// SPDX-License-Identifier: GPL-2.0 /* * Functions related to segment and merge handling */ #include #include #include #include #include #include #include "blk.h" static struct bio *blk_bio_discard_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { unsigned int max_discard_sectors, granularity; int alignment; sector_t tmp; unsigned split_sectors; *nsegs = 1; /* Zero-sector (unknown) and one-sector granularities are the same. */ granularity = max(q->limits.discard_granularity >> 9, 1U); max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9); max_discard_sectors -= max_discard_sectors % granularity; if (unlikely(!max_discard_sectors)) { /* XXX: warn */ return NULL; } if (bio_sectors(bio) <= max_discard_sectors) return NULL; split_sectors = max_discard_sectors; /* * If the next starting sector would be misaligned, stop the discard at * the previous aligned sector. */ alignment = (q->limits.discard_alignment >> 9) % granularity; tmp = bio->bi_iter.bi_sector + split_sectors - alignment; tmp = sector_div(tmp, granularity); if (split_sectors > tmp) split_sectors -= tmp; return bio_split(bio, split_sectors, GFP_NOIO, bs); } static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { *nsegs = 1; if (!q->limits.max_write_zeroes_sectors) return NULL; if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) return NULL; return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); } static struct bio *blk_bio_write_same_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { *nsegs = 1; if (!q->limits.max_write_same_sectors) return NULL; if (bio_sectors(bio) <= q->limits.max_write_same_sectors) return NULL; return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); } static inline unsigned get_max_io_size(struct request_queue *q, struct bio *bio) { unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); unsigned mask = queue_logical_block_size(q) - 1; /* aligned to logical block size */ sectors &= ~(mask >> 9); return sectors; } static struct bio *blk_bio_segment_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *segs) { struct bio_vec bv, bvprv, *bvprvp = NULL; struct bvec_iter iter; unsigned seg_size = 0, nsegs = 0, sectors = 0; unsigned front_seg_size = bio->bi_seg_front_size; bool do_split = true; struct bio *new = NULL; const unsigned max_sectors = get_max_io_size(q, bio); bio_for_each_segment(bv, bio, iter) { /* * If the queue doesn't support SG gaps and adding this * offset would create a gap, disallow it. */ if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) goto split; if (sectors + (bv.bv_len >> 9) > max_sectors) { /* * Consider this a new segment if we're splitting in * the middle of this vector. */ if (nsegs < queue_max_segments(q) && sectors < max_sectors) { nsegs++; sectors = max_sectors; } if (sectors) goto split; /* Make this single bvec as the 1st segment */ } if (bvprvp && blk_queue_cluster(q)) { if (seg_size + bv.bv_len > queue_max_segment_size(q)) goto new_segment; if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv)) goto new_segment; if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv)) goto new_segment; seg_size += bv.bv_len; bvprv = bv; bvprvp = &bvprv; sectors += bv.bv_len >> 9; if (nsegs == 1 && seg_size > front_seg_size) front_seg_size = seg_size; continue; } new_segment: if (nsegs == queue_max_segments(q)) goto split; nsegs++; bvprv = bv; bvprvp = &bvprv; seg_size = bv.bv_len; sectors += bv.bv_len >> 9; if (nsegs == 1 && seg_size > front_seg_size) front_seg_size = seg_size; } do_split = false; split: *segs = nsegs; if (do_split) { new = bio_split(bio, sectors, GFP_NOIO, bs); if (new) bio = new; } bio->bi_seg_front_size = front_seg_size; if (seg_size > bio->bi_seg_back_size) bio->bi_seg_back_size = seg_size; return do_split ? new : NULL; } void blk_queue_split(struct request_queue *q, struct bio **bio) { struct bio *split, *res; unsigned nsegs; switch (bio_op(*bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: split = blk_bio_discard_split(q, *bio, q->bio_split, &nsegs); break; case REQ_OP_WRITE_ZEROES: split = blk_bio_write_zeroes_split(q, *bio, q->bio_split, &nsegs); break; case REQ_OP_WRITE_SAME: split = blk_bio_write_same_split(q, *bio, q->bio_split, &nsegs); break; default: split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs); break; } /* physical segments can be figured out during splitting */ res = split ? split : *bio; res->bi_phys_segments = nsegs; bio_set_flag(res, BIO_SEG_VALID); if (split) { /* there isn't chance to merge the splitted bio */ split->bi_opf |= REQ_NOMERGE; /* * Since we're recursing into make_request here, ensure * that we mark this bio as already having entered the queue. * If not, and the queue is going away, we can get stuck * forever on waiting for the queue reference to drop. But * that will never happen, as we're already holding a * reference to it. */ bio_set_flag(*bio, BIO_QUEUE_ENTERED); bio_chain(split, *bio); trace_block_split(q, split, (*bio)->bi_iter.bi_sector); generic_make_request(*bio); *bio = split; } } EXPORT_SYMBOL(blk_queue_split); static unsigned int __blk_recalc_rq_segments(struct request_queue *q, struct bio *bio, bool no_sg_merge) { struct bio_vec bv, bvprv = { NULL }; int cluster, prev = 0; unsigned int seg_size, nr_phys_segs; struct bio *fbio, *bbio; struct bvec_iter iter; if (!bio) return 0; switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; } fbio = bio; cluster = blk_queue_cluster(q); seg_size = 0; nr_phys_segs = 0; for_each_bio(bio) { bio_for_each_segment(bv, bio, iter) { /* * If SG merging is disabled, each bio vector is * a segment */ if (no_sg_merge) goto new_segment; if (prev && cluster) { if (seg_size + bv.bv_len > queue_max_segment_size(q)) goto new_segment; if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv)) goto new_segment; if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv)) goto new_segment; seg_size += bv.bv_len; bvprv = bv; continue; } new_segment: if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size) fbio->bi_seg_front_size = seg_size; nr_phys_segs++; bvprv = bv; prev = 1; seg_size = bv.bv_len; } bbio = bio; } if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size) fbio->bi_seg_front_size = seg_size; if (seg_size > bbio->bi_seg_back_size) bbio->bi_seg_back_size = seg_size; return nr_phys_segs; } void blk_recalc_rq_segments(struct request *rq) { bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE, &rq->q->queue_flags); rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio, no_sg_merge); } void blk_recount_segments(struct request_queue *q, struct bio *bio) { unsigned short seg_cnt = bio_segments(bio); if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) && (seg_cnt < queue_max_segments(q))) bio->bi_phys_segments = seg_cnt; else { struct bio *nxt = bio->bi_next; bio->bi_next = NULL; bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false); bio->bi_next = nxt; } bio_set_flag(bio, BIO_SEG_VALID); } EXPORT_SYMBOL(blk_recount_segments); static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio, struct bio *nxt) { struct bio_vec end_bv = { NULL }, nxt_bv; if (!blk_queue_cluster(q)) return 0; if (bio->bi_seg_back_size + nxt->bi_seg_front_size > queue_max_segment_size(q)) return 0; if (!bio_has_data(bio)) return 1; bio_get_last_bvec(bio, &end_bv); bio_get_first_bvec(nxt, &nxt_bv); if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv)) return 0; /* * bio and nxt are contiguous in memory; check if the queue allows * these two to be merged into one */ if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv)) return 1; return 0; } static inline void __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec, struct scatterlist *sglist, struct bio_vec *bvprv, struct scatterlist **sg, int *nsegs, int *cluster) { int nbytes = bvec->bv_len; if (*sg && *cluster) { if ((*sg)->length + nbytes > queue_max_segment_size(q)) goto new_segment; if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) goto new_segment; if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec)) goto new_segment; (*sg)->length += nbytes; } else { new_segment: if (!*sg) *sg = sglist; else { /* * If the driver previously mapped a shorter * list, we could see a termination bit * prematurely unless it fully inits the sg * table on each mapping. We KNOW that there * must be more entries here or the driver * would be buggy, so force clear the * termination bit to avoid doing a full * sg_init_table() in drivers for each command. */ sg_unmark_end(*sg); *sg = sg_next(*sg); } sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset); (*nsegs)++; } *bvprv = *bvec; } static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv, struct scatterlist *sglist, struct scatterlist **sg) { *sg = sglist; sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); return 1; } static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, struct scatterlist *sglist, struct scatterlist **sg) { struct bio_vec bvec, bvprv = { NULL }; struct bvec_iter iter; int cluster = blk_queue_cluster(q), nsegs = 0; for_each_bio(bio) bio_for_each_segment(bvec, bio, iter) __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg, &nsegs, &cluster); return nsegs; } /* * map a request to scatterlist, return number of sg entries setup. Caller * must make sure sg can hold rq->nr_phys_segments entries */ int blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist) { struct scatterlist *sg = NULL; int nsegs = 0; if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg); else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg); else if (rq->bio) nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); if (unlikely(rq->rq_flags & RQF_COPY_USER) && (blk_rq_bytes(rq) & q->dma_pad_mask)) { unsigned int pad_len = (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; sg->length += pad_len; rq->extra_len += pad_len; } if (q->dma_drain_size && q->dma_drain_needed(rq)) { if (op_is_write(req_op(rq))) memset(q->dma_drain_buffer, 0, q->dma_drain_size); sg_unmark_end(sg); sg = sg_next(sg); sg_set_page(sg, virt_to_page(q->dma_drain_buffer), q->dma_drain_size, ((unsigned long)q->dma_drain_buffer) & (PAGE_SIZE - 1)); nsegs++; rq->extra_len += q->dma_drain_size; } if (sg) sg_mark_end(sg); /* * Something must have been wrong if the figured number of * segment is bigger than number of req's physical segments */ WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); return nsegs; } EXPORT_SYMBOL(blk_rq_map_sg); static inline int ll_new_hw_segment(struct request_queue *q, struct request *req, struct bio *bio) { int nr_phys_segs = bio_phys_segments(q, bio); if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q)) goto no_merge; if (blk_integrity_merge_bio(q, req, bio) == false) goto no_merge; /* * This will form the start of a new hw segment. Bump both * counters. */ req->nr_phys_segments += nr_phys_segs; return 1; no_merge: req_set_nomerge(q, req); return 0; } int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio) { if (req_gap_back_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_back_merge(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) { req_set_nomerge(q, req); return 0; } if (!bio_crypt_ctx_mergeable(req->bio, blk_rq_bytes(req), bio)) return 0; if (!bio_flagged(req->biotail, BIO_SEG_VALID)) blk_recount_segments(q, req->biotail); if (!bio_flagged(bio, BIO_SEG_VALID)) blk_recount_segments(q, bio); return ll_new_hw_segment(q, req, bio); } int ll_front_merge_fn(struct request_queue *q, struct request *req, struct bio *bio) { if (req_gap_front_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_front_merge(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { req_set_nomerge(q, req); return 0; } if (!bio_crypt_ctx_mergeable(bio, bio->bi_iter.bi_size, req->bio)) return 0; if (!bio_flagged(bio, BIO_SEG_VALID)) blk_recount_segments(q, bio); if (!bio_flagged(req->bio, BIO_SEG_VALID)) blk_recount_segments(q, req->bio); return ll_new_hw_segment(q, req, bio); } /* * blk-mq uses req->special to carry normal driver per-request payload, it * does not indicate a prepared command that we cannot merge with. */ static bool req_no_special_merge(struct request *req) { struct request_queue *q = req->q; return !q->mq_ops && req->special; } static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, struct request *next) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(next->bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); return true; no_merge: req_set_nomerge(q, req); return false; } static int ll_merge_requests_fn(struct request_queue *q, struct request *req, struct request *next) { int total_phys_segments; unsigned int seg_size = req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size; /* * First check if the either of the requests are re-queued * requests. Can't merge them if they are. */ if (req_no_special_merge(req) || req_no_special_merge(next)) return 0; if (req_gap_back_merge(req, next->bio)) return 0; /* * Will it become too large? */ if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) return 0; total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; if (blk_phys_contig_segment(q, req->biotail, next->bio)) { if (req->nr_phys_segments == 1) req->bio->bi_seg_front_size = seg_size; if (next->nr_phys_segments == 1) next->biotail->bi_seg_back_size = seg_size; total_phys_segments--; } if (total_phys_segments > queue_max_segments(q)) return 0; if (blk_integrity_merge_rq(q, req, next) == false) return 0; if (!bio_crypt_ctx_mergeable(req->bio, blk_rq_bytes(req), next->bio)) return 0; /* Merge is OK... */ req->nr_phys_segments = total_phys_segments; return 1; } /** * blk_rq_set_mixed_merge - mark a request as mixed merge * @rq: request to mark as mixed merge * * Description: * @rq is about to be mixed merged. Make sure the attributes * which can be mixed are set in each bio and mark @rq as mixed * merged. */ void blk_rq_set_mixed_merge(struct request *rq) { unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; struct bio *bio; if (rq->rq_flags & RQF_MIXED_MERGE) return; /* * @rq will no longer represent mixable attributes for all the * contained bios. It will just track those of the first one. * Distributes the attributs to each bio. */ for (bio = rq->bio; bio; bio = bio->bi_next) { WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && (bio->bi_opf & REQ_FAILFAST_MASK) != ff); bio->bi_opf |= ff; } rq->rq_flags |= RQF_MIXED_MERGE; } static void blk_account_io_merge(struct request *req) { if (blk_do_io_stat(req)) { struct hd_struct *part; int cpu; cpu = part_stat_lock(); part = req->part; part_round_stats(req->q, cpu, part); part_dec_in_flight(req->q, part, rq_data_dir(req)); hd_struct_put(part); part_stat_unlock(); } } /* * For non-mq, this has to be called with the request spinlock acquired. * For mq with scheduling, the appropriate queue wide lock should be held. */ static struct request *attempt_merge(struct request_queue *q, struct request *req, struct request *next) { if (!q->mq_ops) lockdep_assert_held(q->queue_lock); if (!rq_mergeable(req) || !rq_mergeable(next)) return NULL; if (req_op(req) != req_op(next)) return NULL; /* * not contiguous */ if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next)) return NULL; if (rq_data_dir(req) != rq_data_dir(next) || req->rq_disk != next->rq_disk || req_no_special_merge(next)) return NULL; if (req_op(req) == REQ_OP_WRITE_SAME && !blk_write_same_mergeable(req->bio, next->bio)) return NULL; /* * Don't allow merge of different write hints, or for a hint with * non-hint IO. */ if (req->write_hint != next->write_hint) return NULL; /* * If we are allowed to merge, then append bio list * from next to rq and release next. merge_requests_fn * will have updated segment counts, update sector * counts here. Handle DISCARDs separately, as they * have separate settings. */ if (req_op(req) == REQ_OP_DISCARD) { if (!req_attempt_discard_merge(q, req, next)) return NULL; } else if (!ll_merge_requests_fn(q, req, next)) return NULL; /* * If failfast settings disagree or any of the two is already * a mixed merge, mark both as mixed before proceeding. This * makes sure that all involved bios have mixable attributes * set properly. */ if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || (req->cmd_flags & REQ_FAILFAST_MASK) != (next->cmd_flags & REQ_FAILFAST_MASK)) { blk_rq_set_mixed_merge(req); blk_rq_set_mixed_merge(next); } /* * At this point we have either done a back merge * or front merge. We need the smaller start_time of * the merged requests to be the current request * for accounting purposes. */ if (time_after(req->start_time, next->start_time)) req->start_time = next->start_time; req->biotail->bi_next = next->bio; req->biotail = next->biotail; req->__data_len += blk_rq_bytes(next); if (req_op(req) != REQ_OP_DISCARD) elv_merge_requests(q, req, next); /* * 'next' is going away, so update stats accordingly */ blk_account_io_merge(next); blk_queue_io_vol_merge(q, next->cmd_flags, -1, 0); req->ioprio = ioprio_best(req->ioprio, next->ioprio); if (blk_rq_cpu_valid(next)) req->cpu = next->cpu; /* * ownership of bio passed from next to req, return 'next' for * the caller to free */ next->bio = NULL; return next; } struct request *attempt_back_merge(struct request_queue *q, struct request *rq) { struct request *next = elv_latter_request(q, rq); if (next) return attempt_merge(q, rq, next); return NULL; } struct request *attempt_front_merge(struct request_queue *q, struct request *rq) { struct request *prev = elv_former_request(q, rq); if (prev) return attempt_merge(q, prev, rq); return NULL; } int blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next) { struct elevator_queue *e = q->elevator; struct request *free; if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn) if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next)) return 0; free = attempt_merge(q, rq, next); if (free) { __blk_put_request(q, free); return 1; } return 0; } bool blk_rq_merge_ok(struct request *rq, struct bio *bio) { if (!rq_mergeable(rq) || !bio_mergeable(bio)) return false; if (req_op(rq) != bio_op(bio)) return false; /* different data direction or already started, don't merge */ if (bio_data_dir(bio) != rq_data_dir(rq)) return false; /* must be same device and not a special request */ if (rq->rq_disk != bio->bi_disk || req_no_special_merge(rq)) return false; /* only merge integrity protected bio into ditto rq */ if (blk_integrity_merge_bio(rq->q, rq, bio) == false) return false; /* must be using the same buffer */ if (req_op(rq) == REQ_OP_WRITE_SAME && !blk_write_same_mergeable(rq->bio, bio)) return false; /* * Don't allow merge of different write hints, or for a hint with * non-hint IO. */ if (rq->write_hint != bio->bi_write_hint) return false; /* Only merge if the crypt contexts are compatible */ if (!bio_crypt_ctx_compatible(bio, rq->bio)) return false; return true; } enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) { if (req_op(rq) == REQ_OP_DISCARD && queue_max_discard_segments(rq->q) > 1) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) return ELEVATOR_BACK_MERGE; else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) return ELEVATOR_FRONT_MERGE; return ELEVATOR_NO_MERGE; }