This patch simply moves files over to arch/powerpc without making
any changes to them.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The official name for BPA is now CBEA (Cell Broadband
Engine Architecture). This patch renames all occurences
of the term BPA to 'Cell' for easier recognition.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This is a bunch of mostly small fixes that are needed to get
ARCH=powerpc to compile for 64-bit. This adds setup_64.c from
arch/ppc64/kernel/setup.c and locks.c from arch/ppc64/lib/locks.c.
Signed-off-by: Paul Mackerras <paulus@samba.org>
- added typedef unsigned int __nocast gfp_t;
- replaced __nocast uses for gfp flags with gfp_t - it gives exactly
the same warnings as far as sparse is concerned, doesn't change
generated code (from gcc point of view we replaced unsigned int with
typedef) and documents what's going on far better.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
BUILD_BUG_ON(1) is asking for trouble (and getting it) when used in that
manner - dead code elimination happens after we parse it and invalid
type is invalid type, dead code or not.
It might be version-dependent, but at least 4.0.1 refuses to accept
that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
and rename it to pci.c. This also required moving
arch/ppc64/kernel/pci.h into include/asm-powerpc (called
ppc-pci.h.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Implementation of software load support for the BE iommu. This is very
different from other iommu code on ppc64, since we only do a static mapping.
The mapping is currently hardcoded but should really be read from the
firmware, but they don't set up the device nodes yet. There is a single
512MB DMA window for PCI, USB and ethernet at 0x20000000 for our RAM.
The Cell processor can put the I/O page table either in memory like
the hashed page table (hardware load) or have the operating system
write the entries into memory mapped CPU registers (software load).
I use the software load mechanism because I know that all I/O page
table entries for the amount of installed physical memory fit into
the IO TLB cache. At the point when we get machines with more than
4GB of installed memory, we can either use hardware I/O page table
access like the other platforms do or dynamically update the I/O
TLB entries when a page fault occurs in the I/O subsystem.
The software load can then use the macros that I have implemented
for the static mapping in order to do the TLB cache updates.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>