx *ctx, int retval) { ctx->retval = retval; fastrpc_pm_awake(ctx->fl->wake_enable, &ctx->pm_awake_voted, gcinfo[ctx->fl->cid].secure); complete(&ctx->work); } static void fastrpc_notify_users(struct fastrpc_file *me) { struct smq_invoke_ctx *ictx; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(ictx, n, &me->clst.pending, hn) { complete(&ictx->work); } hlist_for_each_entry_safe(ictx, n, &me->clst.interrupted, hn) { complete(&ictx->work); } spin_unlock(&me->hlock); } static void fastrpc_notify_users_staticpd_pdr(struct fastrpc_file *me) { struct smq_invoke_ctx *ictx; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(ictx, n, &me->clst.pending, hn) { if (ictx->msg.pid) complete(&ictx->work); } hlist_for_each_entry_safe(ictx, n, &me->clst.interrupted, hn) { if (ictx->msg.pid) complete(&ictx->work); } spin_unlock(&me->hlock); } static void fastrpc_notify_drivers(struct fastrpc_apps *me, int cid) { struct fastrpc_file *fl; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(fl, n, &me->drivers, hn) { if (fl->cid == cid) fastrpc_notify_users(fl); } spin_unlock(&me->hlock); } static void fastrpc_notify_pdr_drivers(struct fastrpc_apps *me, char *spdname) { struct fastrpc_file *fl; struct hlist_node *n; spin_lock(&me->hlock); hlist_for_each_entry_safe(fl, n, &me->drivers, hn) { if (fl->spdname && !strcmp(spdname, fl->spdname)) fastrpc_notify_users_staticpd_pdr(fl); } spin_unlock(&me->hlock); } static void context_list_ctor(struct fastrpc_ctx_lst *me) { INIT_HLIST_HEAD(&me->interrupted); INIT_HLIST_HEAD(&me->pending); } static void fastrpc_context_list_dtor(struct fastrpc_file *fl) { struct fastrpc_ctx_lst *clst = &fl->clst; struct smq_invoke_ctx *ictx = NULL, *ctxfree; struct hlist_node *n; do { ctxfree = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(ictx, n, &clst->interrupted, hn) { hlist_del_init(&ictx->hn); ctxfree = ictx; break; } spin_unlock(&fl->hlock); if (ctxfree) context_free(ctxfree); } while (ctxfree); do { ctxfree = NULL; spin_lock(&fl->hlock); hlist_for_each_entry_safe(ictx, n, &clst->pending, hn) { hlist_del_init(&ictx->hn); ctxfree = ictx; break; } spin_unlock(&fl->hlock); if (ctxfree) context_free(ctxfree); } while (ctxfree); } static int fastrpc_file_free(struct fastrpc_file *fl); static void fastrpc_file_list_dtor(struct fastrpc_apps *me) { struct fastrpc_file *fl, *free; struct hlist_node *n; do { free = NULL; spin_lock(&me->hlock); hlist_for_each_entry_safe(fl, n, &me->drivers, hn) { hlist_del_init(&fl->hn); free = fl; break; } spin_unlock(&me->hlock); if (free) fastrpc_file_free(free); } while (free); } static int get_args(uint32_t kernel, struct smq_invoke_ctx *ctx) { remote_arg64_t *rpra, *lrpra; remote_arg_t *lpra = ctx->lpra; struct smq_invoke_buf *list; struct smq_phy_page *pages, *ipage; uint32_t sc = ctx->sc; int inbufs = REMOTE_SCALARS_INBUFS(sc); int outbufs = REMOTE_SCALARS_OUTBUFS(sc); int handles, bufs = inbufs + outbufs; uintptr_t args; size_t rlen = 0, copylen = 0, metalen = 0, lrpralen = 0; int i, oix; int err = 0; int mflags = 0; uint64_t *fdlist; uint32_t *crclist; int64_t *perf_counter = getperfcounter(ctx->fl, PERF_COUNT); /* calculate size of the metadata */ rpra = NULL; list = smq_invoke_buf_start(rpra, sc); pages = smq_phy_page_start(sc, list); ipage = pages; PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_MAP), for (i = 0; i < bufs; ++i) { uintptr_t buf = (uintptr_t)lpra[i].buf.pv; size_t len = lpra[i].buf.len; mutex_lock(&ctx->fl->map_mutex); if (ctx->fds && (ctx->fds[i] != -1)) err = fastrpc_mmap_create(ctx->fl, ctx->fds[i], ctx->attrs[i], buf, len, mflags, &ctx->maps[i]); if (ctx->maps[i]) ctx->maps[i]->ctx_refs++; mutex_unlock(&ctx->fl->map_mutex); if (err) goto bail; ipage += 1; } PERF_END); handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc); mutex_lock(&ctx->fl->map_mutex); for (i = bufs; i < bufs + handles; i++) { int dmaflags = 0; if (ctx->attrs && (ctx->attrs[i] & FASTRPC_ATTR_NOMAP)) dmaflags = FASTRPC_DMAHANDLE_NOMAP; if (ctx->fds && (ctx->fds[i] != -1)) err = fastrpc_mmap_create(ctx->fl, ctx->fds[i], FASTRPC_ATTR_NOVA, 0, 0, dmaflags, &ctx->maps[i]); if (!err && ctx->maps[i]) ctx->maps[i]->ctx_refs++; if (err) { mutex_unlock(&ctx->fl->map_mutex); goto bail; } ipage += 1; } mutex_unlock(&ctx->fl->map_mutex); metalen = copylen = (size_t)&ipage[0] + (sizeof(uint64_t) * M_FDLIST) + (sizeof(uint32_t) * M_CRCLIST); /* allocate new local rpra buffer */ lrpralen = (size_t)&list[0]; if (lrpralen) { err = fastrpc_buf_alloc(ctx->fl, lrpralen, 0, 0, 0, &ctx->lbuf); if (err) goto bail; } if (ctx->lbuf->virt) memset(ctx->lbuf->virt, 0, lrpralen); lrpra = ctx->lbuf->virt; ctx->lrpra = lrpra; /* calculate len required for copying */ for (oix = 0; oix < inbufs + outbufs; ++oix) { int i = ctx->overps[oix]->raix; uintptr_t mstart, mend; size_t len = lpra[i].buf.len; if (!len) continue; if (ctx->maps[i]) continue; if (ctx->overps[oix]->offset == 0) copylen = ALIGN(copylen, BALIGN); mstart = ctx->overps[oix]->mstart; mend = ctx->overps[oix]->mend; VERIFY(err, (mend - mstart) <= LONG_MAX); if (err) goto bail; copylen += mend - mstart; VERIFY(err, copylen >= 0); if (err) goto bail; } ctx->used = copylen; /* allocate new buffer */ if (copylen) { err = fastrpc_buf_alloc(ctx->fl, copylen, 0, 0, 0, &ctx->buf); if (err) goto bail; } if (ctx->buf->virt && metalen <= copylen) memset(ctx->buf->virt, 0, metalen); /* copy metadata */ rpra = ctx->buf->virt; ctx->rpra = rpra; list = smq_invoke_buf_start(rpra, sc); pages = smq_phy_page_start(sc, list); ipage = pages; args = (uintptr_t)ctx->buf->virt + metalen; for (i = 0; i < bufs + handles; ++i) { if (lpra[i].buf.len) list[i].num = 1; else list[i].num = 0; list[i].pgidx = ipage - pages; ipage++; } /* map ion buffers */ PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_MAP), for (i = 0; rpra && lrpra && i < inbufs + outbufs; ++i) { struct fastrpc_mmap *map = ctx->maps[i]; uint64_t buf = ptr_to_uint64(lpra[i].buf.pv); size_t len = lpra[i].buf.len; rpra[i].buf.pv = lrpra[i].buf.pv = 0; rpra[i].buf.len = lrpra[i].buf.len = len; if (!len) continue; if (map) { struct vm_area_struct *vma; uintptr_t offset; uint64_t num = buf_num_pages(buf, len); int idx = list[i].pgidx; if (map->attr & FASTRPC_ATTR_NOVA) { offset = 0; } else { down_read(¤t->mm->mmap_sem); VERIFY(err, NULL != (vma = find_vma(current->mm, map->va))); if (err) { up_read(¤t->mm->mmap_sem); goto bail; } offset = buf_page_start(buf) - vma->vm_start; up_read(¤t->mm->mmap_sem); VERIFY(err, offset < (uintptr_t)map->size); if (err) goto bail; } pages[idx].addr = map->phys + offset; pages[idx].size = num << PAGE_SHIFT; } rpra[i].buf.pv = lrpra[i].buf.pv = buf; } PERF_END); for (i = bufs; i < bufs + handles; ++i) { struct fastrpc_mmap *map = ctx->maps[i]; if (map) { pages[i].addr = map->phys; pages[i].size = map->size; } } fdlist = (uint64_t *)&pages[bufs + handles]; for (i = 0; i < M_FDLIST; i++) fdlist[i] = 0; crclist = (uint32_t *)&fdlist[M_FDLIST]; memset(crclist, 0, sizeof(uint32_t)*M_CRCLIST); /* copy non ion buffers */ PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_COPY), rlen = copylen - metalen; for (oix = 0; rpra && lrpra && oix < inbufs + outbufs; ++oix) { int i = ctx->overps[oix]->raix; struct fastrpc_mmap *map = ctx->maps[i]; size_t mlen; uint64_t buf; size_t len = lpra[i].buf.len; if (!len) continue; if (map) continue; if (ctx->overps[oix]->offset == 0) { rlen -= ALIGN(args, BALIGN) - args; args = ALIGN(args, BALIGN); } mlen = ctx->overps[oix]->mend - ctx->overps[oix]->mstart; VERIFY(err, rlen >= mlen); if (err) goto bail; rpra[i].buf.pv = lrpra[i].buf.pv = (args - ctx->overps[oix]->offset); pages[list[i].pgidx].addr = ctx->buf->phys - ctx->overps[oix]->offset + (copylen - rlen); pages[list[i].pgidx].addr = buf_page_start(pages[list[i].pgidx].addr); buf = rpra[i].buf.pv; pages[list[i].pgidx].size = buf_num_pages(buf, len) * PAGE_SIZE; if (i < inbufs) { K_COPY_FROM_USER(err, kernel, uint64_to_ptr(buf), lpra[i].buf.pv, len); if (err) goto bail; } args = args + mlen; rlen -= mlen; } PERF_END); PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_FLUSH), for (oix = 0; oix < inbufs + outbufs; ++oix) { int i = ctx->overps[oix]->raix; struct fastrpc_mmap *map = ctx->maps[i]; if (map && map->uncached) continue; if (ctx->fl->sctx->smmu.coherent && !(map && (map->attr & FASTRPC_ATTR_NON_COHERENT))) continue; if (map && (map->attr & FASTRPC_ATTR_COHERENT)) continue; if (rpra && lrpra && rpra[i].buf.len && ctx->overps[oix]->mstart) { if (map && map->buf) { dma_buf_begin_cpu_access(map->buf, DMA_TO_DEVICE); dma_buf_end_cpu_access(map->buf, DMA_TO_DEVICE); } } } PERF_END); for (i = bufs; rpra && lrpra && i < bufs + handles; i++) { if (ctx->fds) rpra[i].dma.fd = lrpra[i].dma.fd = ctx->fds[i]; rpra[i].dma.len = lrpra[i].dma.len = (uint32_t)lpra[i].buf.len; rpra[i].dma.offset = lrpra[i].dma.offset = (uint32_t)(uintptr_t)lpra[i].buf.pv; } bail: return err; } static int put_args(uint32_t kernel, struct smq_invoke_ctx *ctx, remote_arg_t *upra) { uint32_t sc = ctx->sc; struct smq_invoke_buf *list; struct smq_phy_page *pages; struct fastrpc_mmap *mmap; uint64_t *fdlist; uint32_t *crclist = NULL; remote_arg64_t *rpra = ctx->lrpra; int i, inbufs, outbufs, handles; int err = 0; inbufs = REMOTE_SCALARS_INBUFS(sc); outbufs = REMOTE_SCALARS_OUTBUFS(sc); handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc); list = smq_invoke_buf_start(ctx->rpra, sc); pages = smq_phy_page_start(sc, list); fdlist = (uint64_t *)(pages + inbufs + outbufs + handles); crclist = (uint32_t *)(fdlist + M_FDLIST); for (i = inbufs; i < inbufs + outbufs; ++i) { if (!ctx->maps[i]) { K_COPY_TO_USER(err, kernel, ctx->lpra[i].buf.pv, uint64_to_ptr(rpra[i].buf.pv), rpra[i].buf.len); if (err) goto bail; } else { mutex_lock(&ctx->fl->map_mutex); if (ctx->maps[i]->ctx_refs) ctx->maps[i]->ctx_refs--; fastrpc_mmap_free(ctx->maps[i], 0); mutex_unlock(&ctx->fl->map_mutex); ctx->maps[i] = NULL; } } mutex_lock(&ctx->fl->map_mutex); if (inbufs + outbufs + handles) { for (i = 0; i < M_FDLIST; i++) { if (!fdlist[i]) break; if (!fastrpc_mmap_find(ctx->fl, (int)fdlist[i], 0, 0, 0, 0, &mmap)) { if (mmap && mmap->ctx_refs) mmap->ctx_refs--; fastrpc_mmap_free(mmap, 0); } } } mutex_unlock(&ctx->fl->map_mutex); if (ctx->crc && crclist && rpra) K_COPY_TO_USER(err, kernel, ctx->crc, crclist, M_CRCLIST*sizeof(uint32_t)); bail: return err; } static void inv_args_pre(struct smq_invoke_ctx *ctx) { int i, inbufs, outbufs; uint32_t sc = ctx->sc; remote_arg64_t *rpra = ctx->rpra; uintptr_t end; inbufs = REMOTE_SCALARS_INBUFS(sc); outbufs = REMOTE_SCALARS_OUTBUFS(sc); for (i = inbufs; i < inbufs + outbufs; ++i) { struct fastrpc_mmap *map = ctx->maps[i]; if (map && map->uncached) continue; if (!rpra[i].buf.len) continue; if (ctx->fl->sctx->smmu.coherent && !(map && (map->attr & FASTRPC_ATTR_NON_COHERENT))) continue; if (map && (map->attr & FASTRPC_ATTR_COHERENT)) continue; if (buf_page_start(ptr_to_uint64((void *)rpra)) == buf_page_start(rpra[i].buf.pv)) continue; if (!IS_CACHE_ALIGNED((uintptr_t) uint64_to_ptr(rpra[i].buf.pv))) { if (map && map->buf) { dma_buf_begin_cpu_access(map->buf, DMA_BIDIRECTIONAL); dma_buf_end_cpu_access(map->buf, DMA_BIDIRECTIONAL); } } end = (uintptr_t)uint64_to_ptr(rpra[i].buf.pv + rpra[i].buf.len); if (!IS_CACHE_ALIGNED(end)) { if (map && map->buf) { dma_buf_begin_cpu_access(map->buf, DMA_BIDIRECTIONAL); dma_buf_end_cpu_access(map->buf, DMA_BIDIRECTIONAL); } } } } static void inv_args(struct smq_invoke_ctx *ctx) { int i, inbufs, outbufs; uint32_t sc = ctx->sc; remote_arg64_t *rpra = ctx->lrpra; inbufs = REMOTE_SCALARS_INBUFS(sc); outbufs = REMOTE_SCALARS_OUTBUFS(sc); for (i = inbufs; i < inbufs + outbufs; ++i) { struct fastrpc_mmap *map = ctx->maps[i]; if (map && map->uncached) continue; if (!rpra[i].buf.len) continue; if (ctx->fl->sctx->smmu.coherent && !(map && (map->attr & FASTRPC_ATTR_NON_COHERENT))) continue; if (map && (map->attr & FASTRPC_ATTR_COHERENT)) continue; if (buf_page_start(ptr_to_uint64((void *)rpra)) == buf_page_start(rpra[i].buf.pv)) { continue; } if (map && map->buf) { dma_buf_begin_cpu_access(map->buf, DMA_FROM_DEVICE); dma_buf_end_cpu_access(map->buf, DMA_FROM_DEVICE); } } } static int fastrpc_invoke_send(struct smq_invoke_ctx *ctx, uint32_t kernel, uint32_t handle) { struct smq_msg *msg = &ctx->msg; struct fastrpc_file *fl = ctx->fl; struct fastrpc_channel_ctx *channel_ctx = NULL; int err = 0, cid = -1; channel_ctx = &fl->apps->channel[fl->cid]; cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; goto bail; } mutex_lock(&channel_ctx->smd_mutex); msg->pid = fl->tgid; msg->tid = current->pid; if (fl->sessionid) msg->tid |= (1 << SESSION_ID_INDEX); if (kernel) msg->pid = 0; msg->invoke.header.ctx = ctx->ctxid | fl->pd; msg->invoke.header.handle = handle; msg->invoke.header.sc = ctx->sc; msg->invoke.page.addr = ctx->buf ? ctx->buf->phys : 0; msg->invoke.page.size = buf_page_size(ctx->used); if (fl->ssrcount != channel_ctx->ssrcount) { err = -ECONNRESET; mutex_unlock(&channel_ctx->smd_mutex); goto bail; } mutex_unlock(&channel_ctx->smd_mutex); mutex_lock(&channel_ctx->rpmsg_mutex); VERIFY(err, !IS_ERR_OR_NULL(channel_ctx->rpdev)); if (err) { err = -ECONNRESET; mutex_unlock(&channel_ctx->rpmsg_mutex); goto bail; } err = rpmsg_send(channel_ctx->rpdev->ept, (void *)msg, sizeof(*msg)); mutex_unlock(&channel_ctx->rpmsg_mutex); bail: return err; } static void fastrpc_init(struct fastrpc_apps *me) { int i; INIT_HLIST_HEAD(&me->drivers); INIT_HLIST_HEAD(&me->maps); spin_lock_init(&me->hlock); spin_lock_init(&me->ctxlock); me->channel = &gcinfo[0]; for (i = 0; i < NUM_CHANNELS; i++) { init_completion(&me->channel[i].work); init_completion(&me->channel[i].workport); me->channel[i].sesscount = 0; /* All channels are secure by default except CDSP */ me->channel[i].secure = SECURE_CHANNEL; mutex_init(&me->channel[i].smd_mutex); mutex_init(&me->channel[i].rpmsg_mutex); } /* Set CDSP channel to non secure */ me->channel[CDSP_DOMAIN_ID].secure = NON_SECURE_CHANNEL; } static inline void fastrpc_pm_awake(int fl_wake_enable, bool *pm_awake_voted, int channel_type) { struct fastrpc_apps *me = &gfa; if (!fl_wake_enable || *pm_awake_voted) return; if (channel_type == SECURE_CHANNEL) __pm_stay_awake(me->wake_source_secure); else if (channel_type == NON_SECURE_CHANNEL) __pm_stay_awake(me->wake_source); *pm_awake_voted = true; } static inline void fastrpc_pm_relax(bool *pm_awake_voted, int channel_type) { struct fastrpc_apps *me = &gfa; if (!(*pm_awake_voted)) return; if (channel_type == SECURE_CHANNEL) __pm_relax(me->wake_source_secure); else if (channel_type == NON_SECURE_CHANNEL) __pm_relax(me->wake_source); *pm_awake_voted = false; } static int fastrpc_internal_invoke(struct fastrpc_file *fl, uint32_t mode, uint32_t kernel, struct fastrpc_ioctl_invoke_crc *inv) { struct smq_invoke_ctx *ctx = NULL; struct fastrpc_ioctl_invoke *invoke = &inv->inv; int err = 0, cid = -1, interrupted = 0; struct timespec64 invoket = {0}; int64_t *perf_counter = NULL; bool pm_awake_voted = false; cid = fl->cid; VERIFY(err, cid >= ADSP_DOMAIN_ID && cid < NUM_CHANNELS); if (err) { err = -ECHRNG; goto bail; } VERIFY(err, fl->sctx != NULL); if (err) { err = -EBADR; goto bail; } perf_counter = getperfcounter(fl, PERF_COUNT); if (interrupted != -ERESTARTSYS) fastrpc_pm_awake(fl->wake_enable, &pm_awake_voted, gcinfo[cid].secure); if (fl->profile) ktime_get_real_ts64(&invoket); if (!kernel) { VERIFY(err, invoke->handle != FASTRPC_STATIC_HANDLE_KERNEL); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to send a kernel RPC message to channel %d", __func__, current->comm, cid); goto bail; } } if (!kernel) { err = context_restore_interrupted(fl, inv, &ctx); if (err) goto bail; if (fl->sctx->smmu.faults) err = FASTRPC_ENOSUCH; if (err) goto bail; if (ctx) goto wait; } VERIFY(err, 0 == context_alloc(fl, kernel, inv, &ctx)); if (err) goto bail; if (REMOTE_SCALARS_LENGTH(ctx->sc)) { PERF(fl->profile, GET_COUNTER(perf_counter, PERF_GETARGS), VERIFY(err, 0 == get_args(kernel, ctx)); PERF_END); if (err) goto bail; } if (!fl->sctx->smmu.coherent) { PERF(fl->profile, GET_COUNTER(perf_counter, PERF_INVARGS), inv_args_pre(ctx); PERF_END); } PERF(fl->profile, GET_COUNTER(perf_counter, PERF_LINK), VERIFY(err, 0 == fastrpc_invoke_send(ctx, kernel, invoke->handle)); PERF_END); if (err) goto bail; wait: fastrpc_pm_relax(&pm_awake_voted, gcinfo[cid].secure); if (kernel) wait_for_completion(&ctx->work); else interrupted = wait_for_completion_interruptible(&ctx->work); pm_awake_voted = ctx->pm_awake_voted; VERIFY(err, 0 == (err = interrupted)); if (err) goto bail; PERF(fl->profile, GET_COUNTER(perf_counter, PERF_INVARGS), if (!fl->sctx->smmu.coherent) inv_args(ctx); PERF_END); VERIFY(err, 0 == (err = ctx->retval)); if (err) goto bail; PERF(fl->profile, GET_COUNTER(perf_counter, PERF_PUTARGS), VERIFY(err, 0 == put_args(kernel, ctx, invoke->pra)); PERF_END); if (err) goto bail; bail: if (ctx && interrupted == -ERESTARTSYS) context_save_interrupted(ctx); else if (ctx) context_free(ctx); if (fl->ssrcount != fl->apps->channel[cid].ssrcount) err = ECONNRESET; if (fl->profile && !interrupted) { if (invoke->handle != FASTRPC_STATIC_HANDLE_LISTENER) { int64_t *count = GET_COUNTER(perf_counter, PERF_INVOKE); if (count) *count += getnstimediff(&invoket); } if (invoke->handle > FASTRPC_STATIC_HANDLE_MAX) { int64_t *count = GET_COUNTER(perf_counter, PERF_COUNT); if (count) *count = *count+1; } } fastrpc_pm_relax(&pm_awake_voted, gcinfo[cid].secure); return err; } static int fastrpc_get_adsp_session(char *name, int *session) { struct fastrpc_apps *me = &gfa; int err = 0, i; for (i = 0; i < NUM_SESSIONS; i++) { if (!me->channel[0].spd[i].spdname) continue; if (!strcmp(name, me->channel[0].spd[i].spdname)) break; } VERIFY(err, i < NUM_SESSIONS); if (err) goto bail; *session = i; bail: return err; } static int fastrpc_mmap_remove_pdr(struct fastrpc_file *fl); static int fastrpc_channel_open(struct fastrpc_file *fl); static int fastrpc_mmap_remove_ssr(struct fastrpc_file *fl); static int fastrpc_init_process(struct fastrpc_file *fl, struct fastrpc_ioctl_init_attrs *uproc) { int err = 0; struct fastrpc_apps *me = &gfa; struct fastrpc_ioctl_invoke_crc ioctl; struct fastrpc_ioctl_init *init = &uproc->init; struct smq_phy_page pages[1]; struct fastrpc_mmap *file = NULL, *mem = NULL; struct fastrpc_buf *imem = NULL; unsigned long imem_dma_attr = 0; char *proc_name = NULL; VERIFY(err, 0 == (err = fastrpc_channel_open(fl))); if (err) goto bail; if (init->flags == FASTRPC_INIT_ATTACH || init->flags == FASTRPC_INIT_ATTACH_SENSORS) { remote_arg_t ra[1]; int tgid = fl->tgid; if (fl->dev_minor == MINOR_NUM_DEV) { err = -ECONNREFUSED; pr_err("adsprpc: %s: untrusted app trying to attach to privileged DSP PD\n", __func__); return err; } ra[0].buf.pv = (void *)&tgid; ra[0].buf.len = sizeof(tgid); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_KERNEL; ioctl.inv.sc = REMOTE_SCALARS_MAKE(0, 1, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; if (init->flags == FASTRPC_INIT_ATTACH) fl->pd = 0; else if (init->flags == FASTRPC_INIT_ATTACH_SENSORS) { fl->spdname = SENSORS_PDR_SERVICE_LOCATION_CLIENT_NAME; fl->pd = 2; } VERIFY(err, !(err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; } else if (init->flags == FASTRPC_INIT_CREATE) { int memlen; remote_arg_t ra[6]; int fds[6]; int mflags = 0; struct { int pgid; unsigned int namelen; unsigned int filelen; unsigned int pageslen; int attrs; int siglen; } inbuf; spin_lock(&fl->hlock); if (fl->in_process_create) { err = -EALREADY; pr_err("Already in create init process\n"); spin_unlock(&fl->hlock); return err; } fl->in_process_create = true; spin_unlock(&fl->hlock); inbuf.pgid = fl->tgid; inbuf.namelen = strlen(current->comm) + 1; inbuf.filelen = init->filelen; fl->pd = 1; VERIFY(err, access_ok(0, (void __user *)init->file, init->filelen)); if (err) goto bail; if (init->filelen) { mutex_lock(&fl->map_mutex); VERIFY(err, !fastrpc_mmap_create(fl, init->filefd, 0, init->file, init->filelen, mflags, &file)); if (file) file->is_filemap = true; mutex_unlock(&fl->map_mutex); if (err) goto bail; } inbuf.pageslen = 1; VERIFY(err, !init->mem); if (err) { err = -EINVAL; pr_err("adsprpc: %s: %s: ERROR: donated memory allocated in userspace\n", current->comm, __func__); goto bail; } memlen = ALIGN(max(1024*1024*3, (int)init->filelen * 4), 1024*1024); imem_dma_attr = DMA_ATTR_EXEC_MAPPING | DMA_ATTR_DELAYED_UNMAP | DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_FORCE_NON_COHERENT; err = fastrpc_buf_alloc(fl, memlen, imem_dma_attr, 0, 0, &imem); if (err) goto bail; fl->init_mem = imem; inbuf.pageslen = 1; ra[0].buf.pv = (void *)&inbuf; ra[0].buf.len = sizeof(inbuf); fds[0] = -1; ra[1].buf.pv = (void *)current->comm; ra[1].buf.len = inbuf.namelen; fds[1] = -1; ra[2].buf.pv = (void *)init->file; ra[2].buf.len = inbuf.filelen; fds[2] = init->filefd; pages[0].addr = imem->phys; pages[0].size = imem->size; ra[3].buf.pv = (void *)pages; ra[3].buf.len = 1 * sizeof(*pages); fds[3] = -1; inbuf.attrs = uproc->attrs; ra[4].buf.pv = (void *)&(inbuf.attrs); ra[4].buf.len = sizeof(inbuf.attrs); fds[4] = -1; inbuf.siglen = uproc->siglen; ra[5].buf.pv = (void *)&(inbuf.siglen); ra[5].buf.len = sizeof(inbuf.siglen); fds[5] = -1; ioctl.inv.handle = FASTRPC_STATIC_HANDLE_KERNEL; ioctl.inv.sc = REMOTE_SCALARS_MAKE(6, 4, 0); if (uproc->attrs) ioctl.inv.sc = REMOTE_SCALARS_MAKE(7, 6, 0); ioctl.inv.pra = ra; ioctl.fds = fds; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, !(err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; } else if (init->flags == FASTRPC_INIT_CREATE_STATIC) { remote_arg_t ra[3]; uint64_t phys = 0; size_t size = 0; int fds[3]; struct { int pgid; unsigned int namelen; unsigned int pageslen; } inbuf; if (fl->dev_minor == MINOR_NUM_DEV) { err = -ECONNREFUSED; pr_err("adsprpc: %s: untrusted app trying to attach to audio PD\n", __func__); return err; } if (!init->filelen) goto bail; proc_name = kzalloc(init->filelen + 1, GFP_KERNEL); VERIFY(err, !IS_ERR_OR_NULL(proc_name)); if (err) goto bail; VERIFY(err, 0 == copy_from_user((void *)proc_name, (void __user *)init->file, init->filelen)); if (err) goto bail; fl->pd = 1; inbuf.pgid = current->tgid; inbuf.namelen = init->filelen; inbuf.pageslen = 0; if (!strcmp(proc_name, "audiopd")) { fl->spdname = AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME; VERIFY(err, !fastrpc_mmap_remove_pdr(fl)); if (err) goto bail; } if (!me->staticpd_flags && !(me->legacy_remote_heap)) { inbuf.pageslen = 1; mutex_lock(&fl->map_mutex); VERIFY(err, !fastrpc_mmap_create(fl, -1, 0, init->mem, init->memlen, ADSP_MMAP_REMOTE_HEAP_ADDR, &mem)); if (mem) mem->is_filemap = true; mutex_unlock(&fl->map_mutex); if (err) goto bail; phys = mem->phys; size = mem->size; if (me->channel[fl->cid].rhvm.vmid) { VERIFY(err, !hyp_assign_phys(phys, (uint64_t)size, hlosvm, 1, me->channel[fl->cid].rhvm.vmid, me->channel[fl->cid].rhvm.vmperm, me->channel[fl->cid].rhvm.vmcount)); if (err) { pr_err("ADSPRPC: hyp_assign_phys fail err %d", err); pr_err("map->phys 0x%llx, map->size %d\n", phys, (int)size); goto bail; } } me->staticpd_flags = 1; } ra[0].buf.pv = (void *)&inbuf; ra[0].buf.len = sizeof(inbuf); fds[0] = -1; ra[1].buf.pv = (void *)proc_name; ra[1].buf.len = inbuf.namelen; fds[1] = -1; pages[0].addr = phys; pages[0].size = size; ra[2].buf.pv = (void *)pages; ra[2].buf.len = sizeof(*pages); fds[2] = -1; ioctl.inv.handle = FASTRPC_STATIC_HANDLE_KERNEL; ioctl.inv.sc = REMOTE_SCALARS_MAKE(8, 3, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, !(err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; } else { err = -ENOTTY; goto bail; } fl->dsp_proc_init = 1; bail: kfree(proc_name); if (err && (init->flags == FASTRPC_INIT_CREATE_STATIC)) me->staticpd_flags = 0; if (mem && err) { if (mem->flags == ADSP_MMAP_REMOTE_HEAP_ADDR && me->channel[fl->cid].rhvm.vmid && me->channel[fl->cid].in_hib == 0) hyp_assign_phys(mem->phys, (uint64_t)mem->size, me->channel[fl->cid].rhvm.vmid, me->channel[fl->cid].rhvm.vmcount, hlosvm, hlosvmperm, 1); mutex_lock(&fl->map_mutex); fastrpc_mmap_free(mem, 0); mutex_unlock(&fl->map_mutex); } if (file) { mutex_lock(&fl->map_mutex); fastrpc_mmap_free(file, 0); mutex_unlock(&fl->map_mutex); } if (init->flags == FASTRPC_INIT_CREATE) { spin_lock(&fl->hlock); fl->in_process_create = false; spin_unlock(&fl->hlock); } return err; } static int fastrpc_release_current_dsp_process(struct fastrpc_file *fl) { int err = 0; struct fastrpc_ioctl_invoke_crc ioctl; remote_arg_t ra[1]; int tgid = 0; VERIFY(err, fl->cid >= 0 && fl->cid < NUM_CHANNELS); if (err) goto bail; VERIFY(err, fl->sctx != NULL); if (err) goto bail; VERIFY(err, fl->apps->channel[fl->cid].rpdev != NULL); if (err) goto bail; VERIFY(err, fl->apps->channel[fl->cid].issubsystemup == 1); if (err) goto bail; tgid = fl->tgid; ra[0].buf.pv = (void *)&tgid; ra[0].buf.len = sizeof(tgid); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_KERNEL; ioctl.inv.sc = REMOTE_SCALARS_MAKE(1, 1, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err && fl->dsp_proc_init) pr_err("adsprpc: %s: releasing DSP process failed for %s, returned 0x%x", __func__, current->comm, err); bail: return err; } static int fastrpc_mmap_on_dsp(struct fastrpc_file *fl, uint32_t flags, uintptr_t va, uint64_t phys, size_t size, uintptr_t *raddr) { struct fastrpc_ioctl_invoke_crc ioctl; struct fastrpc_apps *me = &gfa; struct smq_phy_page page; int num = 1; remote_arg_t ra[3]; int err = 0; struct { int pid; uint32_t flags; uintptr_t vaddrin; int num; } inargs; struct { uintptr_t vaddrout; } routargs; inargs.pid = fl->tgid; inargs.vaddrin = (uintptr_t)va; inargs.flags = flags; inargs.num = fl->apps->compat ? num * sizeof(page) : num; ra[0].buf.pv = (void *)&inargs; ra[0].buf.len = sizeof(inargs); page.addr = phys; page.size = size; ra[1].buf.pv = (void *)&page; ra[1].buf.len = num * sizeof(page); ra[2].buf.pv = (void *)&routargs; ra[2].buf.len = sizeof(routargs); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_KERNEL; if (fl->apps->compat) ioctl.inv.sc = REMOTE_SCALARS_MAKE(4, 2, 1); else ioctl.inv.sc = REMOTE_SCALARS_MAKE(2, 2, 1); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); *raddr = (uintptr_t)routargs.vaddrout; if (err) goto bail; if (flags == ADSP_MMAP_HEAP_ADDR) { struct scm_desc desc = {0}; desc.args[0] = TZ_PIL_AUTH_QDSP6_PROC; desc.args[1] = phys; desc.args[2] = size; desc.arginfo = SCM_ARGS(3); err = scm_call2(SCM_SIP_FNID(SCM_SVC_PIL, TZ_PIL_PROTECT_MEM_SUBSYS_ID), &desc); } else if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR && me->channel[fl->cid].rhvm.vmid) { VERIFY(err, !hyp_assign_phys(phys, (uint64_t)size, hlosvm, 1, me->channel[fl->cid].rhvm.vmid, me->channel[fl->cid].rhvm.vmperm, me->channel[fl->cid].rhvm.vmcount)); if (err) goto bail; } bail: return err; } static int fastrpc_munmap_on_dsp_rh(struct fastrpc_file *fl, uint64_t phys, size_t size, uint32_t flags) { int err = 0; struct fastrpc_apps *me = &gfa; int tgid = 0; int destVM[1] = {VMID_HLOS}; int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; if (flags == ADSP_MMAP_HEAP_ADDR) { struct fastrpc_ioctl_invoke_crc ioctl; struct scm_desc desc = {0}; remote_arg_t ra[2]; struct { uint8_t skey; } routargs; if (fl == NULL) goto bail; tgid = fl->tgid; ra[0].buf.pv = (void *)&tgid; ra[0].buf.len = sizeof(tgid); ra[1].buf.pv = (void *)&routargs; ra[1].buf.len = sizeof(routargs); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_KERNEL; ioctl.inv.sc = REMOTE_SCALARS_MAKE(9, 1, 1); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; desc.args[0] = TZ_PIL_AUTH_QDSP6_PROC; desc.args[1] = phys; desc.args[2] = size; desc.args[3] = routargs.skey; desc.arginfo = SCM_ARGS(4); err = scm_call2(SCM_SIP_FNID(SCM_SVC_PIL, TZ_PIL_CLEAR_PROTECT_MEM_SUBSYS_ID), &desc); } else if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { if ((me->channel[fl->cid].rhvm.vmid) && (me->channel[fl->cid].in_hib == 0)) { VERIFY(err, !hyp_assign_phys(phys, (uint64_t)size, me->channel[fl->cid].rhvm.vmid, me->channel[fl->cid].rhvm.vmcount, destVM, destVMperm, 1)); if (err) goto bail; } } bail: return err; } static int fastrpc_munmap_on_dsp(struct fastrpc_file *fl, uintptr_t raddr, uint64_t phys, size_t size, uint32_t flags) { struct fastrpc_ioctl_invoke_crc ioctl; remote_arg_t ra[1]; int err = 0; struct { int pid; uintptr_t vaddrout; size_t size; } inargs; inargs.pid = fl->tgid; inargs.size = size; inargs.vaddrout = raddr; ra[0].buf.pv = (void *)&inargs; ra[0].buf.len = sizeof(inargs); ioctl.inv.handle = FASTRPC_STATIC_HANDLE_KERNEL; if (fl->apps->compat) ioctl.inv.sc = REMOTE_SCALARS_MAKE(5, 1, 0); else ioctl.inv.sc = REMOTE_SCALARS_MAKE(3, 1, 0); ioctl.inv.pra = ra; ioctl.fds = NULL; ioctl.attrs = NULL; ioctl.crc = NULL; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, 1, &ioctl))); if (err) goto bail; if (flags == ADSP_MMAP_HEAP_ADDR || flags == ADSP_MMAP_REMOTE_HEAP_ADDR) { VERIFY(err, !fastrpc_munmap_on_dsp_rh(fl, phys, size, flags)); if (err) goto bail; } bail: return err; } static int fastrpc_mmap_remove_ssr(struct fastrpc_file *fl) { struct fastrpc_mmap *match = NULL, *map = NULL; struct hlist_node *n = NULL; int err = 0, ret = 0; struct fastrpc_apps *me = &gfa; struct ramdump_segment *ramdump_segments_rh = NULL; do { match = NULL; spin_lock(&me->hlock); hlist_for_each_entry_safe(map, n, &me->maps, hn) { match = map; hlist_del_init(&map->hn); break; } spin_unlock(&me->hlock); if (match) { VERIFY(err, !fastrpc_munmap_on_dsp_rh(fl, match->phys, match->size, match->flags)); if (err) goto bail; if (me->channel[0].ramdumpenabled) { ramdump_segments_rh = kcalloc(1, sizeof(struct ramdump_segment), GFP_KERNEL); if (ramdump_segments_rh) { ramdump_segments_rh->address = match->phys; ramdump_segments_rh->size = match->size; ret = do_elf_ramdump( me->channel[0].remoteheap_ramdump_dev, ramdump_segments_rh, 1); if (ret < 0) pr_err("ADSPRPC: unable to dump heap"); kfree(ramdump_segments_rh); } } fastrpc_mmap_free(match, 0); } } while (match); bail: if (err && match) fastrpc_mmap_add(match); return err; } static int fastrpc_mmap_remove_pdr(struct fastrpc_file *fl) { struct fastrpc_apps *me = &gfa; int session = 0, err = 0; VERIFY(err, !fastrpc_get_adsp_session( AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, &session)); if (err) goto bail; if (!me->channel[fl->cid].spd[session].ispdup) { VERIFY(err, 0); if (err) { err = -ENOTCONN; goto bail; } } if (me->channel[fl->cid].spd[session].pdrcount != me->channel[fl->cid].spd[session].prevpdrcount) { if (fastrpc_mmap_remove_ssr(fl)) pr_err("ADSPRPC: SSR: Failed to unmap remote heap\n"); me->channel[fl->cid].spd[session].prevpdrcount = me->channel[fl->cid].spd[session].pdrcount; } bail: return err; } static int fastrpc_mmap_remove(struct fastrpc_file *fl, uintptr_t va, size_t len, struct fastrpc_mmap **ppmap); static void fastrpc_mmap_add(struct fastrpc_mmap *map); static inline void get_fastrpc_ioctl_mmap_64( struct fastrpc_ioctl_mmap_64 *mmap64, struct fastrpc_ioctl_mmap *immap) { immap->fd = mmap64->fd; immap->flags = mmap64->flags; immap->vaddrin = (uintptr_t)mmap64->vaddrin; immap->size = mmap64->size; } static inline void put_fastrpc_ioctl_mmap_64( struct fastrpc_ioctl_mmap_64 *mmap64, struct fastrpc_ioctl_mmap *immap) { mmap64->vaddrout = (uint64_t)immap->vaddrout; } static inline void get_fastrpc_ioctl_munmap_64( struct fastrpc_ioctl_munmap_64 *munmap64, struct fastrpc_ioctl_munmap *imunmap) { imunmap->vaddrout = (uintptr_t)munmap64->vaddrout; imunmap->size = munmap64->size; } static int fastrpc_internal_munmap(struct fastrpc_file *fl, struct fastrpc_ioctl_munmap *ud) { int err = 0; struct fastrpc_mmap *map = NULL; struct fastrpc_buf *rbuf = NULL, *free = NULL; struct hlist_node *n; VERIFY(err, fl->dsp_proc_init == 1); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to unmap without initialization\n", __func__, current->comm); err = -EBADR; return err; } mutex_lock(&fl->internal_map_mutex); spin_lock(&fl->hlock); hlist_for_each_entry_safe(rbuf, n, &fl->remote_bufs, hn_rem) { if (rbuf->raddr && (rbuf->flags == ADSP_MMAP_ADD_PAGES)) { if ((rbuf->raddr == ud->vaddrout) && (rbuf->size == ud->size)) { free = rbuf; break; } } } spin_unlock(&fl->hlock); if (free) { VERIFY(err, !fastrpc_munmap_on_dsp(fl, free->raddr, free->phys, free->size, free->flags)); if (err) goto bail; fastrpc_buf_free(rbuf, 0); mutex_unlock(&fl->internal_map_mutex); return err; } mutex_lock(&fl->map_mutex); VERIFY(err, !fastrpc_mmap_remove(fl, ud->vaddrout, ud->size, &map)); mutex_unlock(&fl->map_mutex); if (err) goto bail; if (map) { VERIFY(err, !fastrpc_munmap_on_dsp(fl, map->raddr, map->phys, map->size, map->flags)); if (err) goto bail; mutex_lock(&fl->map_mutex); fastrpc_mmap_free(map, 0); mutex_unlock(&fl->map_mutex); } bail: if (err && map) { mutex_lock(&fl->map_mutex); fastrpc_mmap_add(map); mutex_unlock(&fl->map_mutex); } mutex_unlock(&fl->internal_map_mutex); return err; } /* * fastrpc_internal_munmap_fd can only be used for buffers * mapped with persist attributes. This can only be called * once for any persist buffer */ static int fastrpc_internal_munmap_fd(struct fastrpc_file *fl, struct fastrpc_ioctl_munmap_fd *ud) { int err = 0; struct fastrpc_mmap *map = NULL; VERIFY(err, (fl && ud)); if (err) return err; VERIFY(err, fl->dsp_proc_init == 1); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to unmap without initialization\n", __func__, current->comm); err = -EBADR; return err; } mutex_lock(&fl->internal_map_mutex); mutex_lock(&fl->map_mutex); if (fastrpc_mmap_find(fl, ud->fd, ud->va, ud->len, 0, 0, &map)) { pr_err("adsprpc: mapping not found to unmap fd 0x%x, va 0x%llx, len 0x%x\n", ud->fd, (unsigned long long)ud->va, (unsigned int)ud->len); err = -1; mutex_unlock(&fl->map_mutex); goto bail; } if (map && (map->attr & FASTRPC_ATTR_KEEP_MAP)) { map->attr = map->attr & (~FASTRPC_ATTR_KEEP_MAP); fastrpc_mmap_free(map, 0); } mutex_unlock(&fl->map_mutex); bail: mutex_unlock(&fl->internal_map_mutex); return err; } static int fastrpc_internal_mmap(struct fastrpc_file *fl, struct fastrpc_ioctl_mmap *ud) { struct fastrpc_mmap *map = NULL; struct fastrpc_buf *rbuf = NULL; unsigned long dma_attr = 0; uintptr_t raddr = 0; int err = 0; VERIFY(err, fl->dsp_proc_init == 1); if (err) { pr_err("adsprpc: ERROR: %s: user application %s trying to map without initialization\n", __func__, current->comm); err = -EBADR; return err; } mutex_lock(&fl->internal_map_mutex); if (ud->flags == ADSP_MMAP_ADD_PAGES) { if (ud->vaddrin) { err = -EINVAL; pr_err("adsprpc: %s: %s: ERROR: adding user allocated pages is not supported\n", current->comm, __func__); goto bail; } dma_attr = DMA_ATTR_EXEC_MAPPING | DMA_ATTR_DELAYED_UNMAP | DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_FORCE_NON_COHERENT; err = fastrpc_buf_alloc(fl, ud->size, dma_attr, ud->flags, 1, &rbuf); if (err) goto bail; err = fastrpc_mmap_on_dsp(fl, ud->flags, 0, rbuf->phys, rbuf->size, &raddr); if (err) goto bail; rbuf->raddr = raddr; } else { uintptr_t va_to_dsp; mutex_lock(&fl->map_mutex); VERIFY(err, !fastrpc_mmap_create(fl, ud->fd, 0, (uintptr_t)ud->vaddrin, ud->size, ud->flags, &map)); mutex_unlock(&fl->map_mutex); if (err) goto bail; if (ud->flags == ADSP_MMAP_HEAP_ADDR || ud->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) va_to_dsp = 0; else va_to_dsp = (uintptr_t)map->va; VERIFY(err, 0 == fastrpc_mmap_on_dsp(fl, ud->flags, va_to_dsp, map->phys, map->size, &raddr)); if (err) goto bail; map->raddr = raddr; } ud->vaddrout = raddr; bail: if (err) { if (map) { mutex_lock(&fl->map_mutex); fastrpc_mmap_free(map, 0); mutex_unlock(&fl->map_mutex); } if (!IS_ERR_OR_NULL(rbuf)) fastrpc_buf_free(rbuf, 0); } mutex_unlock(&fl->internal_map_mutex); return err; } static void fastrpc_context_list_dtor(struct fastrpc_file *fl); static int fastrpc_session_alloc_locked(struct fastrpc_channel_ctx *chan, int secure, struct fastrpc_session_ctx **session) { struct fastrpc_apps *me = &gfa; uint64_t idx = 0; int err = 0; if (chan->sesscount) { for (idx = 0; idx < chan->sesscount; ++idx) { if (!chan->session[idx].used && chan->session[idx].smmu.secure == secure) { chan->session[idx].used = 1; break; } } if (idx >= chan->sesscount) { err = -EUSERS; pr_err("adsprpc: ERROR %d: %s: max concurrent sessions limit (%d) already reached on %s\n", err, __func__, chan->sesscount, chan->subsys); goto bail; } chan->session[idx].smmu.faults = 0; } else { VERIFY(err, me->dev != NULL); if (err) goto bail; chan->session[0].dev = me->dev; chan->session[0].smmu.dev = me->dev; } *session = &chan->session[idx]; bail: return err; } static int fastrpc_rpmsg_probe(struct rpmsg_device *rpdev) { int err = 0; int cid = -1; VERIFY(err, !IS_ERR_OR_NULL(rpdev)); if (err) return -EINVAL; if (!strcmp(rpdev->dev.parent->of_node->name, "cdsp")) cid = CDSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "adsp")) cid = ADSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "dsps")) cid = SDSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "mdsp")) cid = MDSP_DOMAIN_ID; VERIFY(err, cid >= 0 && cid < NUM_CHANNELS); if (err) goto bail; mutex_lock(&gcinfo[cid].rpmsg_mutex); gcinfo[cid].rpdev = rpdev; mutex_unlock(&gcinfo[cid].rpmsg_mutex); pr_info("adsprpc: %s: opened rpmsg channel for %s\n", __func__, gcinfo[cid].subsys); bail: if (err) pr_err("adsprpc: rpmsg probe of %s cid %d failed\n", rpdev->dev.parent->of_node->name, cid); return err; } static void fastrpc_rpmsg_remove(struct rpmsg_device *rpdev) { int err = 0; int cid = -1; struct fastrpc_apps *me = &gfa; VERIFY(err, !IS_ERR_OR_NULL(rpdev)); if (err) return; if (!strcmp(rpdev->dev.parent->of_node->name, "cdsp")) cid = CDSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "adsp")) cid = ADSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "dsps")) cid = SDSP_DOMAIN_ID; else if (!strcmp(rpdev->dev.parent->of_node->name, "mdsp")) cid = MDSP_DOMAIN_ID; VERIFY(err, cid >= 0 && cid < NUM_CHANNELS); if (err) goto bail; mutex_lock(&gcinfo[cid].rpmsg_mutex); gcinfo[cid].rpdev = NULL; mutex_unlock(&gcinfo[cid].rpmsg_mutex); fastrpc_notify_drivers(me, cid); pr_info("adsprpc: %s: closed rpmsg channel of %s\n", __func__, gcinfo[cid].subsys); bail: if (err) pr_err("adsprpc: rpmsg remove of %s cid %d failed\n", rpdev->dev.parent->of_node->name, cid); return; } static int fastrpc_rpmsg_callback(struct rpmsg_device *rpdev, void *data, int len, void *priv, u32 addr) { struct smq_invoke_rsp *rsp = (struct smq_invoke_rsp *)data; struct fastrpc_apps *me = &gfa; uint32_t index; int err = 0; VERIFY(err, (rsp && len >= sizeof(*rsp))); if (err) goto bail; index = (uint32_t)((rsp->ctx & FASTRPC_CTXID_MASK) >> 4); VERIFY(err, index < FASTRPC_CTX_MAX); if (err) goto bail; VERIFY(err, !IS_ERR_OR_NULL(me->ctxtable[index])); if (err) goto bail; VERIFY(err, ((me->ctxtable[index]->ctxid == (rsp->ctx & ~3)) && me->ctxtable[index]->magic == FASTRPC_CTX_MAGIC)); if (err) goto bail; context_notify_user(me->ctxtable[index], rsp->retval); bail: if (err) pr_debug("adsprpc: invalid response or context\n"); return err; } static int fastrpc_session_alloc(struct fastrpc_channel_ctx *chan, int secure, struct fastrpc_session_ctx **session) { int err = 0; mutex_lock(&chan->smd_mutex); if (!*session) err = fastrpc_session_alloc_locked(chan, secure, session); mutex_unlock(&chan->smd_mutex); return err; } static void fastrpc_session_free(struct fastrpc_channel_ctx *chan, struct fastrpc_session_ctx *session) { mutex_lock(&chan->smd_mutex); session->used = 0; mutex_unlock(&chan->smd_mutex); } static int fastrpc_file_free(struct fastrpc_file *fl) { struct hlist_node *n = NULL; struct fastrpc_mmap *map = NULL, *lmap = NULL; struct fastrpc_perf *perf = NULL, *fperf = NULL; int cid; if (!fl) return 0; cid = fl->cid; (void)fastrpc_release_current_dsp_process(fl); spin_lock(&fl->apps->hlock); hlist_del_init(&fl->hn); spin_unlock(&fl->apps->hlock); kfree(fl->debug_buf); fl->debug_buf_alloced_attempted = 0; if (!fl->sctx) { kfree(fl); return 0; } spin_lock(&fl->hlock); fl->file_close = 1; fl->in_process_create = false; spin_unlock(&fl->hlock); if (!IS_ERR_OR_NULL(fl->init_mem)) fastrpc_buf_free(fl->init_mem, 0); fastrpc_context_list_dtor(fl); fastrpc_cached_buf_list_free(fl); mutex_lock(&fl->map_mutex); do { lmap = NULL; hlist_for_each_entry_safe(map, n, &fl->maps, hn) { hlist_del_init(&map->hn); lmap = map; break; } fastrpc_mmap_free(lmap, 1); } while (lmap); mutex_unlock(&fl->map_mutex); if (fl->sctx) fastrpc_session_free(&fl->apps->channel[cid], fl->sctx); if (fl->secsctx) fastrpc_session_free(&fl->apps->channel[cid], fl->secsctx); mutex_lock(&fl->perf_mutex); do { struct hlist_node *pn = NULL; fperf = NULL; hlist_for_each_entry_safe(perf, pn, &fl->perf, hn) { hlist_del_init(&perf->hn); fperf = perf; break; } kfree(fperf); } while (fperf); fastrpc_remote_buf_list_free(fl); mutex_unlock(&fl->perf_mutex); mutex_destroy(&fl->perf_mutex); mutex_destroy(&fl->map_mutex); mutex_destroy(&fl->internal_map_mutex); kfree(fl); return 0; } static int fastrpc_device_release(struct inode *inode, struct file *file) { struct fastrpc_file *fl = (struct fastrpc_file *)file->private_data; if (fl) { if (fl->qos_request && pm_qos_request_active(&fl->pm_qos_req)) pm_qos_remove_request(&fl->pm_qos_req); if (fl->debugfs_file != NULL) debugfs_remove(fl->debugfs_file); fastrpc_file_free(fl); file->private_data = NULL; } return 0; } static int fastrpc_debugfs_open(struct inode *inode, struct file *filp) { filp->private_data = inode->i_private; return 0; } static ssize_t fastrpc_debugfs_read(struct file *filp, char __user *buffer, size_t count, loff_t *position) { struct fastrpc_apps *me = &gfa; struct fastrpc_file *fl = filp->private_data; struct hlist_node *n; struct fastrpc_buf *buf = NULL; struct fastrpc_mmap *map = NULL; struct fastrpc_mmap *gmaps = NULL; struct smq_invoke_ctx *ictx = NULL; struct fastrpc_channel_ctx *chan = NULL; unsigned int len = 0; int i, j, sess_used = 0, ret = 0; char *fileinfo = NULL; char single_line[UL_SIZE] = "----------------"; char title[UL_SIZE] = "========================="; single_line[UL_SIZE-1]='\0'; title[UL_SIZE-1]='\0'; fileinfo = kzalloc(DEBUGFS_SIZE, GFP_KERNEL); if (!fileinfo) goto bail; if (fl == NULL) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %s %s\n", title, " CHANNEL INFO ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-7s|%-10s|%-14s|%-9s|%-13s\n", "subsys", "sesscount", "issubsystemup", "ssrcount", "session_used"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "-%s%s%s%s-\n", single_line, single_line, single_line, single_line); for (i = 0; i < NUM_CHANNELS; i++) { sess_used = 0; chan = &gcinfo[i]; len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-7s", chan->subsys); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-10u", chan->sesscount); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-14d", chan->issubsystemup); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-9u", chan->ssrcount); for (j = 0; j < chan->sesscount; j++) { sess_used += chan->session[j].used; } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|%-13d\n", sess_used); } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s%s%s\n", "=============", " CMA HEAP ", "=============="); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s\n", "addr", "size"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "--%s%s---\n", single_line, single_line); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-18llX", me->range.addr); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "|0x%-18llX\n", me->range.size); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n==========%s %s %s===========\n", title, " GMAPS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s|%-20s\n", "fd", "phys", "size", "va"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); spin_lock(&me->hlock); hlist_for_each_entry_safe(gmaps, n, &me->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20d|0x%-18llX|0x%-18X|0x%-20lX\n\n", gmaps->fd, gmaps->phys, (uint32_t)gmaps->size, gmaps->va); } spin_unlock(&me->hlock); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s|%-20s\n", "len", "refs", "raddr", "flags"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); spin_lock(&me->hlock); hlist_for_each_entry_safe(gmaps, n, &me->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-18X|%-20d|%-20lu|%-20u\n", (uint32_t)gmaps->len, gmaps->refs, gmaps->raddr, gmaps->flags); } spin_unlock(&me->hlock); } else { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %13s %d\n", "cid", ":", fl->cid); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %12s %d\n", "tgid", ":", fl->tgid); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %7s %d\n", "sessionid", ":", fl->sessionid); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %8s %u\n", "ssrcount", ":", fl->ssrcount); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %14s %d\n", "pd", ":", fl->pd); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %9s %s\n", "spdname", ":", fl->spdname); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %6s %d\n", "file_close", ":", fl->file_close); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %9s %d\n", "profile", ":", fl->profile); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %3s %d\n", "smmu.coherent", ":", fl->sctx->smmu.coherent); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %4s %d\n", "smmu.enabled", ":", fl->sctx->smmu.enabled); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %9s %d\n", "smmu.cb", ":", fl->sctx->smmu.cb); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %5s %d\n", "smmu.secure", ":", fl->sctx->smmu.secure); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s %5s %d\n", "smmu.faults", ":", fl->sctx->smmu.faults); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n=======%s %s %s======\n", title, " LIST OF MAPS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s\n", "va", "phys", "size"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); mutex_lock(&fl->map_mutex); hlist_for_each_entry_safe(map, n, &fl->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-20lX|0x%-20llX|0x%-20zu\n\n", map->va, map->phys, map->size); } mutex_unlock(&fl->map_mutex); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s|%-20s|%-20s\n", "len", "refs", "raddr", "uncached"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); mutex_lock(&fl->map_mutex); hlist_for_each_entry_safe(map, n, &fl->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20zu|%-20d|0x%-20lX|%-20d\n\n", map->len, map->refs, map->raddr, map->uncached); } mutex_unlock(&fl->map_mutex); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-20s\n", "secure", "attr"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); mutex_lock(&fl->map_mutex); hlist_for_each_entry_safe(map, n, &fl->maps, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20d|0x%-20lX\n\n", map->secure, map->attr); } mutex_unlock(&fl->map_mutex); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n======%s %s %s======\n", title, " LIST OF BUFS ", title); spin_lock(&fl->hlock); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-19s|%-19s|%-19s\n", "virt", "phys", "size"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-17p|0x%-17llX|%-19zu\n", buf->virt, (uint64_t)buf->phys, buf->size); } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %s %s\n", title, " LIST OF PENDING SMQCONTEXTS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-10s|%-10s|%-10s|%-20s\n", "sc", "pid", "tgid", "used", "ctxid"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); hlist_for_each_entry_safe(ictx, n, &fl->clst.pending, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "0x%-18X|%-10d|%-10d|%-10zu|0x%-20llX\n\n", ictx->sc, ictx->pid, ictx->tgid, ictx->used, ictx->ctxid); } len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "\n%s %s %s\n", title, " LIST OF INTERRUPTED SMQCONTEXTS ", title); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20s|%-10s|%-10s|%-10s|%-20s\n", "sc", "pid", "tgid", "used", "ctxid"); len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%s%s%s%s%s\n", single_line, single_line, single_line, single_line, single_line); hlist_for_each_entry_safe(ictx, n, &fl->clst.interrupted, hn) { len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len, "%-20u|%-20d|%-20d|%-20zu|0x%-20llX\n\n", ictx->sc, ictx->pid, ictx->tgid, ictx->used, ictx->ctxid); } spin_unlock(&fl->hlock); } if (len > DEBUGFS_SIZE) len = DEBUGFS_SIZE; ret = simple_read_from_buffer(buffer, count, position, fileinfo, len); kfree(fileinfo); bail: return ret; } static const struct file_operations debugfs_fops = { .open = fastrpc_debugfs_open, .read = fastrpc_debugfs_read, }; static int fastrpc_channel_open(struct fastrpc_file *fl) { struct fastrpc_apps *me = &gfa; int cid = -1, err = 0; VERIFY(err, fl && fl->sctx && fl->cid >= 0 && fl->cid < NUM_CHANNELS); if (err) { pr_err("adsprpc: ERROR: %s: kernel session not initialized yet for %s\n", __func__, current->comm); err = -EBADR; return err; } cid = fl->cid; mutex_lock(&me->channel[cid].rpmsg_mutex); VERIFY(err, NULL != me->channel[cid].rpdev); if (err) { err = -ENOTCONN; mutex_unlock(&me->channel[cid].rpmsg_mutex); goto bail; } mutex_unlock(&me->channel[cid].rpmsg_mutex); mutex_lock(&me->channel[cid].smd_mutex); if (me->channel[cid].ssrcount != me->channel[cid].prevssrcount) { if (!me->channel[cid].issubsystemup) { VERIFY(err, 0); if (err) { err = -ENOTCONN; mutex_unlock(&me->channel[cid].smd_mutex); goto bail; } } } fl->ssrcount = me->channel[cid].ssrcount; if (cid == ADSP_DOMAIN_ID && me->channel[cid].ssrcount != me->channel[cid].prevssrcount) { mutex_lock(&fl->map_mutex); if (fastrpc_mmap_remove_ssr(fl)) pr_err("adsprpc: %s: SSR: Failed to unmap remote heap for %s\n", __func__, me->channel[cid].name); mutex_unlock(&fl->map_mutex); me->channel[cid].prevssrcount = me->channel[cid].ssrcount; } me->channel[cid].in_hib = 0; mutex_unlock(&me->channel[cid].smd_mutex); bail: return err; } static int fastrpc_device_open(struct inode *inode, struct file *filp) { int err = 0; struct fastrpc_file *fl = NULL; struct fastrpc_apps *me = &gfa; /* * Indicates the device node opened * MINOR_NUM_DEV or MINOR_NUM_SECURE_DEV */ int dev_minor = MINOR(inode->i_rdev); VERIFY(err, ((dev_minor == MINOR_NUM_DEV) || (dev_minor == MINOR_NUM_SECURE_DEV))); if (err) { pr_err("adsprpc: Invalid dev minor num %d\n", dev_minor); return err; } VERIFY(err, NULL != (fl = kzalloc(sizeof(*fl), GFP_KERNEL))); if (err) return err; context_list_ctor(&fl->clst); spin_lock_init(&fl->hlock); INIT_HLIST_HEAD(&fl->maps); INIT_HLIST_HEAD(&fl->perf); INIT_HLIST_HEAD(&fl->cached_bufs); INIT_HLIST_HEAD(&fl->remote_bufs); INIT_HLIST_NODE(&fl->hn); fl->sessionid = 0; fl->apps = me; fl->mode = FASTRPC_MODE_SERIAL; fl->cid = -1; fl->dev_minor = dev_minor; fl->init_mem = NULL; fl->in_process_create = false; memset(&fl->perf, 0, sizeof(fl->perf)); fl->qos_request = 0; fl->dsp_proc_init = 0; filp->private_data = fl; mutex_init(&fl->internal_map_mutex); mutex_init(&fl->map_mutex); spin_lock(&me->hlock); hlist_add_head(&fl->hn, &me->drivers); spin_unlock(&me->hlock); mutex_init(&fl->perf_mutex); return 0; } static int fastrpc_set_process_info(struct fastrpc_file *fl) { int err = 0, buf_size = 0; char strpid[PID_SIZE]; char cur_comm[TASK_COMM_LEN]; memcpy(cur_comm, current->comm, TASK_COMM_LEN); cur_comm[TASK_COMM_LEN-1] = '\0'; fl->tgid = current->tgid; snprintf(strpid, PID_SIZE, "%d", current->pid); if (debugfs_root) { buf_size = strlen(cur_comm) + strlen("_") + strlen(strpid) + 1; spin_lock(&fl->hlock); if (fl->debug_buf_alloced_attempted) { spin_unlock(&fl->hlock); return err; } fl->debug_buf_alloced_attempted = 1; spin_unlock(&fl->hlock); fl->debug_buf = kzalloc(buf_size, GFP_KERNEL); if (!fl->debug_buf) { err = -ENOMEM; return err; } snprintf(fl->debug_buf, buf_size, "%.10s%s%d", cur_comm, "_", current->pid); fl->debugfs_file = debugfs_create_file(fl->debug_buf, 0644, debugfs_root, fl, &debugfs_fops); if (IS_ERR_OR_NULL(fl->debugfs_file)) { pr_warn("Error: %s: %s: failed to create debugfs file %s\n", cur_comm, __func__, fl->debug_buf); fl->debugfs_file = NULL; kfree(fl->debug_buf); fl->debug_buf_alloced_attempted = 0; fl->debug_buf = NULL; } } return err; } static int fastrpc_get_info(struct fastrpc_file *fl, uint32_t *info) { int err = 0; uint32_t cid; VERIFY(err, fl != NULL); if (err) goto bail; err = fastrpc_set_process_info(fl); if (err) goto bail; if (fl->cid == -1) { cid = *info; VERIFY(err, cid < NUM_CHANNELS); if (err) goto bail; /* Check to see if the device node is non-secure */ if (fl->dev_minor == MINOR_NUM_DEV) { /* * For non secure device node check and make sure that * the channel allows non-secure access * If not, bail. Session will not start. * cid will remain -1 and client will not be able to * invoke any other methods without failure */ if (fl->apps->channel[cid].secure == SECURE_CHANNEL) { err = -EACCES; goto bail; } } fl->cid = cid; fl->ssrcount = fl->apps->channel[cid].ssrcount; mutex_lock(&fl->apps->channel[cid].smd_mutex); err = fastrpc_session_alloc_locked(&fl->apps->channel[cid], 0, &fl->sctx); mutex_unlock(&fl->apps->channel[cid].smd_mutex); if (err) goto bail; } VERIFY(err, fl->sctx != NULL); if (err) goto bail; *info = (fl->sctx->smmu.enabled ? 1 : 0); bail: return err; } static int fastrpc_internal_control(struct fastrpc_file *fl, struct fastrpc_ioctl_control *cp) { int err = 0; int latency; VERIFY(err, !IS_ERR_OR_NULL(fl) && !IS_ERR_OR_NULL(fl->apps)); if (err) goto bail; VERIFY(err, !IS_ERR_OR_NULL(cp)); if (err) goto bail; switch (cp->req) { case FASTRPC_CONTROL_LATENCY: latency = cp->lp.enable == FASTRPC_LATENCY_CTRL_ENB ? fl->apps->latency : PM_QOS_DEFAULT_VALUE; VERIFY(err, latency != 0); if (err) goto bail; if (!fl->qos_request) { pm_qos_add_request(&fl->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency); fl->qos_request = 1; } else pm_qos_update_request(&fl->pm_qos_req, latency); break; case FASTRPC_CONTROL_KALLOC: cp->kalloc.kalloc_support = 1; break; case FASTRPC_CONTROL_WAKELOCK: fl->wake_enable = cp->wp.enable; break; default: err = -EBADRQC; break; } bail: return err; } static long fastrpc_device_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param) { union { struct fastrpc_ioctl_invoke_crc inv; struct fastrpc_ioctl_mmap mmap; struct fastrpc_ioctl_mmap_64 mmap64; struct fastrpc_ioctl_munmap munmap; struct fastrpc_ioctl_munmap_64 munmap64; struct fastrpc_ioctl_munmap_fd munmap_fd; struct fastrpc_ioctl_init_attrs init; struct fastrpc_ioctl_perf perf; struct fastrpc_ioctl_control cp; } p; union { struct fastrpc_ioctl_mmap mmap; struct fastrpc_ioctl_munmap munmap; } i; void *param = (char *)ioctl_param; struct fastrpc_file *fl = (struct fastrpc_file *)file->private_data; struct fastrpc_apps *me = &gfa; int size = 0, err = 0, session = 0; uint32_t info; p.inv.fds = NULL; p.inv.attrs = NULL; p.inv.crc = NULL; if (fl->spdname && !strcmp(fl->spdname, AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME)) { VERIFY(err, !fastrpc_get_adsp_session( AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, &session)); if (err) goto bail; if (!me->channel[fl->cid].spd[session].ispdup) { err = -ENOTCONN; goto bail; } } spin_lock(&fl->hlock); if (fl->file_close == 1) { err = EBADF; pr_warn("ADSPRPC: fastrpc_device_release is happening, So not sending any new requests to DSP"); spin_unlock(&fl->hlock); goto bail; } spin_unlock(&fl->hlock); switch (ioctl_num) { case FASTRPC_IOCTL_INVOKE: size = sizeof(struct fastrpc_ioctl_invoke); /* fall through */ case FASTRPC_IOCTL_INVOKE_FD: if (!size) size = sizeof(struct fastrpc_ioctl_invoke_fd); /* fall through */ case FASTRPC_IOCTL_INVOKE_ATTRS: if (!size) size = sizeof(struct fastrpc_ioctl_invoke_attrs); /* fall through */ case FASTRPC_IOCTL_INVOKE_CRC: if (!size) size = sizeof(struct fastrpc_ioctl_invoke_crc); K_COPY_FROM_USER(err, 0, &p.inv, param, size); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, fl->mode, 0, &p.inv))); if (err) goto bail; break; case FASTRPC_IOCTL_MMAP: K_COPY_FROM_USER(err, 0, &p.mmap, param, sizeof(p.mmap)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_mmap(fl, &p.mmap))); if (err) goto bail; K_COPY_TO_USER(err, 0, param, &p.mmap, sizeof(p.mmap)); if (err) goto bail; break; case FASTRPC_IOCTL_MUNMAP: K_COPY_FROM_USER(err, 0, &p.munmap, param, sizeof(p.munmap)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_munmap(fl, &p.munmap))); if (err) goto bail; break; case FASTRPC_IOCTL_MMAP_64: K_COPY_FROM_USER(err, 0, &p.mmap64, param, sizeof(p.mmap64)); if (err) goto bail; get_fastrpc_ioctl_mmap_64(&p.mmap64, &i.mmap); VERIFY(err, 0 == (err = fastrpc_internal_mmap(fl, &i.mmap))); if (err) goto bail; put_fastrpc_ioctl_mmap_64(&p.mmap64, &i.mmap); K_COPY_TO_USER(err, 0, param, &p.mmap64, sizeof(p.mmap64)); if (err) goto bail; break; case FASTRPC_IOCTL_MUNMAP_64: K_COPY_FROM_USER(err, 0, &p.munmap64, param, sizeof(p.munmap64)); if (err) goto bail; get_fastrpc_ioctl_munmap_64(&p.munmap64, &i.munmap); VERIFY(err, 0 == (err = fastrpc_internal_munmap(fl, &i.munmap))); if (err) goto bail; break; case FASTRPC_IOCTL_MUNMAP_FD: K_COPY_FROM_USER(err, 0, &p.munmap_fd, param, sizeof(p.munmap_fd)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_munmap_fd(fl, &p.munmap_fd))); if (err) goto bail; break; case FASTRPC_IOCTL_SETMODE: switch ((uint32_t)ioctl_param) { case FASTRPC_MODE_PARALLEL: case FASTRPC_MODE_SERIAL: fl->mode = (uint32_t)ioctl_param; break; case FASTRPC_MODE_PROFILE: fl->profile = (uint32_t)ioctl_param; break; case FASTRPC_MODE_SESSION: fl->sessionid = 1; fl->tgid |= (1 << SESSION_ID_INDEX); break; default: err = -ENOTTY; break; } break; case FASTRPC_IOCTL_GETPERF: K_COPY_FROM_USER(err, 0, &p.perf, param, sizeof(p.perf)); if (err) goto bail; p.perf.numkeys = sizeof(struct fastrpc_perf)/sizeof(int64_t); if (p.perf.keys) { char *keys = PERF_KEYS; K_COPY_TO_USER(err, 0, (void *)p.perf.keys, keys, strlen(keys)+1); if (err) goto bail; } if (p.perf.data) { struct fastrpc_perf *perf = NULL, *fperf = NULL; struct hlist_node *n = NULL; mutex_lock(&fl->perf_mutex); hlist_for_each_entry_safe(perf, n, &fl->perf, hn) { if (perf->tid == current->pid) { fperf = perf; break; } } mutex_unlock(&fl->perf_mutex); if (fperf) { K_COPY_TO_USER(err, 0, (void *)p.perf.data, fperf, sizeof(*fperf) - sizeof(struct hlist_node)); } } K_COPY_TO_USER(err, 0, param, &p.perf, sizeof(p.perf)); if (err) goto bail; break; case FASTRPC_IOCTL_CONTROL: K_COPY_FROM_USER(err, 0, &p.cp, param, sizeof(p.cp)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_internal_control(fl, &p.cp))); if (err) goto bail; if (p.cp.req == FASTRPC_CONTROL_KALLOC) { K_COPY_TO_USER(err, 0, param, &p.cp, sizeof(p.cp)); if (err) goto bail; } break; case FASTRPC_IOCTL_GETINFO: K_COPY_FROM_USER(err, 0, &info, param, sizeof(info)); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_get_info(fl, &info))); if (err) goto bail; K_COPY_TO_USER(err, 0, param, &info, sizeof(info)); if (err) goto bail; break; case FASTRPC_IOCTL_INIT: p.init.attrs = 0; p.init.siglen = 0; size = sizeof(struct fastrpc_ioctl_init); /* fall through */ case FASTRPC_IOCTL_INIT_ATTRS: if (!size) size = sizeof(struct fastrpc_ioctl_init_attrs); K_COPY_FROM_USER(err, 0, &p.init, param, size); if (err) goto bail; VERIFY(err, p.init.init.filelen >= 0 && p.init.init.filelen < INIT_FILELEN_MAX); if (err) goto bail; VERIFY(err, p.init.init.memlen >= 0 && p.init.init.memlen < INIT_MEMLEN_MAX); if (err) goto bail; VERIFY(err, 0 == (err = fastrpc_init_process(fl, &p.init))); if (err) goto bail; break; default: err = -ENOTTY; pr_info("bad ioctl: %d\n", ioctl_num); break; } bail: return err; } static int fastrpc_restart_notifier_cb(struct notifier_block *nb, unsigned long code, void *data) { struct fastrpc_apps *me = &gfa; struct fastrpc_channel_ctx *ctx; struct notif_data *notifdata = data; int cid; ctx = container_of(nb, struct fastrpc_channel_ctx, nb); cid = ctx - &me->channel[0]; if (code == SUBSYS_BEFORE_SHUTDOWN) { mutex_lock(&me->channel[cid].smd_mutex); ctx->ssrcount++; ctx->issubsystemup = 0; mutex_unlock(&me->channel[cid].smd_mutex); } else if (code == SUBSYS_RAMDUMP_NOTIFICATION) { if (me->channel[0].remoteheap_ramdump_dev && notifdata->enable_ramdump) { me->channel[0].ramdumpenabled = 1; } } else if (code == SUBSYS_AFTER_POWERUP) { ctx->issubsystemup = 1; } return NOTIFY_DONE; } static int fastrpc_pdr_notifier_cb(struct notifier_block *pdrnb, unsigned long code, void *data) { struct fastrpc_apps *me = &gfa; struct fastrpc_static_pd *spd; struct notif_data *notifdata = data; spd = container_of(pdrnb, struct fastrpc_static_pd, pdrnb); if (code == SERVREG_NOTIF_SERVICE_STATE_DOWN_V01) { mutex_lock(&me->channel[spd->cid].smd_mutex); spd->pdrcount++; spd->ispdup = 0; mutex_unlock(&me->channel[spd->cid].smd_mutex); pr_info("ADSPRPC: Audio PDR notifier %d %s\n", MAJOR(me->dev_no), spd->spdname); if (!strcmp(spd->spdname, AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME)) me->staticpd_flags = 0; fastrpc_notify_pdr_drivers(me, spd->spdname); } else if (code == SUBSYS_RAMDUMP_NOTIFICATION) { if (me->channel[0].remoteheap_ramdump_dev && notifdata->enable_ramdump) { me->channel[0].ramdumpenabled = 1; } } else if (code == SERVREG_NOTIF_SERVICE_STATE_UP_V01) { spd->ispdup = 1; } return NOTIFY_DONE; } static int fastrpc_get_service_location_notify(struct notifier_block *nb, unsigned long opcode, void *data) { struct fastrpc_static_pd *spd; struct pd_qmi_client_data *pdr = data; int curr_state = 0, i = 0; spd = container_of(nb, struct fastrpc_static_pd, get_service_nb); if (opcode == LOCATOR_DOWN) { pr_err("ADSPRPC: Audio PD restart notifier locator down\n"); return NOTIFY_DONE; } for (i = 0; i < pdr->total_domains; i++) { if ((!strcmp(spd->spdname, "audio_pdr_adsprpc")) && (!strcmp(pdr->domain_list[i].name, "msm/adsp/audio_pd"))) { goto pdr_register; } else if ((!strcmp(spd->spdname, "sensors_pdr_adsprpc")) && (!strcmp(pdr->domain_list[i].name, "msm/adsp/sensor_pd"))) { goto pdr_register; } } return NOTIFY_DONE; pdr_register: if (!spd->pdrhandle) { spd->pdrhandle = service_notif_register_notifier( pdr->domain_list[i].name, pdr->domain_list[i].instance_id, &spd->pdrnb, &curr_state); } else { pr_err("ADSPRPC: %s is already registered\n", spd->spdname); } if (IS_ERR(spd->pdrhandle)) pr_err("ADSPRPC: Unable to register notifier\n"); if (curr_state == SERVREG_NOTIF_SERVICE_STATE_UP_V01) { pr_info("ADSPRPC: %s is up\n", spd->spdname); spd->ispdup = 1; } else if (curr_state == SERVREG_NOTIF_SERVICE_STATE_UNINIT_V01) { pr_info("ADSPRPC: %s is uninitialzed\n", spd->spdname); } return NOTIFY_DONE; } static const struct file_operations fops = { .open = fastrpc_device_open, .release = fastrpc_device_release, .unlocked_ioctl = fastrpc_device_ioctl, .compat_ioctl = compat_fastrpc_device_ioctl, }; static const struct of_device_id fastrpc_match_table[] = { { .compatible = "qcom,msm-fastrpc-adsp", }, { .compatible = "qcom,msm-fastrpc-compute", }, { .compatible = "qcom,msm-fastrpc-compute-cb", }, { .compatible = "qcom,msm-adsprpc-mem-region", }, {} }; static int fastrpc_cb_probe(struct device *dev) { struct fastrpc_channel_ctx *chan; struct fastrpc_session_ctx *sess; struct of_phandle_args iommuspec; const char *name; dma_addr_t start = 0x80000000; int err = 0, cid = -1, i = 0; u32 sharedcb_count = 0, j = 0; unsigned int index, num_indices = 0; int secure_vmid = VMID_CP_PIXEL, cache_flush = 1; VERIFY(err, NULL != (name = of_get_property(dev->of_node, "label", NULL))); if (err) goto bail; for (i = 0; i < NUM_CHANNELS; i++) { if (!gcinfo[i].name) continue; if (!strcmp(name, gcinfo[i].name)) break; } VERIFY(err, i < NUM_CHANNELS); if (err) goto bail; cid = i; chan = &gcinfo[i]; VERIFY(err, chan->sesscount < NUM_SESSIONS); if (err) goto bail; err = of_parse_phandle_with_args(dev->of_node, "iommus", "#iommu-cells", 0, &iommuspec); if (err) { pr_err("adsprpc: %s: parsing iommu arguments failed for %s with err %d", __func__, dev_name(dev), err); goto bail; } sess = &chan->session[chan->sesscount]; sess->used = 0; sess->smmu.coherent = of_property_read_bool(dev->of_node, "dma-coherent"); sess->smmu.secure = of_property_read_bool(dev->of_node, "qcom,secure-context-bank"); /* Software workaround for SMMU interconnect HW bug */ if (cid == SDSP_DOMAIN_ID) { sess->smmu.cb = iommuspec.args[0] & 0x3; VERIFY(err, sess->smmu.cb); if (err) goto bail; start += ((uint64_t)sess->smmu.cb << 32); dma_set_mask(dev, DMA_BIT_MASK(34)); } else { sess->smmu.cb = iommuspec.args[0] & 0xf; } if (sess->smmu.secure) start = 0x60000000; VERIFY(err, !IS_ERR_OR_NULL(sess->smmu.mapping = arm_iommu_create_mapping(&platform_bus_type, start, MAX_SIZE_LIMIT))); if (err) { pr_err("adsprpc: %s: creating iommu mapping failed for %s, ret %pK", __func__, dev_name(dev), sess->smmu.mapping); goto bail; } err = iommu_domain_set_attr(sess->smmu.mapping->domain, DOMAIN_ATTR_CB_STALL_DISABLE, &cache_flush); if (err) { pr_err("adsprpc: %s: setting CB stall iommu attribute failed for %s with err %d", __func__, dev_name(dev), err); goto bail; } if (sess->smmu.secure) { err = iommu_domain_set_attr(sess->smmu.mapping->domain, DOMAIN_ATTR_SECURE_VMID, &secure_vmid); if (err) { pr_err("adsprpc: %s: setting secure iommu attribute failed for %s with err %d", __func__, dev_name(dev), err); goto bail; } } err = arm_iommu_attach_device(dev, sess->smmu.mapping); if (err) { pr_err("adsprpc: %s: attaching iommu device failed for %s with err %d", __func__, dev_name(dev), err); goto bail; } sess->smmu.dev = dev; sess->smmu.dev_name = dev_name(dev); sess->smmu.enabled = 1; if (!sess->smmu.dev->dma_parms) sess->smmu.dev->dma_parms = devm_kzalloc(sess->smmu.dev, sizeof(*sess->smmu.dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(sess->smmu.dev, DMA_BIT_MASK(32)); dma_set_seg_boundary(sess->smmu.dev, (unsigned long)DMA_BIT_MASK(64)); if (of_get_property(dev->of_node, "shared-sid", NULL) != NULL) { struct fastrpc_session_ctx *new_sess; err = of_property_read_u32(dev->of_node, "shared-sid", &num_indices); if (err) goto bail; for (index = 1; index < num_indices && chan->sesscount < NUM_SESSIONS; index++) { err = of_parse_phandle_with_args(dev->of_node, "iommus", "#iommu-cells", index, &iommuspec); if (err) { pr_err("adsprpc: %s: parsing iommu arguments failed for %s with err %d", __func__, dev_name(dev), err); goto bail; } chan->sesscount++; new_sess = &chan->session[chan->sesscount]; memcpy(new_sess, sess, sizeof(struct fastrpc_session_ctx)); new_sess->smmu.cb = iommuspec.args[0] & 0xf; sess = new_sess; } } if (of_get_property(dev->of_node, "shared-cb", NULL) != NULL) { err = of_property_read_u32(dev->of_node, "shared-cb", &sharedcb_count); if (err) goto bail; if (sharedcb_count > 0) { struct fastrpc_session_ctx *dup_sess; for (j = 1; j < sharedcb_count && chan->sesscount < NUM_SESSIONS; j++) { chan->sesscount++; dup_sess = &chan->session[chan->sesscount]; memcpy(dup_sess, sess, sizeof(struct fastrpc_session_ctx)); } } } chan->sesscount++; if (debugfs_root) { debugfs_global_file = debugfs_create_file("global", 0644, debugfs_root, NULL, &debugfs_fops); if (IS_ERR_OR_NULL(debugfs_global_file)) { pr_warn("Error: %s: %s: failed to create debugfs global file\n", current->comm, __func__); debugfs_global_file = NULL; } } bail: return err; } static int fastrpc_cb_legacy_probe(struct device *dev) { struct fastrpc_channel_ctx *chan; struct fastrpc_session_ctx *first_sess = NULL, *sess = NULL; const char *name; unsigned int *sids = NULL, sids_size = 0; int err = 0, ret = 0, i; unsigned int start = 0x80000000; VERIFY(err, NULL != (name = of_get_property(dev->of_node, "label", NULL))); if (err) goto bail; for (i = 0; i < NUM_CHANNELS; i++) { if (!gcinfo[i].name) continue; if (!strcmp(name, gcinfo[i].name)) break; } VERIFY(err, i < NUM_CHANNELS); if (err) goto bail; chan = &gcinfo[i]; VERIFY(err, chan->sesscount < NUM_SESSIONS); if (err) goto bail; first_sess = &chan->session[chan->sesscount]; VERIFY(err, NULL != of_get_property(dev->of_node, "sids", &sids_size)); if (err) goto bail; VERIFY(err, NULL != (sids = kzalloc(sids_size, GFP_KERNEL))); if (err) goto bail; ret = of_property_read_u32_array(dev->of_node, "sids", sids, sids_size/sizeof(unsigned int)); if (ret) goto bail; VERIFY(err, !IS_ERR_OR_NULL(first_sess->smmu.mapping = arm_iommu_create_mapping(&platform_bus_type, start, 0x78000000))); if (err) goto bail; VERIFY(err, !arm_iommu_attach_device(dev, first_sess->smmu.mapping)); if (err) { pr_err("adsprpc: %s: attaching iommu device failed for %s with err %d", __func__, dev_name(dev), err); goto bail; } for (i = 0; i < sids_size/sizeof(unsigned int); i++) { VERIFY(err, chan->sesscount < NUM_SESSIONS); if (err) goto bail; sess = &chan->session[chan->sesscount]; sess->smmu.cb = sids[i]; sess->smmu.dev = dev; sess->smmu.dev_name = dev_name(dev); sess->smmu.mapping = first_sess->smmu.mapping; sess->smmu.enabled = 1; sess->used = 0; sess->smmu.coherent = false; sess->smmu.secure = false; chan->sesscount++; if (!sess->smmu.dev->dma_parms) sess->smmu.dev->dma_parms = devm_kzalloc(sess->smmu.dev, sizeof(*sess->smmu.dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(sess->smmu.dev, DMA_BIT_MASK(32)); dma_set_seg_boundary(sess->smmu.dev, (unsigned long)DMA_BIT_MASK(64)); } bail: kfree(sids); return err; } static void init_secure_vmid_list(struct device *dev, char *prop_name, struct secure_vm *destvm) { int err = 0; u32 len = 0, i = 0; u32 *rhvmlist = NULL; u32 *rhvmpermlist = NULL; if (!of_find_property(dev->of_node, prop_name, &len)) goto bail; if (len == 0) goto bail; len /= sizeof(u32); VERIFY(err, NULL != (rhvmlist = kcalloc(len, sizeof(u32), GFP_KERNEL))); if (err) goto bail; VERIFY(err, NULL != (rhvmpermlist = kcalloc(len, sizeof(u32), GFP_KERNEL))); if (err) goto bail; for (i = 0; i < len; i++) { err = of_property_read_u32_index(dev->of_node, prop_name, i, &rhvmlist[i]); rhvmpermlist[i] = PERM_READ | PERM_WRITE | PERM_EXEC; pr_info("ADSPRPC: Secure VMID = %d", rhvmlist[i]); if (err) { pr_err("ADSPRPC: Failed to read VMID\n"); goto bail; } } destvm->vmid = rhvmlist; destvm->vmperm = rhvmpermlist; destvm->vmcount = len; bail: if (err) { kfree(rhvmlist); kfree(rhvmpermlist); } } static void configure_secure_channels(uint32_t secure_domains) { struct fastrpc_apps *me = &gfa; int ii = 0; /* * secure_domains contains the bitmask of the secure channels * Bit 0 - ADSP * Bit 1 - MDSP * Bit 2 - SLPI * Bit 3 - CDSP */ for (ii = ADSP_DOMAIN_ID; ii <= CDSP_DOMAIN_ID; ++ii) { int secure = (secure_domains >> ii) & 0x01; me->channel[ii].secure = secure; printk("adsprpc: domain %d configured as secure %d\n", ii, secure); } } #define CDSP_SIGNOFF_BLOCK 0x2377 static unsigned int signoff_val; static int __init signoff_setup(char *str) { get_option(&str, &signoff_val); return 0; } early_param("signoff", signoff_setup); unsigned int is_signoff_block(void) { pr_err("is_signoff_block : 0x%08x\n", signoff_val); if (signoff_val == CDSP_SIGNOFF_BLOCK) return 1; return 0; } static int fastrpc_probe(struct platform_device *pdev) { int err = 0; struct fastrpc_apps *me = &gfa; struct device *dev = &pdev->dev; struct smq_phy_page range; struct device_node *ion_node, *node; struct platform_device *ion_pdev; struct cma *cma; uint32_t val; int ret = 0; uint32_t secure_domains; if (of_device_is_compatible(dev->of_node, "qcom,msm-fastrpc-compute")) { init_secure_vmid_list(dev, "qcom,adsp-remoteheap-vmid", &gcinfo[0].rhvm); of_property_read_u32(dev->of_node, "qcom,rpc-latency-us", &me->latency); if (of_get_property(dev->of_node, "qcom,secure-domains", NULL) != NULL && is_signoff_block()) { VERIFY(err, !of_property_read_u32(dev->of_node, "qcom,secure-domains", &secure_domains)); if (!err) configure_secure_channels(secure_domains); else pr_info("adsprpc: unable to read the domain configuration from dts\n"); } } if (of_device_is_compatible(dev->of_node, "qcom,msm-fastrpc-compute-cb")) return fastrpc_cb_probe(dev); if (of_device_is_compatible(dev->of_node, "qcom,msm-fastrpc-legacy-compute-cb")) return fastrpc_cb_legacy_probe(dev); if (of_device_is_compatible(dev->of_node, "qcom,msm-adsprpc-mem-region")) { me->dev = dev; range.addr = 0; ion_node = of_find_compatible_node(NULL, NULL, "qcom,msm-ion"); if (ion_node) { for_each_available_child_of_node(ion_node, node) { if (of_property_read_u32(node, "reg", &val)) continue; if (val != ION_ADSP_HEAP_ID) continue; ion_pdev = of_find_device_by_node(node); if (!ion_pdev) break; cma = dev_get_cma_area(&ion_pdev->dev); if (cma) { range.addr = cma_get_base(cma); range.size = (size_t)cma_get_size(cma); } break; } } if (range.addr && !of_property_read_bool(dev->of_node, "restrict-access")) { int srcVM[1] = {VMID_HLOS}; int destVM[3] = {VMID_HLOS, VMID_SSC_Q6, VMID_ADSP_Q6}; int destVMperm[3] = {PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, }; VERIFY(err, !hyp_assign_phys(range.addr, range.size, srcVM, 1, destVM, destVMperm, 3)); if (err) goto bail; me->range.addr = range.addr; me->range.size = range.size; } return 0; } me->legacy_remote_heap = of_property_read_bool(dev->of_node, "qcom,fastrpc-legacy-remote-heap"); if (of_property_read_bool(dev->of_node, "qcom,fastrpc-adsp-audio-pdr")) { int session; VERIFY(err, !fastrpc_get_adsp_session( AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, &session)); if (err) goto spdbail; me->channel[0].spd[session].get_service_nb.notifier_call = fastrpc_get_service_location_notify; ret = get_service_location( AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME, AUDIO_PDR_ADSP_SERVICE_NAME, &me->channel[0].spd[session].get_service_nb); if (ret) pr_err("ADSPRPC: Get service location failed: %d\n", ret); } if (of_property_read_bool(dev->of_node, "qcom,fastrpc-adsp-sensors-pdr")) { int session; VERIFY(err, !fastrpc_get_adsp_session( SENSORS_PDR_SERVICE_LOCATION_CLIENT_NAME, &session)); if (err) goto spdbail; me->channel[0].spd[session].get_service_nb.notifier_call = fastrpc_get_service_location_notify; ret = get_service_location( SENSORS_PDR_SERVICE_LOCATION_CLIENT_NAME, SENSORS_PDR_ADSP_SERVICE_NAME, &me->channel[0].spd[session].get_service_nb); if (ret) pr_err("ADSPRPC: Get service location failed: %d\n", ret); } spdbail: err = 0; VERIFY(err, !of_platform_populate(pdev->dev.of_node, fastrpc_match_table, NULL, &pdev->dev)); if (err) goto bail; bail: return err; } static void fastrpc_deinit(void) { struct fastrpc_channel_ctx *chan = gcinfo; int i, j; for (i = 0; i < NUM_CHANNELS; i++, chan++) { for (j = 0; j < NUM_SESSIONS; j++) { struct fastrpc_session_ctx *sess = &chan->session[j]; if (sess->smmu.dev) { arm_iommu_detach_device(sess->smmu.dev); sess->smmu.dev = NULL; } if (sess->smmu.mapping) { arm_iommu_release_mapping(sess->smmu.mapping); sess->smmu.mapping = NULL; } } kfree(chan->rhvm.vmid); kfree(chan->rhvm.vmperm); } } #ifdef CONFIG_PM_SLEEP static int fastrpc_restore(struct device *dev) { int err = 0; struct fastrpc_apps *me = &gfa; struct smq_phy_page range; struct device_node *ion_node, *node; struct platform_device *ion_pdev; struct cma *cma; uint32_t val; int cid; pr_info("adsprpc: restore enter\n"); for (cid = 0; cid < NUM_CHANNELS; cid++) me->channel[cid].in_hib = 1; if (of_device_is_compatible(dev->of_node, "qcom,msm-adsprpc-mem-region")) { me->dev = dev; range.addr = 0; ion_node = of_find_compatible_node(NULL, NULL, "qcom,msm-ion"); if (ion_node) { for_each_available_child_of_node(ion_node, node) { if (of_property_read_u32(node, "reg", &val)) continue; if (val != ION_ADSP_HEAP_ID) continue; ion_pdev = of_find_device_by_node(node); if (!ion_pdev) break; cma = dev_get_cma_area(&ion_pdev->dev); if (cma) { range.addr = cma_get_base(cma); range.size = (size_t)cma_get_size(cma); } break; } } if (range.addr && !of_property_read_bool(dev->of_node, "restrict-access")) { int srcVM[1] = {VMID_HLOS}; int destVM[4] = {VMID_HLOS, VMID_MSS_MSA, VMID_SSC_Q6, VMID_ADSP_Q6}; int destVMperm[4] = {PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, PERM_READ | PERM_WRITE | PERM_EXEC, }; VERIFY(err, !hyp_assign_phys(range.addr, range.size, srcVM, 1, destVM, destVMperm, 4)); if (err) return err; me->range.addr = range.addr; me->range.size = range.size; } } pr_info("adsprpc: restore exit\n"); return 0; } static const struct dev_pm_ops fastrpc_pm = { .restore = fastrpc_restore, }; #endif static struct platform_driver fastrpc_driver = { .probe = fastrpc_probe, .driver = { .name = "fastrpc", .owner = THIS_MODULE, .of_match_table = fastrpc_match_table, .suppress_bind_attrs = true, #ifdef CONFIG_PM_SLEEP .pm = &fastrpc_pm, #endif }, }; static const struct rpmsg_device_id fastrpc_rpmsg_match[] = { { FASTRPC_GLINK_GUID }, { FASTRPC_SMD_GUID }, {}, }; static const struct of_device_id fastrpc_rpmsg_of_match[] = { { .compatible = "qcom,msm-fastrpc-rpmsg" }, { }, }; MODULE_DEVICE_TABLE(of, fastrpc_rpmsg_of_match); static struct rpmsg_driver fastrpc_rpmsg_client = { .id_table = fastrpc_rpmsg_match, .probe = fastrpc_rpmsg_probe, .remove = fastrpc_rpmsg_remove, .callback = fastrpc_rpmsg_callback, .drv = { .name = "qcom,msm_fastrpc_rpmsg", .of_match_table = fastrpc_rpmsg_of_match, }, }; static int __init fastrpc_device_init(void) { struct fastrpc_apps *me = &gfa; struct device *dev = NULL; struct device *secure_dev = NULL; int err = 0, i; debugfs_root = debugfs_create_dir("adsprpc", NULL); if (IS_ERR_OR_NULL(debugfs_root)) { pr_warn("Error: %s: %s: failed to create debugfs root dir\n", current->comm, __func__); debugfs_remove_recursive(debugfs_root); debugfs_root = NULL; } memset(me, 0, sizeof(*me)); fastrpc_init(me); me->dev = NULL; me->legacy_remote_heap = 0; VERIFY(err, 0 == platform_driver_register(&fastrpc_driver)); if (err) goto register_bail; VERIFY(err, 0 == alloc_chrdev_region(&me->dev_no, 0, NUM_CHANNELS, DEVICE_NAME)); if (err) goto alloc_chrdev_bail; cdev_init(&me->cdev, &fops); me->cdev.owner = THIS_MODULE; VERIFY(err, 0 == cdev_add(&me->cdev, MKDEV(MAJOR(me->dev_no), 0), NUM_DEVICES)); if (err) goto cdev_init_bail; me->class = class_create(THIS_MODULE, "fastrpc"); VERIFY(err, !IS_ERR(me->class)); if (err) goto class_create_bail; me->compat = (fops.compat_ioctl == NULL) ? 0 : 1; /* * Create devices and register with sysfs * Create first device with minor number 0 */ dev = device_create(me->class, NULL, MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV), NULL, DEVICE_NAME); VERIFY(err, !IS_ERR_OR_NULL(dev)); if (err) goto device_create_bail; /* Create secure device with minor number for secure device */ secure_dev = device_create(me->class, NULL, MKDEV(MAJOR(me->dev_no), MINOR_NUM_SECURE_DEV), NULL, DEVICE_NAME_SECURE); VERIFY(err, !IS_ERR_OR_NULL(secure_dev)); if (err) goto device_create_bail; for (i = 0; i < NUM_CHANNELS; i++) { me->channel[i].dev = secure_dev; if (i == CDSP_DOMAIN_ID) me->channel[i].dev = dev; me->channel[i].ssrcount = 0; me->channel[i].in_hib = 0; me->channel[i].prevssrcount = 0; me->channel[i].issubsystemup = 1; me->channel[i].ramdumpenabled = 0; me->channel[i].remoteheap_ramdump_dev = NULL; me->channel[i].nb.notifier_call = fastrpc_restart_notifier_cb; me->channel[i].handle = subsys_notif_register_notifier( gcinfo[i].subsys, &me->channel[i].nb); } err = register_rpmsg_driver(&fastrpc_rpmsg_client); if (err) { pr_err("adsprpc: %s: register_rpmsg_driver failed with err %d\n", __func__, err); goto device_create_bail; } me->rpmsg_register = 1; me->wake_source = wakeup_source_register(dev, "adsprpc-non_secure"); VERIFY(err, !IS_ERR_OR_NULL(me->wake_source)); if (err) { pr_err("adsprpc: Error: %s: wakeup_source_register failed for %s with err %ld\n", __func__, dev_name(dev), PTR_ERR(me->wake_source)); goto device_create_bail; } me->wake_source_secure = wakeup_source_register(secure_dev, "adsprpc-secure"); VERIFY(err, !IS_ERR_OR_NULL(me->wake_source_secure)); if (err) { pr_err("adsprpc: Error: %s: wakeup_source_register failed for %s with err %ld\n", __func__, dev_name(secure_dev), PTR_ERR(me->wake_source_secure)); goto device_create_bail; } return 0; device_create_bail: for (i = 0; i < NUM_CHANNELS; i++) { if (me->channel[i].handle) subsys_notif_unregister_notifier(me->channel[i].handle, &me->channel[i].nb); } if (!IS_ERR_OR_NULL(dev)) device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV)); if (!IS_ERR_OR_NULL(secure_dev)) device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_SECURE_DEV)); class_destroy(me->class); class_create_bail: cdev_del(&me->cdev); cdev_init_bail: unregister_chrdev_region(me->dev_no, NUM_CHANNELS); alloc_chrdev_bail: register_bail: fastrpc_deinit(); return err; } static void __exit fastrpc_device_exit(void) { struct fastrpc_apps *me = &gfa; int i; fastrpc_file_list_dtor(me); fastrpc_deinit(); for (i = 0; i < NUM_CHANNELS; i++) { if (!gcinfo[i].name) continue; subsys_notif_unregister_notifier(me->channel[i].handle, &me->channel[i].nb); } /* Destroy the secure and non secure devices */ device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV)); device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_SECURE_DEV)); class_destroy(me->class); cdev_del(&me->cdev); unregister_chrdev_region(me->dev_no, NUM_CHANNELS); if (me->rpmsg_register == 1) unregister_rpmsg_driver(&fastrpc_rpmsg_client); if (me->wake_source) wakeup_source_unregister(me->wake_source); if (me->wake_source_secure) wakeup_source_unregister(me->wake_source_secure); debugfs_remove_recursive(debugfs_root); } late_initcall(fastrpc_device_init); module_exit(fastrpc_device_exit); MODULE_LICENSE("GPL v2");