This patch modifies the way pagesets in struct zone are managed.
Each zone has a per-cpu array of pagesets. So any particular CPU has some
memory in each zone structure which belongs to itself. Even if that CPU is
not local to that zone.
So the patch relocates the pagesets for each cpu to the node that is nearest
to the cpu instead of allocating the pagesets in the (possibly remote) target
zone. This means that the operations to manage pages on remote zone can be
done with information available locally.
We play a macro trick so that non-NUMA pmachines avoid the additional
pointer chase on the page allocator fastpath.
AIM7 benchmark on a 32 CPU SGI Altix
w/o patches:
Tasks jobs/min jti jobs/min/task real cpu
1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005
100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005
200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005
300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005
400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005
500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005
600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005
700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005
800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005
900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005
1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005
with slab API changes and pageset patch:
Tasks jobs/min jti jobs/min/task real cpu
1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005
100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005
200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005
300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005
400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005
500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005
600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005
700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005
800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005
900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005
1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Shai Fultheim <Shai@Scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When early zone reclaim is turned on the LRU is scanned more frequently when a
zone is low on memory. This limits when the zone reclaim can be called by
skipping the scan if another thread (either via kswapd or sync reclaim) is
already reclaiming from the zone.
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is the core of the (much simplified) early reclaim. The goal of this
patch is to reclaim some easily-freed pages from a zone before falling back
onto another zone.
One of the major uses of this is NUMA machines. With the default allocator
behavior the allocator would look for memory in another zone, which might be
off-node, before trying to reclaim from the current zone.
This adds a zone tuneable to enable early zone reclaim. It is selected on a
per-zone basis and is turned on/off via syscall.
Adding some extra throttling on the reclaim was also required (patch
4/4). Without the machine would grind to a crawl when doing a "make -j"
kernel build. Even with this patch the System Time is higher on
average, but it seems tolerable. Here are some numbers for kernbench
runs on a 2-node, 4cpu, 8Gig RAM Altix in the "make -j" run:
wall user sys %cpu ctx sw. sleeps
---- ---- --- ---- ------ ------
No patch 1009 1384 847 258 298170 504402
w/patch, no reclaim 880 1376 667 288 254064 396745
w/patch & reclaim 1079 1385 926 252 291625 548873
These numbers are the average of 2 runs of 3 "make -j" runs done right
after system boot. Run-to-run variability for "make -j" is huge, so
these numbers aren't terribly useful except to seee that with reclaim
the benchmark still finishes in a reasonable amount of time.
I also looked at the NUMA hit/miss stats for the "make -j" runs and the
reclaim doesn't make any difference when the machine is thrashing away.
Doing a "make -j8" on a single node that is filled with page cache pages
takes 700 seconds with reclaim turned on and 735 seconds without reclaim
(due to remote memory accesses).
The simple zone_reclaim syscall program is at
http://www.bork.org/~mort/sgi/zone_reclaim.c
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements a number of smp_processor_id() cleanup ideas that
Arjan van de Ven and I came up with.
The previous __smp_processor_id/_smp_processor_id/smp_processor_id API
spaghetti was hard to follow both on the implementational and on the
usage side.
Some of the complexity arose from picking wrong names, some of the
complexity comes from the fact that not all architectures defined
__smp_processor_id.
In the new code, there are two externally visible symbols:
- smp_processor_id(): debug variant.
- raw_smp_processor_id(): nondebug variant. Replaces all existing
uses of _smp_processor_id() and __smp_processor_id(). Defined
by every SMP architecture in include/asm-*/smp.h.
There is one new internal symbol, dependent on DEBUG_PREEMPT:
- debug_smp_processor_id(): internal debug variant, mapped to
smp_processor_id().
Also, i moved debug_smp_processor_id() from lib/kernel_lock.c into a new
lib/smp_processor_id.c file. All related comments got updated and/or
clarified.
I have build/boot tested the following 8 .config combinations on x86:
{SMP,UP} x {PREEMPT,!PREEMPT} x {DEBUG_PREEMPT,!DEBUG_PREEMPT}
I have also build/boot tested x64 on UP/PREEMPT/DEBUG_PREEMPT. (Other
architectures are untested, but should work just fine.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!