Introduce a generic per counter interrupt throttle.
This uses the perf_counter_overflow() quick disable to throttle a specific
counter when its going too fast when a pmu->unthrottle() method is provided
which can undo the quick disable.
Power needs to implement both the quick disable and the unthrottle method.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525153931.703093461@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Ingo noticed that cpu counters had 0 context switches, even though
there was plenty scheduling on the cpu.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525124600.419025548@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fail fork() when we fail inheritance for some reason (-ENOMEM most likely).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525124600.324656474@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Paul noted that the new ptcrl() didn't work on child counters.
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525124600.203151469@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Initialize a task's perfcounters (inherit from parent, etc.) after
the child task's scheduler fields have been initialized already.
[ Impact: cleanup ]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The problem occurs when async_synchronize_full_domain() is called when
the async_pending list is not empty. This will cause lowest_running()
to return the cookie of the first entry on the async_pending list, which
might be nothing at all to do with the domain being asked for and thus
cause the domain synchronization to wait for an unrelated domain. This
can cause a deadlock if domain synchronization is used from one domain
to wait for another.
Fix by running over the async_pending list to see if any pending items
actually belong to our domain (and return their cookies if they do).
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We shouldn't hold dpm_list_mtx while executing
[disable|enable]_nonboot_cpus(), because theoretically this may lead
to a deadlock as shown by the following example (provided by Johannes
Berg):
CPU 3 CPU 2 CPU 1
suspend/hibernate
something:
rtnl_lock() device_pm_lock()
-> mutex_lock(&dpm_list_mtx)
mutex_lock(&dpm_list_mtx)
linkwatch_work
-> rtnl_lock()
disable_nonboot_cpus()
-> flush CPU 3 workqueue
Fortunately, device drivers are supposed to stop any activities that
might lead to the registration of new device objects way before
disable_nonboot_cpus() is called, so it shouldn't be necessary to
hold dpm_list_mtx over the entire late part of device suspend and
early part of device resume.
Thus, during the late suspend and the early resume of devices acquire
dpm_list_mtx only when dpm_list is going to be traversed and release
it right after that.
This patch is reported to fix the regressions tracked as
http://bugzilla.kernel.org/show_bug.cgi?id=13245.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Reported-by: Miles Lane <miles.lane@gmail.com>
Tested-by: Ming Lei <tom.leiming@gmail.com>
In a default 'perf top' run the tool will create a counter for
each online CPU. With enough CPUs this will eventually exhaust
the default limit.
So scale it up with the number of online CPUs.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
now that pctrl() no longer disables other people's counters,
remove the PMU cache code that deals with that.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163013.032998331@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of en/dis-abling all counters acting on a particular
task, en/dis- able all counters we created.
[ v2: fix crash on first counter enable ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.916937244@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use perf_counter_remove_from_context() to remove counters from
the context.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.796275849@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Ensure we're consistent with the context locks.
context->mutex
context->lock
list_{add,del}_counter();
so that either lock is sufficient to stabilize the context.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.618790733@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
s/counter->mutex/counter->child_mutex/ and make sure its only
used to protect child_list.
The usage in __perf_counter_exit_task() doesn't appear to be
problematic since ctx->mutex also covers anything related to fd
tear-down.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.533186528@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We call perf_adjust_freq() from perf_counter_task_tick() which
is is called under the rq->lock causing lock recursion.
However, it's no longer required to be called under the
rq->lock, so remove it from under it.
Also, fix up some related comments.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.476197912@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Presently non-legacy IRQs have their irq_desc allocated with
kzalloc_node(). This assumes that all callers of irq_to_desc_node_alloc()
will be sufficiently late in the boot process that kmalloc is available.
While porting sparseirq support to sh this blew up immediately, as at the
time that we register the CPU's interrupt vector map only bootmem is
available. Check slab_is_available() to work out which path to use.
[ Impact: fix SH early boot crash with sparseirq enabled ]
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
LKML-Reference: <20090522014008.GA2806@linux-sh.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When monitoring a process and its descendants with a set of inherited
counters, we can often get the situation in a context switch where
both the old (outgoing) and new (incoming) process have the same set
of counters, and their values are ultimately going to be added together.
In that situation it doesn't matter which set of counters are used to
count the activity for the new process, so there is really no need to
go through the process of reading the hardware counters and updating
the old task's counters and then setting up the PMU for the new task.
This optimizes the context switch in this situation. Instead of
scheduling out the perf_counter_context for the old task and
scheduling in the new context, we simply transfer the old context
to the new task and keep using it without interruption. The new
context gets transferred to the old task. This means that both
tasks still have a valid perf_counter_context, so no special case
is introduced when the old task gets scheduled in again, either on
this CPU or another CPU.
The equivalence of contexts is detected by keeping a pointer in
each cloned context pointing to the context it was cloned from.
To cope with the situation where a context is changed by adding
or removing counters after it has been cloned, we also keep a
generation number on each context which is incremented every time
a context is changed. When a context is cloned we take a copy
of the parent's generation number, and two cloned contexts are
equivalent only if they have the same parent and the same
generation number. In order that the parent context pointer
remains valid (and is not reused), we increment the parent
context's reference count for each context cloned from it.
Since we don't have individual fds for the counters in a cloned
context, the only thing that can make two clones of a given parent
different after they have been cloned is enabling or disabling all
counters with prctl. To account for this, we keep a count of the
number of enabled counters in each context. Two contexts must have
the same number of enabled counters to be considered equivalent.
Here are some measurements of the context switch time as measured with
the lat_ctx benchmark from lmbench, comparing the times obtained with
and without this patch series:
-----Unmodified----- With this patch series
Counters: none 2 HW 4H+4S none 2 HW 4H+4S
2 processes:
Average 3.44 6.45 11.24 3.12 3.39 3.60
St dev 0.04 0.04 0.13 0.05 0.17 0.19
8 processes:
Average 6.45 8.79 14.00 5.57 6.23 7.57
St dev 1.27 1.04 0.88 1.42 1.46 1.42
32 processes:
Average 5.56 8.43 13.78 5.28 5.55 7.15
St dev 0.41 0.47 0.53 0.54 0.57 0.81
The numbers are the mean and standard deviation of 20 runs of
lat_ctx. The "none" columns are lat_ctx run directly without any
counters. The "2 HW" columns are with lat_ctx run under perfstat,
counting cycles and instructions. The "4H+4S" columns are lat_ctx run
under perfstat with 4 hardware counters and 4 software counters
(cycles, instructions, cache references, cache misses, task
clock, context switch, cpu migrations, and page faults).
[ Impact: performance optimization of counter context-switches ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18966.10666.517218.332164@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This replaces the struct perf_counter_context in the task_struct with
a pointer to a dynamically allocated perf_counter_context struct. The
main reason for doing is this is to allow us to transfer a
perf_counter_context from one task to another when we do lazy PMU
switching in a later patch.
This has a few side-benefits: the task_struct becomes a little smaller,
we save some memory because only tasks that have perf_counters attached
get a perf_counter_context allocated for them, and we can remove the
inclusion of <linux/perf_counter.h> in sched.h, meaning that we don't
end up recompiling nearly everything whenever perf_counter.h changes.
The perf_counter_context structures are reference-counted and freed
when the last reference is dropped. A context can have references
from its task and the counters on its task. Counters can outlive the
task so it is possible that a context will be freed well after its
task has exited.
Contexts are allocated on fork if the parent had a context, or
otherwise the first time that a per-task counter is created on a task.
In the latter case, we set the context pointer in the task struct
locklessly using an atomic compare-and-exchange operation in case we
raced with some other task in creating a context for the subject task.
This also removes the task pointer from the perf_counter struct. The
task pointer was not used anywhere and would make it harder to move a
context from one task to another. Anything that needed to know which
task a counter was attached to was already using counter->ctx->task.
The __perf_counter_init_context function moves up in perf_counter.c
so that it can be called from find_get_context, and now initializes
the refcount, but is otherwise unchanged.
We were potentially calling list_del_counter twice: once from
__perf_counter_exit_task when the task exits and once from
__perf_counter_remove_from_context when the counter's fd gets closed.
This adds a check in list_del_counter so it doesn't do anything if
the counter has already been removed from the lists.
Since perf_counter_task_sched_in doesn't do anything if the task doesn't
have a context, and leaves cpuctx->task_ctx = NULL, this adds code to
__perf_install_in_context to set cpuctx->task_ctx if necessary, i.e. in
the case where the current task adds the first counter to itself and
thus creates a context for itself.
This also adds similar code to __perf_counter_enable to handle a
similar situation which can arise when the counters have been disabled
using prctl; that also leaves cpuctx->task_ctx = NULL.
[ Impact: refactor counter context management to prepare for new feature ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18966.10075.781053.231153@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
register_module_notifier() returns zero in the success case.
So fix the inverted fail case check in trace events modules
handler.
[ Impact: fix spurious warning on ftrace initialization]
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Avoid a function call for !group counters by directly calling the counter
function.
[ Impact: micro-optimize the code ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090520102553.511933670@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently we call hrtimer_cancel() unconditionally on disable of time based
software counters. Avoid when possible.
[ Impact: micro-optimize the code ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090520102553.388185031@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For the dynamic irq_period code, log whenever we change the period so that
analyzing code can normalize the event flow.
[ Impact: add new feature to allow more precise profiling ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090520102553.298769743@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of disabling RR scheduling of the counters, use a different list
that does not get rotated to iterate the counters on inheritance.
[ Impact: cleanup, optimization ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090520102553.237504544@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If the waiter has been requeued to the outer PI futex and is
interrupted by a signal and the thread handles the signal then
ERESTART_RESTARTBLOCK is changed to EINTR and the restart block is
discarded. That way we return an unexcpected EINTR to user space
instead of ending up in futex_lock_pi_restart.
But we do not need to restart the syscall because we know that the
condition has changed since we have been requeued. If we would simply
restart the syscall then we would drop out via the comparison of the
user space value with EWOULDBLOCK.
The user space side needs to handle EWOULDBLOCK anyway as the
enqueueing on the inner futex can race with a requeue/wake. So we can
simply return EWOULDBLOCK to user space which also signals that we did
not take the outer futex and let user space handle it in the same way
it has to handle the requeue/wake race.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The futex_wait_requeue_pi op should restart unconditionally like
futex_lock_pi. The user of that function e.g. pthread_cond_wait can
not be interrupted so we do not care about the SA_RESTART flag of the
signal. Clean up the FIXMEs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Context rotation should not occur when we are in the middle of
walking the counter list when inheriting counters ...
[ Impact: fix occasionally incorrect perf stat results ]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix counter lifetime bugs which explain the crashes reported by
Marcelo Tosatti and Arnaldo Carvalho de Melo.
The new rule is: flushing + freeing is only done for a task's
own counters, never for other tasks.
[ Impact: fix crashes/lockups with inherited counters ]
Reported-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Reported-by: Marcelo Tosatti <mtosatti@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The futex code installs a read only mapping via get_user_pages_fast()
even if the futex op function has to modify user space data. The
eventual fault was fixed up by futex_handle_fault() which walked the
VMA with mmap_sem held.
After the cleanup patches which removed the mmap_sem dependency of the
futex code commit 4dc5b7a36a49eff97050894cf1b3a9a02523717 (futex:
clean up fault logic) removed the private VMA walk logic from the
futex code. This change results in a stale RO mapping which is not
fixed up.
Instead of reintroducing the previous fault logic we set up the
mapping in get_user_pages_fast() read/write for all operations which
modify user space data. Also handle private futexes in the same way
and make the current unconditional access_ok(VERIFY_WRITE) depend on
the futex op.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
debugfs directory entries for devices are not removed on some
of the failure pathes in do_blk_trace_setup().
One way to reproduce is to start blktrace on multiple devices
with insufficient Vmalloc space: Devices will fail with
a message like this:
BLKTRACESETUP(2) /dev/sdu failed: 5/Input/output error
If so, the respective entries in debugfs
(e.g. /sys/kernel/debug/block/sdu) will remain and subsequent
attempts to start blktrace on the respective devices will not
succeed due to existing directories.
[ Impact: fix /debug/tracing file cleanup corner case ]
Signed-off-by: Stefan Raspl <stefan.raspl@linux.vnet.ibm.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
LKML-Reference: <4A1266CC.5040801@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Properly document the variable-size structure tricks we are doing
wrt. struct sched_group and sched_domain, and use the field[0] GCC
extension instead of defining a vla array.
Dont use unions for this, as pointed out by Linus.
[ Impact: cleanup, un-confuse Sparse and LLVM ]
Reported-by: Jeff Garzik <jeff@garzik.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <alpine.LFD.2.01.0905180850110.3301@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
return zero should be correct, so fix it.
[ Impact: eliminate incorrect syslog message ]
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: rostedt@goodmis.org
LKML-Reference: <1242545498-7285-1-git-send-email-tom.leiming@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Flushing counters in __exit_signal() with irqs disabled is not
a good idea as perf_counter_exit_task() acquires mutexes. So
flush it before acquiring the tasklist lock.
(Note, we still need a fix for when the PID has been unhashed.)
[ Impact: fix crash with inherited counters ]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clean up code that open-coded the list_{add,del}_counter() code in
__perf_counter_exit_task() which consequently diverged. This could
lead to software counter crashes.
Also, fold the ctx->nr_counter inc/dec into those functions and clean
up some of the related code.
[ Impact: fix potential sw counter crash, cleanup ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Ian Campbell noticed that since "Eliminate thousands of warnings with
gcc 3.2 build" (commit 57adc4d2db) all
WARN_ON()'s currently appear to come from warn_slowpath_null(), eg:
WARNING: at kernel/softirq.c:143 warn_slowpath_null+0x1c/0x20()
because now that warn_slowpath_null() is in the call path, the
__builtin_return_address(0) returns that, rather than the place that
caused the warning.
Fix this by splitting up the warn_slowpath_null/fmt cases differently,
using a common helper function, and getting the return address in the
right place. This also happens to avoid the unnecessary stack usage for
the non-stdargs case, and just generally cleans things up.
Make the function name printout use %pS while at it.
Cc: Ian Campbell <ian.campbell@citrix.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check the return value of sysdev_suspend(). I think this was a typo.
Without this change, the following "if" check is always false.
I also changed the error message so it's distinguishable from the
similar message a few lines above.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
At present the values we put in overflow events for the misc
flags indicating processor mode and the instruction pointer are
obtained using the standard user_mode() and
instruction_pointer() functions. Those functions tell you where
the performance monitor interrupt was taken, which might not be
exactly where the counter overflow occurred, for example
because interrupts were disabled at the point where the
overflow occurred, or because the processor had many
instructions in flight and chose to complete some more
instructions beyond the one that caused the counter overflow.
Some architectures (e.g. powerpc) can supply more precise
information about where the counter overflow occurred and the
processor mode at that point. This introduces new functions,
perf_misc_flags() and perf_instruction_pointer(), which arch
code can override to provide more precise information if
available. They have default implementations which are
identical to the existing code.
This also adds a new misc flag value,
PERF_EVENT_MISC_HYPERVISOR, for the case where a counter
overflow occurred in the hypervisor. We encode the processor
mode in the 2 bits previously used to indicate user or kernel
mode; the values for user and kernel mode are unchanged and
hypervisor mode is indicated by both bits being set.
[ Impact: generalize perfcounter core facilities ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18956.1272.818511.561835@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
avenrun is an rough estimate so we don't have to worry about
consistency of the three avenrun values. Remove the xtime lock
dependency and provide a function to scale the values. Cleanup the
users.
[ Impact: cleanup ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Dimitri Sivanich noticed that xtime_lock is held write locked across
calc_load() which iterates over all online CPUs. That can cause long
latencies for xtime_lock readers on large SMP systems.
The load average calculation is an rough estimate anyway so there is
no real need to protect the readers vs. the update. It's not a problem
when the avenrun array is updated while a reader copies the values.
Instead of iterating over all online CPUs let the scheduler_tick code
update the number of active tasks shortly before the avenrun update
happens. The avenrun update itself is handled by the CPU which calls
do_timer().
[ Impact: reduce xtime_lock write locked section ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Instead of specifying the irq_period for a counter, provide a target interrupt
frequency and dynamically adapt the irq_period to match this frequency.
[ Impact: new perf-counter attribute/feature ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <20090515132018.646195868@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of a per-process mlock gift for perf-counters, use a
per-user gift so that there is less of a DoS potential.
[ Impact: allow less worst-case unprivileged memory consumption ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <20090515132018.496182835@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that ACPI idle doesn't use it anymore, remove the exports.
[ Impact: remove dead code/data ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <20090515132018.429826617@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The waitqueue which is used in struct futex_q is a leftover from the
futexfd implementation. There is no need to use a waitqueue at all, as
the waiting task is the only user of it. The waitqueue just adds
additional locking and a loop in the wake up path which both can be
avoided.
We have already a task reference in struct futex_q which is used for
PI futexes. Use it for normal futexes as well and just wake up the
task directly.
The logic of signalling the futex wakeup via setting q->lock_ptr to
NULL is kept with the difference that we set it NULL before doing the
wakeup. This opens an exit race window vs. a non futex wake up of the
to be woken up task, which we prevent with get_task_struct /
put_task_struct on the waiter.
[ Impact: simplification ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 79e539453b introduced a
regression where you cannot use sysrq 'g' to enter kgdb. The solution
is to move the intel fb sysrq over to V for video instead of G for
graphics. The SMP VOYAGER code to register for the sysrq-v is not
anywhere to be found in the mainline kernel, so the comments in the
code were cleaned up as well.
This patch also cleans up the sysrq definitions for kgdb to make it
generic for the kernel debugger, such that the sysrq 'g' can be used
in the future to enter a gdbstub or another kernel debugger.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit fafd688e4c.
Work is progressing to switch away from pdflush as the process backing
for flushing out dirty data. So it seems pointless to add more knobs
to control pdflush threads. The original author of the patch did not
have any specific use cases for adding the knobs, so we can easily
revert this before 2.6.30 to avoid having to maintain this API
forever.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The current disable/enable mechanism is:
token = hw_perf_save_disable();
...
/* do bits */
...
hw_perf_restore(token);
This works well, provided that the use nests properly. Except we don't.
x86 NMI/INT throttling has non-nested use of this, breaking things. Therefore
provide a reference counter disable/enable interface, where the first disable
disables the hardware, and the last enable enables the hardware again.
[ Impact: refactor, simplify the PMU disable/enable logic ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>