ACL support will require supporting additional inode operations in v4
(getxattr, setxattr, listxattr). This patch allows different protocol versions
to support different inode operations by adding a file_inode_ops to the
nfs_rpc_ops (to match the existing dir_inode_ops).
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Ensure that we don't create an RPC client without checking that the server
does indeed support the RPC program + version that we are trying to set up.
This enables us to immediately return an error to "mount" if it turns out
that the server is only supporting NFSv2, when we requested NFSv3 or NFSv4.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The patch just changes the order of structure members.
Signed-off-by: Harald Welte <laforge@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for Maxim/Dallas DS1374 Real-Time Clock Chip
This change adds support for the Maxim/Dallas DS1374 RTC chip. This chip
is an I2C-based RTC that maintains a simple 32-bit binary seconds count
with battery backup support.
Signed-off-by: Randy Vinson <rvinson@mvista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch renames the new linux/i2c-sysfs.h header file to
linux/hwmon-sysfs.h. This names seems to be more appropriate since this
file defines macros and structures not related to i2c but to hardware
monitoring drivers. The patch also updates the five hardware monitoring
driver which include that header file already.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Adds conversion from VID (mV) to register value. Used by the atxp1 I2C module.
Removed uneeded switch case.
Signed-off-by: Sebastian Witt <se.witt@gmx.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Some months ago, you killed the address ranges mechanism from all
sensors i2c chip drivers (both the module parameters and the in-code
address lists). I think it was a very good move, as the ranges can
easily be replaced by individual addresses, and this allowed for
significant cleanups in the i2c core (let alone the impressive size
shrink for all these drivers).
Unfortunately you did not do the same for non-sensors i2c chip drivers.
These need the address ranges even less, so we could get rid of the
ranges here as well for another significant i2c core cleanup. Here comes
a patch which does just that. Since the process is exactly the same as
what you did for the other drivers set already, I did not split this one
in parts.
A documentation update is included.
The change saves 308 bytes in the i2c core, and an average 1382 bytes
for chip drivers which use I2C_CLIENT_INSMOD, 126 bytes for those which
do not.
This change is required if we want to merge the sensors and non-sensors
i2c code (and we want to do this).
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Index: gregkh-2.6/Documentation/i2c/writing-clients
===================================================================
1/ Must typecast int to (sector_t) before inverting or we
might not invert enough bits.
2/ When "bitmap_offset" was added to mdp_superblock_1, we didn't increase
the count of words-used (96 to 100).
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
currently, md updates all superblocks (one on each device) in series. It
waits for one write to complete before starting the next. This isn't a big
problem as superblock updates don't happen that often.
However it is neater to do it in parallel, and if the drives in the array have
gone to "sleep" after a period of idleness, then waking them is parallel is
faster (and someone else should be worrying about power drain).
Futher, we will need parallel superblock updates for a future patch which
keeps the intent-logging bitmap near the superblock.
Also remove the silly code that retired superblock updates 100 times. This
simply never made sense.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This provides an alternate to storing the bitmap in a separate file. The
bitmap can be stored at a given offset from the superblock. Obviously the
creator of the array must make sure this doesn't intersect with data....
After is good for version-0.90 superblocks.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Before completing a 'write' the md superblock might need to be updated.
This is best done by the md_thread.
The current code schedules this up and queues the write request for later
handling by the md_thread.
However some personalities (Raid5/raid6) will deadlock if the md_thread
tries to submit requests to its own array.
So this patch changes things so the processes submitting the request waits
for the superblock to be written and then submits the request itself.
This fixes a recently-created deadlock in raid5/raid6
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When an array is degraded, bit in the intent-bitmap are never cleared. So if
a recently failed drive is re-added, we only need to reconstruct the block
that are still reflected in the bitmap.
This patch adds support for this re-adding.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently we don't wait for updates to the bitmap to be flushed to disk
properly. The infrastructure all there, but it isn't being used....
A separate kernel thread (bitmap_writeback_daemon) is needed to wait for each
page as we cannot get callbacks when a page write completes.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With this patch, the intent to write to some block in the array can be logged
to a bitmap file. Each bit represents some number of sectors and is set
before any update happens, and only cleared when all writes relating to all
sectors are complete.
After an unclean shutdown, information in this bitmap can be used to optimise
resync - only sectors which could be out-of-sync need to be updated.
Also if a drive is removed and then added back into an array, the recovery can
make use of the bitmap to optimise reconstruction. This is not implemented in
this patch.
Currently the bitmap is stored in a file which must (obviously) be stored on a
separate device.
The patch only provided infrastructure. It does not update any personalities
to bitmap intent logging.
Md arrays can still be used with no bitmap file. This patch has minimal
impact on such arrays.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1/ change the return value (which is number-of-sectors synced)
from 'int' to 'sector_t'.
The number of sectors is usually easily small enough to fit
in an int, but if resync needs to abort, it may want to return
the total number of remaining sectors, which could be large.
Also errors cannot be returned as negative numbers now, so use
0 instead
2/ Add a 'skipped' return parameter to allow the array to report
that it skipped the sectors. This allows md to take this into account
in the speed calculations.
Currently there is no important skipping, but the bitmap-based-resync
that is coming will use this.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When md marks the superblock dirty before a write, it calls
generic_make_request (to write the superblock) from within
generic_make_request (to write the first dirty block), which could cause
problems later.
With this patch, the superblock write is always done by the helper thread, and
write request are delayed until that write completes.
Also, the locking around marking the array dirty and writing the superblock is
improved to avoid possible races.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Shrink the stack when calling the drawing alignment functions.
Signed-off-by: James Simmons <jsimmons@www.infradead.org>
Cc: "Antonino A. Daplas" <adaplas@hotpop.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Improve the fonts for use with the framebuffer.
I've added all the characters marked 'FIXME' in the sun12x22 font and
created a 10x18 font (based on the sun12x22 font) and a 7x14 font (based
on the vga8x16 font).
This patch is non-intrusive, no options are enabled by default so most
users won't notice a thing.
I am placing my changes under the GPL, however, I've not seen any copyright
notices on the sun12x22 font and the vga8x16 font which I derived my new
fonts from so I don't know what the copyright status is.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Patch adds pci ID for CT 69000 chipset.
Signed-off-by: James Simmons <jsimmons@www.infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add support for the Arc monochrome LCD board.
The board uses KS108 controllers to drive individual 64x64 LCD matrices.
The board can be paneled in a variety of setups such as 2x1=128x64,
4x4=256x256 and so on. The board/host interface is through GPIO.
Signed-off-by: Jaya Kumar <jayalk@intworks.biz>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Cc: <linux-fbdev-devel@lists.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Since no one is using the inbuf, outbuf of struct fb_pixmap I removed their
use in the framebuffer console. The idea is instead move the pixmap
functionality below the accelerated functions intead of on top as the way
it is now. If there is no objection please apply. This is against Linus
latestr GIT tree. Thank you.
Signed-off-by: James Simmons <jsimmons@www.infradead.org>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With Chris Wedgwood <cw@f00f.org>
As suggested by Chris, we can make the "just added" method ->release
conditional to UML only (better: to archs requesting it, i.e. only UML
currently), so that other archs don't get this unneeded crud, and if UML
won't need it any more we can kill this.
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
CC: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With Chris Wedgwood <cw@f00f.org>
Currently UML must explicitly call the UML-specific
free_irq_by_irq_and_dev() for each free_irq call it's done.
This is needed because ->shutdown and/or ->disable are only called when the
last "action" for that irq is removed.
Instead, for UML shared IRQs (UML IRQs are very often, if not always,
shared), for each dev_id some setup is done, which must be cleared on the
release of that fd. For instance, for each open console a new instance
(i.e. new dev_id) of the same IRQ is requested().
Exactly, a fd is stored in an array (pollfds), which is after read by a
host thread and passed to poll(). Each event registered by poll() triggers
an interrupt. So, for each free_irq() we must remove the corresponding
host fd from the table, which we do via this -release() method.
In this patch we add an appropriate hook for this, and remove all uses of
it by pointing the hook to the said procedure; this is safe to do since the
said procedure.
Also some cosmetic improvements are included.
This is heavily based on some work by Chris Wedgwood, which however didn't
get the patch merged for something I'd call a "misunderstanding" (the need
for this patch wasn't cleanly explained, thus adding the generic hook was
felt as undesirable).
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
CC: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Several hardware features of SGI's IOC4 I/O controller chip require
timing-related driver calculations dependent upon the PCI bus speed. This
patch enables the core IOC4 driver code to detect the actual bus speed and
store a value that can later be used by the IOC4 subdrivers as needed.
Signed-off-by: Brent Casavant <bcasavan@sgi.com>
Acked-by: Pat Gefre <pfg@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This series of patches reworks the configuration and internal structure
of the SGI IOC4 I/O controller device drivers.
These changes are motivated by several factors:
- The IOC4 chip PCI resources are of mixed use between functions (i.e.
multiple functions are handled in the same address range, sometimes
within the same register), muddling resource ownership and initialization
issues. Centralizing this ownership in a core driver is desirable.
- The IOC4 chip implements multiple functions (serial, IDE, others not
yet implemented in the mainline kernel) but is not a multifunction
PCI device. In order to properly handle device addition and removal
as well as module insertion and deletion, an intermediary IOC4-specific
driver layer is needed to handle these operations cleanly.
- All IOC4 drivers are currently enabled by a single CONFIG value. As
not all systems need all IOC4 functions, it is desireable to enable
these drivers independently.
- The current IOC4 core driver will trigger loading of all function-level
drivers, as it makes direct calls to them. This situation should be
reversed (i.e. function-level drivers cause loading of core driver)
in order to maintain a clear and least-surprise driver loading model.
- IOC4 hardware design necessitates some driver-level dependency on
the PCI bus clock speed. Current code assumes a 66MHz bus, but the
speed should be autodetected and appropriate compensation taken.
This patch series effects the above changes by a newly and better designed
IOC4 core driver with which the function-level drivers can register and
deregister themselves upon module insertion/removal. By tracking these
modules, device addition/removal is also handled properly. PCI resource
management and ownership issues are centralized in this core driver, and
IOC4-wide configuration actions such as bus speed detection are also
handled in this core driver.
This patch:
The SGI IOC4 I/O controller chip implements multiple functions, though it is
not a multi-function PCI device. Additionally, various PCI resources of the
IOC4 are shared by multiple hardware functions, and thus resource ownership by
driver is not clearly delineated. Due to the current driver design, all core
and subordinate drivers must be loaded, or none, which is undesirable if not
all IOC4 hardware features are being used.
This patch reorganizes the IOC4 drivers so that the core driver provides a
subdriver registration service. Through appropriate callbacks the subdrivers
can now handle device addition and removal, as well as module insertion and
deletion (though the IOC4 IDE driver requires further work before module
deletion will work). The core driver now takes care of allocating PCI
resources and data which must be shared between subdrivers, to clearly
delineate module ownership of these items.
Signed-off-by: Brent Casavant <bcasavan@sgi.com>
Acked-by: Pat Gefre <pfg@sgi.com
Acked-by: Jeremy Higdon <jeremy@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Added descriptions of the new MPC8548 family processors, e500 core and
peripherals.
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch contains the ia64 uncached page allocator and the generic
allocator (genalloc). The uncached allocator was formerly part of the SN2
mspec driver but there are several other users of it so it has been split
off from the driver.
The generic allocator can be used by device driver to manage special memory
etc. The generic allocator is based on the allocator from the sym53c8xx_2
driver.
Various users on ia64 needs uncached memory. The SGI SN architecture requires
it for inter-partition communication between partitions within a large NUMA
cluster. The specific user for this is the XPC code. Another application is
large MPI style applications which use it for synchronization, on SN this can
be done using special 'fetchop' operations but it also benefits non SN
hardware which may use regular uncached memory for this purpose. Performance
of doing this through uncached vs cached memory is pretty substantial. This
is handled by the mspec driver which I will push out in a seperate patch.
Rather than creating a specific allocator for just uncached memory I came up
with genalloc which is a generic purpose allocator that can be used by device
drivers and other subsystems as they please. For instance to handle onboard
device memory. It was derived from the sym53c7xx_2 driver's allocator which
is also an example of a potential user (I am refraining from modifying sym2
right now as it seems to have been under fairly heavy development recently).
On ia64 memory has various properties within a granule, ie. it isn't safe to
access memory as uncached within the same granule as currently has memory
accessed in cached mode. The regular system therefore doesn't utilize memory
in the lower granules which is mixed in with device PAL code etc. The
uncached driver walks the EFI memmap and pulls out the spill uncached pages
and sticks them into the uncached pool. Only after these chunks have been
utilized, will it start converting regular cached memory into uncached memory.
Hence the reason for the EFI related code additions.
Signed-off-by: Jes Sorensen <jes@wildopensource.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The pageset array can potentially acquire a huge amount of memory on large
NUMA systems. F.e. on a system with 512 processors and 256 nodes there
will be 256*512 pagesets. If each pageset only holds 5 pages then we are
talking about 655360 pages.With a 16K page size on IA64 this results in
potentially 10 Gigabytes of memory being trapped in pagesets. The typical
cases are much less for smaller systems but there is still the potential of
memory being trapped in off node pagesets. Off node memory may be rarely
used if local memory is available and so we may potentially have memory in
seldom used pagesets without this patch.
The slab allocator flushes its per cpu caches every 2 seconds. The
following patch flushes the off node pageset caches in the same way by
tying into the slab flush.
The patch also changes /proc/zoneinfo to include the number of pages
currently in each pageset.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
By making the offset argument of __read_page_state an unsigned long instead of
unsigned, we can avoid forcing the compiler to sign extend a usually constant
argument. This saves 1 instruction on x86-64.
Signed-off-by: Benjamin LaHaise <benjamin.c.lahaise@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
By making the offset argument of __mod_page_state an unsigned long instead
of unsigned, we can avoid forcing the compiler to sign extend a usually
constant argument. This saves 1 instruction on x86-64.
Signed-off-by: Benjamin LaHaise <benjamin.c.lahaise@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
try_to_free_pages accepts a third argument, order, but hasn't used it since
before 2.6.0. The following patch removes the argument and updates all the
calls to try_to_free_pages.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove PG_highmem, to save a page flag. Use is_highmem() instead. It'll
generate a little more code, but we don't use PageHigheMem() in many places.
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Ingo recently introduced a great speedup for allocating new mmaps using the
free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and
causes huge performance increases in thread creation.
The downside of this patch is that it does lead to fragmentation in the
mmap-ed areas (visible via /proc/self/maps), such that some applications
that work fine under 2.4 kernels quickly run out of memory on any 2.6
kernel.
The problem is twofold:
1) the free_area_cache is used to continue a search for memory where
the last search ended. Before the change new areas were always
searched from the base address on.
So now new small areas are cluttering holes of all sizes
throughout the whole mmap-able region whereas before small holes
tended to close holes near the base leaving holes far from the base
large and available for larger requests.
2) the free_area_cache also is set to the location of the last
munmap-ed area so in scenarios where we allocate e.g. five regions of
1K each, then free regions 4 2 3 in this order the next request for 1K
will be placed in the position of the old region 3, whereas before we
appended it to the still active region 1, placing it at the location
of the old region 2. Before we had 1 free region of 2K, now we only
get two free regions of 1K -> fragmentation.
The patch addresses thes issues by introducing yet another cache descriptor
cached_hole_size that contains the largest known hole size below the
current free_area_cache. If a new request comes in the size is compared
against the cached_hole_size and if the request can be filled with a hole
below free_area_cache the search is started from the base instead.
The results look promising: Whereas 2.6.12-rc4 fragments quickly and my
(earlier posted) leakme.c test program terminates after 50000+ iterations
with 96 distinct and fragmented maps in /proc/self/maps it performs nicely
(as expected) with thread creation, Ingo's test_str02 with 20000 threads
requires 0.7s system time.
Taking out Ingo's patch (un-patch available per request) by basically
deleting all mentions of free_area_cache from the kernel and starting the
search for new memory always at the respective bases we observe: leakme
terminates successfully with 11 distinctive hardly fragmented areas in
/proc/self/maps but thread creating is gringdingly slow: 30+s(!) system
time for Ingo's test_str02 with 20000 threads.
Now - drumroll ;-) the appended patch works fine with leakme: it ends with
only 7 distinct areas in /proc/self/maps and also thread creation seems
sufficiently fast with 0.71s for 20000 threads.
Signed-off-by: Wolfgang Wander <wwc@rentec.com>
Credit-to: "Richard Purdie" <rpurdie@rpsys.net>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu> (partly)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch modifies the way pagesets in struct zone are managed.
Each zone has a per-cpu array of pagesets. So any particular CPU has some
memory in each zone structure which belongs to itself. Even if that CPU is
not local to that zone.
So the patch relocates the pagesets for each cpu to the node that is nearest
to the cpu instead of allocating the pagesets in the (possibly remote) target
zone. This means that the operations to manage pages on remote zone can be
done with information available locally.
We play a macro trick so that non-NUMA pmachines avoid the additional
pointer chase on the page allocator fastpath.
AIM7 benchmark on a 32 CPU SGI Altix
w/o patches:
Tasks jobs/min jti jobs/min/task real cpu
1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005
100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005
200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005
300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005
400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005
500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005
600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005
700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005
800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005
900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005
1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005
with slab API changes and pageset patch:
Tasks jobs/min jti jobs/min/task real cpu
1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005
100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005
200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005
300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005
400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005
500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005
600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005
700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005
800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005
900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005
1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Shai Fultheim <Shai@Scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A lot of the code in arch/*/mm/hugetlbpage.c is quite similar. This patch
attempts to consolidate a lot of the code across the arch's, putting the
combined version in mm/hugetlb.c. There are a couple of uglyish hacks in
order to covert all the hugepage archs, but the result is a very large
reduction in the total amount of code. It also means things like hugepage
lazy allocation could be implemented in one place, instead of six.
Tested, at least a little, on ppc64, i386 and x86_64.
Notes:
- this patch changes the meaning of set_huge_pte() to be more
analagous to set_pte()
- does SH4 need s special huge_ptep_get_and_clear()??
Acked-by: William Lee Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When early zone reclaim is turned on the LRU is scanned more frequently when a
zone is low on memory. This limits when the zone reclaim can be called by
skipping the scan if another thread (either via kswapd or sync reclaim) is
already reclaiming from the zone.
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When using the early zone reclaim, it was noticed that allocating new pages
that should be spread across the whole system caused eviction of local pages.
This adds a new GFP flag to prevent early reclaim from happening during
certain allocation attempts. The example that is implemented here is for page
cache pages. We want page cache pages to be spread across the whole system,
and we don't want page cache pages to evict other pages to get local memory.
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is the core of the (much simplified) early reclaim. The goal of this
patch is to reclaim some easily-freed pages from a zone before falling back
onto another zone.
One of the major uses of this is NUMA machines. With the default allocator
behavior the allocator would look for memory in another zone, which might be
off-node, before trying to reclaim from the current zone.
This adds a zone tuneable to enable early zone reclaim. It is selected on a
per-zone basis and is turned on/off via syscall.
Adding some extra throttling on the reclaim was also required (patch
4/4). Without the machine would grind to a crawl when doing a "make -j"
kernel build. Even with this patch the System Time is higher on
average, but it seems tolerable. Here are some numbers for kernbench
runs on a 2-node, 4cpu, 8Gig RAM Altix in the "make -j" run:
wall user sys %cpu ctx sw. sleeps
---- ---- --- ---- ------ ------
No patch 1009 1384 847 258 298170 504402
w/patch, no reclaim 880 1376 667 288 254064 396745
w/patch & reclaim 1079 1385 926 252 291625 548873
These numbers are the average of 2 runs of 3 "make -j" runs done right
after system boot. Run-to-run variability for "make -j" is huge, so
these numbers aren't terribly useful except to seee that with reclaim
the benchmark still finishes in a reasonable amount of time.
I also looked at the NUMA hit/miss stats for the "make -j" runs and the
reclaim doesn't make any difference when the machine is thrashing away.
Doing a "make -j8" on a single node that is filled with page cache pages
takes 700 seconds with reclaim turned on and 735 seconds without reclaim
(due to remote memory accesses).
The simple zone_reclaim syscall program is at
http://www.bork.org/~mort/sgi/zone_reclaim.c
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements a number of smp_processor_id() cleanup ideas that
Arjan van de Ven and I came up with.
The previous __smp_processor_id/_smp_processor_id/smp_processor_id API
spaghetti was hard to follow both on the implementational and on the
usage side.
Some of the complexity arose from picking wrong names, some of the
complexity comes from the fact that not all architectures defined
__smp_processor_id.
In the new code, there are two externally visible symbols:
- smp_processor_id(): debug variant.
- raw_smp_processor_id(): nondebug variant. Replaces all existing
uses of _smp_processor_id() and __smp_processor_id(). Defined
by every SMP architecture in include/asm-*/smp.h.
There is one new internal symbol, dependent on DEBUG_PREEMPT:
- debug_smp_processor_id(): internal debug variant, mapped to
smp_processor_id().
Also, i moved debug_smp_processor_id() from lib/kernel_lock.c into a new
lib/smp_processor_id.c file. All related comments got updated and/or
clarified.
I have build/boot tested the following 8 .config combinations on x86:
{SMP,UP} x {PREEMPT,!PREEMPT} x {DEBUG_PREEMPT,!DEBUG_PREEMPT}
I have also build/boot tested x64 on UP/PREEMPT/DEBUG_PREEMPT. (Other
architectures are untested, but should work just fine.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
o This adds ->i_op->setattr VFS method for sysfs inodes. The changed
attribues are saved in the persistent sysfs_dirent structure as a pointer
to struct iattr. The struct iattr is allocated only for those sysfs_dirent's
for which default attributes are getting changed. Thanks to Jon Smirl for
this suggestion.
Signed-off-by: Maneesh Soni <maneesh@in.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>