Create a new socket level option to report number of queue overflows
Recently I augmented the AF_PACKET protocol to report the number of frames lost
on the socket receive queue between any two enqueued frames. This value was
exported via a SOL_PACKET level cmsg. AFter I completed that work it was
requested that this feature be generalized so that any datagram oriented socket
could make use of this option. As such I've created this patch, It creates a
new SOL_SOCKET level option called SO_RXQ_OVFL, which when enabled exports a
SOL_SOCKET level cmsg that reports the nubmer of times the sk_receive_queue
overflowed between any two given frames. It also augments the AF_PACKET
protocol to take advantage of this new feature (as it previously did not touch
sk->sk_drops, which this patch uses to record the overflow count). Tested
successfully by me.
Notes:
1) Unlike my previous patch, this patch simply records the sk_drops value, which
is not a number of drops between packets, but rather a total number of drops.
Deltas must be computed in user space.
2) While this patch currently works with datagram oriented protocols, it will
also be accepted by non-datagram oriented protocols. I'm not sure if thats
agreeable to everyone, but my argument in favor of doing so is that, for those
protocols which aren't applicable to this option, sk_drops will always be zero,
and reporting no drops on a receive queue that isn't used for those
non-participating protocols seems reasonable to me. This also saves us having
to code in a per-protocol opt in mechanism.
3) This applies cleanly to net-next assuming that commit
977750076d (my af packet cmsg patch) is reverted
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This sockopt goes in line with SO_TYPE and SO_PROTOCOL. It makes it
possible for userspace programs to pass around file descriptors — I
am referring to arguments-to-functions, but it may even work for the
fd passing over UNIX sockets — without needing to also pass the
auxiliary information (PF_INET6/IPPROTO_TCP).
Signed-off-by: Jan Engelhardt <jengelh@medozas.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Similar to SO_TYPE returning the socket type, SO_PROTOCOL allows to
retrieve the protocol used with a given socket.
I am not quite sure why we have that-many copies of socket.h, and why
the values are not the same on all arches either, but for where hex
numbers dominate, I use 0x1029 for SO_PROTOCOL as that seems to be
the next free unused number across a bunch of operating systems, or
so Google results make me want to believe. SO_PROTOCOL for others
just uses the next free Linux number, 38.
Signed-off-by: Jan Engelhardt <jengelh@medozas.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
User space can request hardware and/or software time stamping.
Reporting of the result(s) via a new control message is enabled
separately for each field in the message because some of the
fields may require additional computation and thus cause overhead.
User space can tell the different kinds of time stamps apart
and choose what suits its needs.
When a TX timestamp operation is requested, the TX skb will be cloned
and the clone will be time stamped (in hardware or software) and added
to the socket error queue of the skb, if the skb has a socket
associated with it.
The actual TX timestamp will reach userspace as a RX timestamp on the
cloned packet. If timestamping is requested and no timestamping is
done in the device driver (potentially this may use hardware
timestamping), it will be done in software after the device's
start_hard_xmit routine.
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is by far the most complex in the series. It adds a new syscall
paccept. This syscall differs from accept in that it adds (at the userlevel)
two additional parameters:
- a signal mask
- a flags value
The flags parameter can be used to set flag like SOCK_CLOEXEC. This is
imlpemented here as well. Some people argued that this is a property which
should be inherited from the file desriptor for the server but this is against
POSIX. Additionally, we really want the signal mask parameter as well
(similar to pselect, ppoll, etc). So an interface change in inevitable.
The flag value is the same as for socket and socketpair. I think diverging
here will only create confusion. Similar to the filesystem interfaces where
the use of the O_* constants differs, it is acceptable here.
The signal mask is handled as for pselect etc. The mask is temporarily
installed for the thread and removed before the call returns. I modeled the
code after pselect. If there is a problem it's likely also in pselect.
For architectures which use socketcall I maintained this interface instead of
adding a system call. The symmetry shouldn't be broken.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#ifndef __NR_paccept
# ifdef __x86_64__
# define __NR_paccept 288
# elif defined __i386__
# define SYS_PACCEPT 18
# define USE_SOCKETCALL 1
# else
# error "need __NR_paccept"
# endif
#endif
#ifdef USE_SOCKETCALL
# define paccept(fd, addr, addrlen, mask, flags) \
({ long args[6] = { \
(long) fd, (long) addr, (long) addrlen, (long) mask, 8, (long) flags }; \
syscall (__NR_socketcall, SYS_PACCEPT, args); })
#else
# define paccept(fd, addr, addrlen, mask, flags) \
syscall (__NR_paccept, fd, addr, addrlen, mask, 8, flags)
#endif
#define PORT 57392
#define SOCK_CLOEXEC O_CLOEXEC
static pthread_barrier_t b;
static void *
tf (void *arg)
{
pthread_barrier_wait (&b);
int s = socket (AF_INET, SOCK_STREAM, 0);
struct sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
sin.sin_port = htons (PORT);
connect (s, (const struct sockaddr *) &sin, sizeof (sin));
close (s);
pthread_barrier_wait (&b);
s = socket (AF_INET, SOCK_STREAM, 0);
sin.sin_port = htons (PORT);
connect (s, (const struct sockaddr *) &sin, sizeof (sin));
close (s);
pthread_barrier_wait (&b);
pthread_barrier_wait (&b);
sleep (2);
pthread_kill ((pthread_t) arg, SIGUSR1);
return NULL;
}
static void
handler (int s)
{
}
int
main (void)
{
pthread_barrier_init (&b, NULL, 2);
struct sockaddr_in sin;
pthread_t th;
if (pthread_create (&th, NULL, tf, (void *) pthread_self ()) != 0)
{
puts ("pthread_create failed");
return 1;
}
int s = socket (AF_INET, SOCK_STREAM, 0);
int reuse = 1;
setsockopt (s, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof (reuse));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
sin.sin_port = htons (PORT);
bind (s, (struct sockaddr *) &sin, sizeof (sin));
listen (s, SOMAXCONN);
pthread_barrier_wait (&b);
int s2 = paccept (s, NULL, 0, NULL, 0);
if (s2 < 0)
{
puts ("paccept(0) failed");
return 1;
}
int coe = fcntl (s2, F_GETFD);
if (coe & FD_CLOEXEC)
{
puts ("paccept(0) set close-on-exec-flag");
return 1;
}
close (s2);
pthread_barrier_wait (&b);
s2 = paccept (s, NULL, 0, NULL, SOCK_CLOEXEC);
if (s2 < 0)
{
puts ("paccept(SOCK_CLOEXEC) failed");
return 1;
}
coe = fcntl (s2, F_GETFD);
if ((coe & FD_CLOEXEC) == 0)
{
puts ("paccept(SOCK_CLOEXEC) does not set close-on-exec flag");
return 1;
}
close (s2);
pthread_barrier_wait (&b);
struct sigaction sa;
sa.sa_handler = handler;
sa.sa_flags = 0;
sigemptyset (&sa.sa_mask);
sigaction (SIGUSR1, &sa, NULL);
sigset_t ss;
pthread_sigmask (SIG_SETMASK, NULL, &ss);
sigaddset (&ss, SIGUSR1);
pthread_sigmask (SIG_SETMASK, &ss, NULL);
sigdelset (&ss, SIGUSR1);
alarm (4);
pthread_barrier_wait (&b);
errno = 0 ;
s2 = paccept (s, NULL, 0, &ss, 0);
if (s2 != -1 || errno != EINTR)
{
puts ("paccept did not fail with EINTR");
return 1;
}
close (s);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[akpm@linux-foundation.org: make it compile]
[akpm@linux-foundation.org: add sys_ni stub]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Roland McGrath <roland@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A userspace program may wish to set the mark for each packets its send
without using the netfilter MARK target. Changing the mark can be used
for mark based routing without netfilter or for packet filtering.
It requires CAP_NET_ADMIN capability.
Signed-off-by: Laszlo Attila Toth <panther@balabit.hu>
Acked-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that network timestamps use ktime_t infrastructure, we can add a new
SOL_SOCKET sockopt SO_TIMESTAMPNS.
This command is similar to SO_TIMESTAMP, but permits transmission of
a 'timespec struct' instead of a 'timeval struct' control message.
(nanosecond resolution instead of microsecond)
Control message is labelled SCM_TIMESTAMPNS instead of SCM_TIMESTAMP
A socket cannot mix SO_TIMESTAMP and SO_TIMESTAMPNS : the two modes are
mutually exclusive.
sock_recv_timestamp() became too big to be fully inlined so I added a
__sock_recv_timestamp() helper function.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
CC: linux-arch@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch implements an API whereby an application can determine the
label of its peer's Unix datagram sockets via the auxiliary data mechanism of
recvmsg.
Patch purpose:
This patch enables a security-aware application to retrieve the
security context of the peer of a Unix datagram socket. The application
can then use this security context to determine the security context for
processing on behalf of the peer who sent the packet.
Patch design and implementation:
The design and implementation is very similar to the UDP case for INET
sockets. Basically we build upon the existing Unix domain socket API for
retrieving user credentials. Linux offers the API for obtaining user
credentials via ancillary messages (i.e., out of band/control messages
that are bundled together with a normal message). To retrieve the security
context, the application first indicates to the kernel such desire by
setting the SO_PASSSEC option via getsockopt. Then the application
retrieves the security context using the auxiliary data mechanism.
An example server application for Unix datagram socket should look like this:
toggle = 1;
toggle_len = sizeof(toggle);
setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len);
recvmsg(sockfd, &msg_hdr, 0);
if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) {
cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr);
if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) &&
cmsg_hdr->cmsg_level == SOL_SOCKET &&
cmsg_hdr->cmsg_type == SCM_SECURITY) {
memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext));
}
}
sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow
a server socket to receive security context of the peer.
Testing:
We have tested the patch by setting up Unix datagram client and server
applications. We verified that the server can retrieve the security context
using the auxiliary data mechanism of recvmsg.
Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com>
Acked-by: Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!