So far the return code of barrier_all_devices() is ignored, which
means that errors are ignored. The result can be a corrupt
filesystem which is not consistent.
This commit adds code to evaluate the return code of
barrier_all_devices(). The normal btrfs_error() mechanism is used to
switch the filesystem into read-only mode when errors are detected.
In order to decide whether barrier_all_devices() should return
error or success, the number of disks that are allowed to fail the
barrier submission is calculated. This calculation accounts for the
worst RAID level of metadata, system and data. If single, dup or
RAID0 is in use, a single disk error is already considered to be
fatal. Otherwise a single disk error is tolerated.
The calculation of the number of disks that are tolerated to fail
the barrier operation is performed when the filesystem gets mounted,
when a balance operation is started and finished, and when devices
are added or removed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Call btrfs_abort_transaction as early as possible when an error
condition is detected, that way the line number reported is useful
and we're not clueless anymore which error path led to the abort.
Signed-off-by: David Sterba <dsterba@suse.cz>
Commit 442a4f6308 added btrfs device
statistic counters for detected IO and checksum errors to Linux 3.5.
The statistic part that counts checksum errors in
end_bio_extent_readpage() can cause a BUG() in a subfunction:
"kernel BUG at fs/btrfs/volumes.c:3762!"
That part is reverted with the current patch.
However, the counting of checksum errors in the scrub context remains
active, and the counting of detected IO errors (read, write or flush
errors) in all contexts remains active.
Cc: stable <stable@vger.kernel.org> # 3.5
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We need a barrir before calling waitqueue_active otherwise we will miss
wakeups. So in places that do atomic_dec(); then atomic_read() use
atomic_dec_return() which imply a memory barrier (see memory-barriers.txt)
and then add an explicit memory barrier everywhere else that need them.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we close devices we add back empty devices for some reason that escapes
me. In the case of a missing dev we don't allocate an rcu_string for it's
name, so check to see if the device has a name and if it doesn't don't
bother strdup()'ing it. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The '->write_super' superblock method is gone, and this patch removes all the
references to 'write_super' from btrfs.
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Code is added to suppress the I/O stats printing at mount time if all
statistic values are zero.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
People complained about the annoying kernel log message
"btrfs: no dev_stats entry found ... (OK on first mount after mkfs)"
everytime a filesystem is mounted for the first time after running
mkfs. Since the distribution of the btrfs-progs is not synchronized
to the kernel version, mkfs like it is now will be used also in the
future. Then this message is not useful to find errors, it is just
annoying. This commit removes the printk().
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
This will be used in conjunction with btrfs device ready <dev>. This is
needed for initrd's to have a nice and lightweight way to tell if all of the
devices needed for a file system are in the cache currently. This keeps
them from having to do mount+sleep loops waiting for devices to show up.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Commit c11d2c236c (Btrfs: add ioctl to get and reset the device
stats) introduced two ioctls doing almost the same thing distinguished
by just the ioctl number which encodes "do reset after read". I have
suggested
http://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg16604.html
to implement it via the ioctl args. This hasn't happen, and I think we
should use a more clean way to pass flags and should not waste ioctl
numbers.
CC: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: David Sterba <dsterba@suse.cz>
This introduces btrfs_resume_balance_async(), which, given that
restriper state was recovered earlier by btrfs_recover_balance(),
resumes balance in btrfs-balance kthread.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Fix a bug that triggered asserts in btrfs_balance() in both normal and
resume modes -- restriper state was not properly restored on read-only
mounts. This factors out resuming code from btrfs_restore_balance(),
which is now also called earlier in the mount sequence to avoid the
problem of some early writes getting the old profile.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
It is normal behaviour of the low level btrfs function btrfs_map_bio()
to complete a bio with -EIO if the device is missing, instead of just
preventing the bio creation in an earlier step.
This used to cause I/O statistic read error increments and annoying
printk_ratelimited messages. This commit fixes the issue.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reported-by: Carey Underwood <cwillu@cwillu.com>
Al pointed out that we can just toss out the old name on a device and add a
new one arbitrarily, so anybody who uses device->name in printk could
possibly use free'd memory. Instead of adding locking around all of this he
suggested doing it with RCU, so I've introduced a struct rcu_string that
does just that and have gone through and protected all accesses to
device->name that aren't under the uuid_mutex with rcu_read_lock(). This
protects us and I will use it for dealing with removing the device that we
used to mount the file system in a later patch. Thanks,
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
The device statistics are written into the device tree with each
transaction commit. Only modified statistics are written.
When a filesystem is mounted, the device statistics for each involved
device are read from the device tree and used to initialize the
counters.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
An ioctl interface is added to get the device statistic counters.
A second ioctl is added to atomically get and reset these counters.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
The goal is to detect when drives start to get an increased error rate,
when drives should be replaced soon. Therefore statistic counters are
added that count IO errors (read, write and flush). Additionally, the
software detected errors like checksum errors and corrupted blocks are
counted.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reproduce:
$ mkfs.btrfs /dev/sdb7
$ mount /dev/sdb7 /mnt/btrfs -o ro
$ btrfs dev add /dev/sdb8 /mnt/btrfs
ERROR: error adding the device '/dev/sdb8' - Invalid argument
Since we mount with readonly options, and /dev/sdb7 is not a seeding one,
a readonly notification is preferred.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@redhat.com>
btrfs_map_block sets mirror_num, so that the repair code knows eventually
which device gave us the read error. For RAID10, mirror_num must be 1 or 2.
Before this fix mirror_num was incorrectly related to our stripe index.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Fix a bug, where in case we need to adjust stripe_size so that the
length of the resulting chunk is less than or equal to max_chunk_size,
DUP chunks turn out to be only half as big as they could be.
Cc: Arne Jansen <sensille@gmx.net>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
We miscalculate the length of extents we're discarding, and it leads to
an eof of device.
Reported-by: Daniel Blueman <daniel@quora.org>
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs puts the filesystem metadata into its own address space, and
somehow the block device address space isn't getting onto disk properly
before a mount. The end result is that a loop of mkfs and mounting the
filesystem will sometimes find stale or incorrect data.
This commit should fix it by sprinkling fdatawrites and invalidate_bdev
calls around. This is a short term measure to make sure it is fixed.
The block devices really should be flushed and cleaned up higher in the
stack.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If relocate of block group 0 fails with ENOSPC we end up infinitely
looping because key.offset -= 1 statement in that case brings us back to
where we started.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Generally we don't allow dup for data, but mixed chunks are special and
people seem to think this has its use cases.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Do not run sanity checks on all target profiles unless they all will be
used. This came up because alloc_profile_is_valid() is now more strict
than it used to be.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Header file is not a good place to define functions. This also moves a
call to alloc_profile_is_valid() down the stack and removes a redundant
check from __btrfs_alloc_chunk() - alloc_profile_is_valid() takes it
into account.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
"0" is a valid value for an on-disk chunk profile, but it is not a valid
extended profile. (We have a separate bit for single chunks in extended
case)
Also rename it to alloc_profile_is_valid() for clarity.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Add functions to abstract the conversion between chunk and extended
allocation profile formats and switch everybody to use them.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
A few years ago the btrfs code to support blocks lager than
the page size was disabled to fix a few corner cases in the
page cache handling. This fixes the code to properly support
large metadata blocks again.
Since current kernels will crash early and often with larger
metadata blocks, this adds an incompat bit so that older kernels
can't mount it.
This also does away with different blocksizes for nodes and leaves.
You get a single block size for all tree blocks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs currently handles most errors with BUG_ON. This patch is a work-in-
progress but aims to handle most errors other than internal logic
errors and ENOMEM more gracefully.
This iteration prevents most crashes but can run into lockups with
the page lock on occasion when the timing "works out."
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
btrfs_alloc_chunk() unconditionally BUGs on any error returned from
__finish_chunk_alloc() so there's no need for two BUG_ON lines. Remove the
one from __finish_chunk_alloc().
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
We BUG_ON() error from add_extent_mapping(), but that error looks pretty
easy to bubble back up - as far as I can tell there have not been any
permanent modifications to fs state at that point.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
The only caller of btrfs_alloc_dev_extent() is __btrfs_alloc_chunk() which
already bugs on any error returned. We can remove the BUG_ON's in
btrfs_alloc_dev_extent() then since __btrfs_alloc_chunk() will "catch" them
anyway.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
All callers of __finish_chunk_alloc() BUG_ON() return value, so it's trivial
for us to always bubble up any errors caught in __finish_chunk_alloc() to be
caught there.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
When we are setting up the mount, we close all the
devices that were not actually part of the metadata we found.
But, we don't make sure that one of those devices wasn't
fs_devices->latest_bdev, which means we can do a use after free
on the one we closed.
This updates latest_bdev as it goes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Raid array setup code creates an extent buffer in an usual way. When the
PAGE_CACHE_SIZE is > super block size, the extent pages are not marked
up-to-date, which triggers a WARN_ON in the following
write_extent_buffer call. Add an explicit up-to-date call to silence the
warning.
Signed-off-by: David Sterba <dsterba@suse.cz>
system chunks by default are very small. This makes them slightly
larger and also fixes the conditional checks to make sure we don't
allocate a billion of them at once.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Implement an ioctl for canceling restriper. Currently we wait until
relocation of the current block group is finished, in future this can be
done by triggering a commit. Balance item is deleted and no memory
about the interrupted balance is kept.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Implement an ioctl for pausing restriper. This pauses the relocation,
but balance is still considered to be "in progress": balance item is
not deleted, other volume operations cannot be started, etc. If paused
in the middle of profile changing operation we will continue making
allocations with the target profile.
Add a hook to close_ctree() to pause restriper and free its data
structures on unmount. (It's safe to unmount when restriper is in
"paused" state, we will resume with the same parameters on the next
mount)
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Since restriper kthread starts involuntarily on mount and can suck cpu
and memory bandwidth add a mount option to forcefully skip it. The
restriper in that case hangs around in paused state and can be resumed
from userspace when it's convenient.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
On mount, if balance item is found, resume balance in a separate
kernel thread.
Try to be smart to continue roughly where previous balance (or convert)
was interrupted. For chunk types that were being converted to some
profile we turn on soft convert, in case of a simple balance we turn on
usage filter and relocate only less-than-90%-full chunks of that type.
These are just heuristics but they help quite a bit, and can be improved
in future.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Introduce a new btree objectid for storing balance item. The reason is
to be able to resume restriper after a crash with the same parameters.
Balance item has a very high objectid and goes into tree of tree roots.
The key for the new item is as follows:
[ BTRFS_BALANCE_OBJECTID ; BTRFS_BALANCE_ITEM_KEY ; 0 ]
Older kernels simply ignore it so it's safe to mount with an older
kernel and then go back to the newer one.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
When doing convert from one profile to another if soft mode is on
restriper won't touch chunks that already have the profile we are
converting to. This is useful if e.g. half of the FS was converted
earlier.
The soft mode switch is (like every other filter) per-type. This means
that we can convert for example meta chunks the "hard" way while
converting data chunks selectively with soft switch.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Profile changing is done by launching a balance with
BTRFS_BALANCE_CONVERT bits set and target fields of respective
btrfs_balance_args structs initialized. Profile reducing code in this
case will pick restriper's target profile if it's available instead of
doing a blind reduce. If target profile is not yet available it goes
back to a plain reduce.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Select chunks which have at least one byte located inside a given
[vstart, vend) virtual address space range.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>