/* * pci.c -- PCI bus support for ColdFire processors * * (C) Copyright 2012, Greg Ungerer * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * Memory and IO mappings. We use a 1:1 mapping for local host memory to * PCI bus memory (no reason not to really). IO space doesn't matter, we * always use access functions for that. The device configuration space is * mapped over the IO map space when we enable it in the PCICAR register. */ #define PCI_MEM_PA 0xf0000000 /* Host physical address */ #define PCI_MEM_BA 0xf0000000 /* Bus physical address */ #define PCI_MEM_SIZE 0x08000000 /* 128 MB */ #define PCI_MEM_MASK (PCI_MEM_SIZE - 1) #define PCI_IO_PA 0xf8000000 /* Host physical address */ #define PCI_IO_BA 0x00000000 /* Bus physical address */ #define PCI_IO_SIZE 0x00010000 /* 64k */ #define PCI_IO_MASK (PCI_IO_SIZE - 1) static struct pci_bus *rootbus; static unsigned long iospace; /* * We need to be carefull probing on bus 0 (directly connected to host * bridge). We should only access the well defined possible devices in * use, ignore aliases and the like. */ static unsigned char mcf_host_slot2sid[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static unsigned char mcf_host_irq[] = { 0, 69, 69, 71, 71, }; static inline void syncio(void) { /* The ColdFire "nop" instruction waits for all bus IO to complete */ __asm__ __volatile__ ("nop"); } /* * Configuration space access functions. Configuration space access is * through the IO mapping window, enabling it via the PCICAR register. */ static unsigned long mcf_mk_pcicar(int bus, unsigned int devfn, int where) { return (bus << PCICAR_BUSN) | (devfn << PCICAR_DEVFNN) | (where & 0xfc); } static int mcf_pci_readconfig(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { unsigned long addr; *value = 0xffffffff; if (bus->number == 0) { if (mcf_host_slot2sid[PCI_SLOT(devfn)] == 0) return PCIBIOS_SUCCESSFUL; } syncio(); addr = mcf_mk_pcicar(bus->number, devfn, where); __raw_writel(PCICAR_E | addr, PCICAR); addr = iospace + (where & 0x3); switch (size) { case 1: *value = __raw_readb(addr); break; case 2: *value = le16_to_cpu(__raw_readw(addr)); break; default: *value = le32_to_cpu(__raw_readl(addr)); break; } syncio(); __raw_writel(0, PCICAR); return PCIBIOS_SUCCESSFUL; } static int mcf_pci_writeconfig(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { unsigned long addr; if (bus->number == 0) { if (mcf_host_slot2sid[PCI_SLOT(devfn)] == 0) return PCIBIOS_SUCCESSFUL; } syncio(); addr = mcf_mk_pcicar(bus->number, devfn, where); __raw_writel(PCICAR_E | addr, PCICAR); addr = iospace + (where & 0x3); switch (size) { case 1: __raw_writeb(value, addr); break; case 2: __raw_writew(cpu_to_le16(value), addr); break; default: __raw_writel(cpu_to_le32(value), addr); break; } syncio(); __raw_writel(0, PCICAR); return PCIBIOS_SUCCESSFUL; } static struct pci_ops mcf_pci_ops = { .read = mcf_pci_readconfig, .write = mcf_pci_writeconfig, }; /* * IO address space access functions. Pretty strait forward, these are * directly mapped in to the IO mapping window. And that is mapped into * virtual address space. */ u8 mcf_pci_inb(u32 addr) { return __raw_readb(iospace + (addr & PCI_IO_MASK)); } EXPORT_SYMBOL(mcf_pci_inb); u16 mcf_pci_inw(u32 addr) { return le16_to_cpu(__raw_readw(iospace + (addr & PCI_IO_MASK))); } EXPORT_SYMBOL(mcf_pci_inw); u32 mcf_pci_inl(u32 addr) { return le32_to_cpu(__raw_readl(iospace + (addr & PCI_IO_MASK))); } EXPORT_SYMBOL(mcf_pci_inl); void mcf_pci_insb(u32 addr, u8 *buf, u32 len) { for (; len; len--) *buf++ = mcf_pci_inb(addr); } EXPORT_SYMBOL(mcf_pci_insb); void mcf_pci_insw(u32 addr, u16 *buf, u32 len) { for (; len; len--) *buf++ = mcf_pci_inw(addr); } EXPORT_SYMBOL(mcf_pci_insw); void mcf_pci_insl(u32 addr, u32 *buf, u32 len) { for (; len; len--) *buf++ = mcf_pci_inl(addr); } EXPORT_SYMBOL(mcf_pci_insl); void mcf_pci_outb(u8 v, u32 addr) { __raw_writeb(v, iospace + (addr & PCI_IO_MASK)); } EXPORT_SYMBOL(mcf_pci_outb); void mcf_pci_outw(u16 v, u32 addr) { __raw_writew(cpu_to_le16(v), iospace + (addr & PCI_IO_MASK)); } EXPORT_SYMBOL(mcf_pci_outw); void mcf_pci_outl(u32 v, u32 addr) { __raw_writel(cpu_to_le32(v), iospace + (addr & PCI_IO_MASK)); } EXPORT_SYMBOL(mcf_pci_outl); void mcf_pci_outsb(u32 addr, const u8 *buf, u32 len) { for (; len; len--) mcf_pci_outb(*buf++, addr); } EXPORT_SYMBOL(mcf_pci_outsb); void mcf_pci_outsw(u32 addr, const u16 *buf, u32 len) { for (; len; len--) mcf_pci_outw(*buf++, addr); } EXPORT_SYMBOL(mcf_pci_outsw); void mcf_pci_outsl(u32 addr, const u32 *buf, u32 len) { for (; len; len--) mcf_pci_outl(*buf++, addr); } EXPORT_SYMBOL(mcf_pci_outsl); /* * Initialize the PCI bus registers, and scan the bus. */ static struct resource mcf_pci_mem = { .name = "PCI Memory space", .start = PCI_MEM_PA, .end = PCI_MEM_PA + PCI_MEM_SIZE - 1, .flags = IORESOURCE_MEM, }; static struct resource mcf_pci_io = { .name = "PCI IO space", .start = 0x400, .end = 0x10000 - 1, .flags = IORESOURCE_IO, }; static struct resource busn_resource = { .name = "PCI busn", .start = 0, .end = 255, .flags = IORESOURCE_BUS, }; /* * Interrupt mapping and setting. */ static int mcf_pci_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int sid; sid = mcf_host_slot2sid[slot]; if (sid) return mcf_host_irq[sid]; return 0; } static int __init mcf_pci_init(void) { struct pci_host_bridge *bridge; int ret; bridge = pci_alloc_host_bridge(0); if (!bridge) return -ENOMEM; pr_info("ColdFire: PCI bus initialization...\n"); /* Reset the external PCI bus */ __raw_writel(PCIGSCR_RESET, PCIGSCR); __raw_writel(0, PCITCR); request_resource(&iomem_resource, &mcf_pci_mem); request_resource(&iomem_resource, &mcf_pci_io); /* Configure PCI arbiter */ __raw_writel(PACR_INTMPRI | PACR_INTMINTE | PACR_EXTMPRI(0x1f) | PACR_EXTMINTE(0x1f), PACR); /* Set required multi-function pins for PCI bus use */ __raw_writew(0x3ff, MCFGPIO_PAR_PCIBG); __raw_writew(0x3ff, MCFGPIO_PAR_PCIBR); /* Set up config space for local host bus controller */ __raw_writel(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE, PCISCR); __raw_writel(PCICR1_LT(32) | PCICR1_CL(8), PCICR1); __raw_writel(0, PCICR2); /* * Set up the initiator windows for memory and IO mapping. * These give the CPU bus access onto the PCI bus. One for each of * PCI memory and IO address spaces. */ __raw_writel(WXBTAR(PCI_MEM_PA, PCI_MEM_BA, PCI_MEM_SIZE), PCIIW0BTAR); __raw_writel(WXBTAR(PCI_IO_PA, PCI_IO_BA, PCI_IO_SIZE), PCIIW1BTAR); __raw_writel(PCIIWCR_W0_MEM /*| PCIIWCR_W0_MRDL*/ | PCIIWCR_W0_E | PCIIWCR_W1_IO | PCIIWCR_W1_E, PCIIWCR); /* * Set up the target windows for access from the PCI bus back to the * CPU bus. All we need is access to system RAM (for mastering). */ __raw_writel(CONFIG_RAMBASE, PCIBAR1); __raw_writel(CONFIG_RAMBASE | PCITBATR1_E, PCITBATR1); /* Keep a virtual mapping to IO/config space active */ iospace = (unsigned long) ioremap(PCI_IO_PA, PCI_IO_SIZE); if (iospace == 0) { pci_free_host_bridge(bridge); return -ENODEV; } pr_info("Coldfire: PCI IO/config window mapped to 0x%x\n", (u32) iospace); /* Turn of PCI reset, and wait for devices to settle */ __raw_writel(0, PCIGSCR); set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(200)); pci_add_resource(&bridge->windows, &ioport_resource); pci_add_resource(&bridge->windows, &iomem_resource); pci_add_resource(&bridge->windows, &busn_resource); bridge->dev.parent = NULL; bridge->sysdata = NULL; bridge->busnr = 0; bridge->ops = &mcf_pci_ops; bridge->swizzle_irq = pci_common_swizzle; bridge->map_irq = mcf_pci_map_irq; ret = pci_scan_root_bus_bridge(bridge); if (ret) { pci_free_host_bridge(bridge); return ret; } rootbus = bridge->bus; rootbus->resource[0] = &mcf_pci_io; rootbus->resource[1] = &mcf_pci_mem; pci_bus_size_bridges(rootbus); pci_bus_assign_resources(rootbus); pci_bus_add_devices(rootbus); return 0; } subsys_initcall(mcf_pci_init);