in case the interrupt controller was used in an earlier life then it is
possible it is that some of its sources were used and are still unmask.
If the (unmasked) device is active and is creating interrupts (or one
interrupts was pending since the interrupts were disabled) then the boot
process "ends" very soon. Once external interrupts are enabled, we land in
-> do_IRQ
-> call ppc_md.get_irq()
-> ipic_read() gets the source number
-> irq_linear_revmap(source)
-> revmap[source] == NO_IRQ
-> irq_find_mapping(source) returns NO_IRQ because no source
is registered
-> source is NO_IRQ, ppc_spurious_interrupts gets incremented, no
further action.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Check that the result of kmalloc/kzalloc is not NULL before dereferencing it.
The semantic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression *x;
identifier f;
constant char *C;
@@
x = \(kmalloc\|kcalloc\|kzalloc\)(...);
... when != x == NULL
when != x != NULL
when != (x || ...)
(
kfree(x)
|
f(...,C,...,x,...)
|
*f(...,x,...)
|
*x->f
)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
cam[tlbcam_index] is checked before tlbcam_index < ARRAY_SIZE(cam)
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Added a device tree that should be similiar to mpc8536ds.dtb except
the physical addresses for all IO are above the 4G boundary.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Change the top-level #address-cells and #size-cells to <2> so the
mpc8536ds.dts is easier to deal with both a true 32-bit physical
or 36-bit physical address space.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds support for the following devices to the Kilauea
defconfig file:
- PPC4xx NAND controller (NDFC)
- I2C RTC (Dallas DS1338)
- I2C HWMON (Dallas DS1775)
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds support for the following devices to the Canyonlands
defconfig file:
- NOR FLASH
- PPC4xx NAND controller (NDFC)
- I2C RTC (M41T80)
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds support for the following devices to the Kilauea dts:
- PPC4xx NAND controller (NDFC)
- I2C RTC (Dallas DS1338)
- I2C HWMON (Dallas DS1775)
Additionally the partitioning of the NOR FLASH is changed. The dtb
partition has been missing. Fixed in this patch.
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Also some whitespace cleanup in the USB device nodes.
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Introduced a temporary variable into our iterating over the list cpus
that are threads on the same core. For some reason Ben forgot how for
loops work.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The mask used to encode the page table cache number in the
batch when freeing page tables was too small for the new
possible values of MMU page sizes. This increases it along
with a comment explaining the constraints.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This contains all the bits that didn't fit in previous patches :-) This
includes the actual exception handlers assembly, the changes to the
kernel entry, other misc bits and wiring it all up in Kconfig.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The base TLB support didn't include support for SPARSEMEM_VMEMMAP, though
we did carve out some virtual space for it, the necessary support code
wasn't there. This implements it by using 16M pages for now, though the
page size could easily be changed at runtime if necessary.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the TLB miss handler assembly, the low level TLB flush routines
along with the necessary hook for dealing with our virtual page tables
or indirect TLB entries that need to be flushes when PTE pages are freed.
There is currently no support for hugetlbfs
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The definition for the global structure mmu_gathers, used by generic code,
is currently defined in multiple places not including anything used by
64-bit Book3E. This changes it by moving to one place common to all
processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds various fields in the PACA that are for use specifically
by Book3E processors, such as exception save areas, current pgd
pointer, special exceptions kernel stacks etc...
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds various definitions and macros used by the exception and TLB
miss handling on 64-bit BookE
It also adds the definitions of the SPRGs used for various exception types
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the PTE and pgtable format definitions, along with changes
to the kernel memory map and other definitions related to implementing
support for 64-bit Book3E. This also shields some asm-offset bits that
are currently only relevant on 32-bit
We also move the definition of the "linux" page size constants to
the common mmu.h file and add a few sizes that are relevant to
embedded processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds various SPRs defined on 64-bit BookE, along with changes
to the definition of the base MSR values to add the values needed
for 64-bit Book3E.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
That patch used to just add a hook to page table flushing but
pulling that string brought out a whole bunch of issues, so it
now does that and more:
- We now make the RCU batching of page freeing SMP only, as I
believe it was intended initially. We make a few more things compile
to nothing on !CONFIG_SMP
- Some macros are turned into functions, though that forced me to
out of line a few stuffs due to unsolvable include depenencies,
however it's probably better that way anyway, it's not -that-
critical code path.
- 32-bit didn't call pte_free_finish() on tlb_flush() which means
that it wouldn't push out the batch to RCU for delayed freeing when
a bunch of page tables have been freed, they would just stay in there
until the batch gets full.
64-bit BookE will use that hook to maintain the virtually linear
page tables or the indirect entries in the TLB when using the
HW loader.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Those definitions are currently declared extern in the .c file where
they are used, move them to a header file instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, a single ifdef covers SLB related bits and more generic ppc64
related bits, split this in two separate ifdef's since 64-bit BookE will
need one but not the other.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Our 64-bit hash context handling has no init function, but 64-bit Book3E
will use the common mmu_context_nohash.c code which does, so define an
empty inline mmu_context_init() for 64-bit server and call it from
our 64-bit setup_arch()
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
We need to pass down whether the page is direct or indirect and we'll
need to pass the page size to _tlbil_va and _tlbivax_bcast
We also add a new low level _tlbil_pid_noind() which does a TLB flush
by PID but avoids flushing indirect entries if possible
This implements those new prototypes but defines them with inlines
or macros so that no additional arguments are actually passed on current
processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The way I intend to use tophys/tovirt on 64-bit BookE is different
from the "trick" that we currently play for 32-bit BookE so change
the condition of definition of these macros to make it so.
Also, make sure we only use rfid and mtmsrd instead of rfi and mtmsr
for 64-bit server processors, not all 64-bit processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
This adds some code to do early ioremap's using page tables instead of
bolting entries in the hash table. This will be used by the upcoming
64-bits BookE port.
The patch also changes the test for early vs. late ioremap to use
slab_is_available() instead of our old hackish mem_init_done.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds various additional bit definitions for various MMU related
SPRs used on Book3E.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds the opcode definitions to ppc-opcode.h for the two instructions
tlbivax and tlbsrx. as defined by Book3E 2.06
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current "no hash" MMU context management code is written with
the assumption that one CPU == one TLB. This is not the case on
implementations that support HW multithreading, where several
linux CPUs can share the same TLB.
This adds some basic support for this to our context management
and our TLB flushing code.
It also cleans up the optional debugging output a bit
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
enter_prom() used to save and restore registers such as CTR, XER etc..
which are volatile, or SRR0,1... which we don't care about. This
removes a bunch of useless code and while at it turns an mtmsrd into
an MTMSRD macro which will be useful to Book3E.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
A misplaced #endif causes more definitions than intended to be
protected by #ifndef __ASSEMBLY__. This breaks upcoming 64-bit
BookE support patch when using 64k pages.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The truncate syscall has a signed long parameter, so when using a 32-
bit userspace with a 64-bit kernel the argument is zero-extended
instead of sign-extended. Adding the compat_sys_truncate function
fixes the issue.
This was noticed during an LSB truncate test failure. The test was
checking for the correct error number set when truncate is called with
a length of -1. The test can be found at:
http://bzr.linuxfoundation.org/lsb/devel/runtime-test?cmd=inventory;rev=stewb%40linux-foundation.org-20090626205411-sfb23cc0tjj7jzgm;path=modules/vsx-pcts/tset/POSIX.os/files/truncate/
BenH: Added compat_sys_ftruncate() as well, same issue.
Signed-off-by: Chase Douglas <cndougla@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
dtc was moved in 9fffb55f66 from
arch/powerpc/boot/ to scripts/dtc/
This patch updates the wrapper script to point to the new location of dtc.
Signed-off-by: Lucian Adrian Grijincu <lgrijincu@ixiacom.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Frans Pop <elendil@planet.nl>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This change the SPRG used to store the PACA on ppc64 from
SPRG3 to SPRG1. SPRG3 is user readable on most processors
and we want to use it for other things. We change the scratch
SPRG used by exception vectors from SRPG1 to SPRG2.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The code for setting up the IPIs for SMP PowerSurge marchines bitrot,
it needs to properly map the HW interrupt number
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current definitions set ranges and defaults for 32 and 64-bit
only using "PPC_STD_MMU" which means hash based MMU. This uselessly
restrict the usefulness for the upcoming 64-bit BookE port, but more
than that, it's broken on 32-bit since the only 32-bit platform
supporting multiple page sizes currently is 44x which does -not-
have PPC_STD_MMU_32 set.
This fixes it by using PPC64 and PPC32 instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Replace strncpy() and explicit null-termination by strlcpy()
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The STAB code used on Power3 and RS/64 uses a second scratch SPRG to
save a GPR in order to decide whether to go to do_stab_bolted_* or
to handle a normal data access exception.
This prevents our scheme of freeing SPRG3 which is user visible for
user uses since we cannot use SPRG0 which, on RS/64, seems to be
read-only for supervisor mode (like POWER4).
This reworks the STAB exception entry to use the PACA as temporary
storage instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The kernel uses SPRG registers for various purposes, typically in
low level assembly code as scratch registers or to hold per-cpu
global infos such as the PACA or the current thread_info pointer.
We want to be able to easily shuffle the usage of those registers
as some implementations have specific constraints realted to some
of them, for example, some have userspace readable aliases, etc..
and the current choice isn't always the best.
This patch should not change any code generation, and replaces the
usage of SPRN_SPRGn everywhere in the kernel with a named replacement
and adds documentation next to the definition of the names as to
what those are used for on each processor family.
The only parts that still use the original numbers are bits of KVM
or suspend/resume code that just blindly needs to save/restore all
the SPRGs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The file include/asm/exception.h contains definitions
that are specific to exception handling on 64-bit server
type processors.
This renames the file to exception-64s.h to reflect that
fact and avoid confusion.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
TASK_UNMAPPED_BASE is not used with the new top down mmap layout. We can
reuse this preload slot by loading in the segment at 0x10000000, where almost
all PowerPC binaries are linked at.
On a microbenchmark that bounces a token between two 64bit processes over pipes
and calls gettimeofday each iteration (to access the VDSO), both the 32bit and
64bit context switch rate improves (tested on a 4GHz POWER6):
32bit: 273k/sec -> 283k/sec
64bit: 277k/sec -> 284k/sec
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With the new top down layout it is likely that the pc and stack will be in the
same segment, because the pc is most likely in a library allocated via a top
down mmap. Right now we bail out early if these segments match.
Rearrange the SLB preload code to sanity check all SLB preload addresses
are not in the kernel, then check all addresses for conflicts.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On 64bit applications the VDSO is the only thing in segment 0. Since the VDSO
is position independent we can remove the hint and let get_unmapped_area pick
an area. This will mean the vdso will be near other mmaps and will share
an SLB entry:
10000000-10001000 r-xp 00000000 08:06 5778459 /root/context_switch_64
10010000-10011000 r--p 00000000 08:06 5778459 /root/context_switch_64
10011000-10012000 rw-p 00001000 08:06 5778459 /root/context_switch_64
fffa92ae000-fffa92b0000 rw-p 00000000 00:00 0
fffa92b0000-fffa9453000 r-xp 00000000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa9453000-fffa9462000 ---p 001a3000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa9462000-fffa9466000 r--p 001a2000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa9466000-fffa947c000 rw-p 001a6000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa947c000-fffa9480000 rw-p 00000000 00:00 0
fffa9480000-fffa94a8000 r-xp 00000000 08:06 4333852 /lib64/ld-2.9.so
fffa94b3000-fffa94b4000 rw-p 00000000 00:00 0
fffa94b4000-fffa94b7000 r-xp 00000000 00:00 0 [vdso] <----- here I am
fffa94b7000-fffa94b8000 r--p 00027000 08:06 4333852 /lib64/ld-2.9.so
fffa94b8000-fffa94bb000 rw-p 00028000 08:06 4333852 /lib64/ld-2.9.so
fffa94bb000-fffa94bc000 rw-p 00000000 00:00 0
fffe4c10000-fffe4c25000 rw-p 00000000 00:00 0 [stack]
On a microbenchmark that bounces a token between two 64bit processes over pipes
and calls gettimeofday each iteration (to access the VDSO), our context switch
rate goes from 268k to 277k ctx switches/sec (tested on a 4GHz POWER6).
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The bitops.h functions that operate on a single bit in a bitfield are
implemented by operating on the corresponding word location. In all
cases the inner logic is valid if the mask being applied has more than
one bit set, so this patch exposes those inner operations. Indeed,
set_bits() was already available, but it duplicated code from
set_bit() (rather than making the latter a wrapper) - it was also
missing the PPC405_ERR77() workaround and the "volatile" address
qualifier present in other APIs. This corrects that, and exposes the
other multi-bit equivalents.
One advantage of these multi-bit forms is that they allow word-sized
variables to essentially be their own spinlocks, eg. very useful for
state machines where an atomic "flags" variable can obviate the need
for any additional locking.
Signed-off-by: Geoff Thorpe <geoff@geoffthorpe.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The workaround enabled by CONFIG_MPIC_BROKEN_REGREAD does not work
on non-broken MPICs. The symptom is no interrupts being received.
The fix is twofold. Firstly the code was broken for multiple isus,
we need to index into the shadow array with the src_no, not the idx.
Secondly, we always do the read, but only use the VECPRI_MASK and
VECPRI_ACTIVITY bits from the hardware, the rest of "val" comes
from the shadow.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This allows to remove the ppc_md.init() hook in the setup code.
Signed-off-by: Gerhard Pircher <gerhard_pircher@gmx.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds support for tracing callchains for powerpc, both 32-bit
and 64-bit, and both in the kernel and userspace, from PMU interrupt
context.
The first three entries stored for each callchain are the NIP (next
instruction pointer), LR (link register), and the contents of the LR
save area in the second stack frame (the first is ignored because the
ABI convention on powerpc is that functions save their return address
in their caller's stack frame). Because leaf functions don't have to
save their return address (LR value) and don't have to establish a
stack frame, it's possible for either or both of LR and the second
stack frame's LR save area to have valid return addresses in them.
This is basically impossible to disambiguate without either reading
the code or looking at auxiliary information such as CFI tables.
Since we don't want to do either of those things at interrupt time,
we store both LR and the second stack frame's LR save area.
Once we get past the second stack frame, there is no ambiguity; all
return addresses we get are reliable.
For kernel traces, we check whether they are valid kernel instruction
addresses and store zero instead if they are not (rather than
omitting them, which would make it impossible for userspace to know
which was which). We also store zero instead of the second stack
frame's LR save area value if it is the same as LR.
For kernel traces, we check for interrupt frames, and for user traces,
we check for signal frames. In each case, since we're starting a new
trace, we store a PERF_CONTEXT_KERNEL/USER marker so that userspace
knows that the next three entries are NIP, LR and the second stack frame
for the interrupted context.
We read user memory with __get_user_inatomic. On 64-bit, if this
PMU interrupt occurred while interrupts are soft-disabled, and
there is no MMU hash table entry for the page, we will get an
-EFAULT return from __get_user_inatomic even if there is a valid
Linux PTE for the page, since hash_page isn't reentrant. Thus we
have code here to read the Linux PTE and access the page via the
kernel linear mapping. Since 64-bit doesn't use (or need) highmem
there is no need to do kmap_atomic. On 32-bit, we don't do soft
interrupt disabling, so this complication doesn't occur and there
is no need to fall back to reading the Linux PTE, since hash_page
(or the TLB miss handler) will get called automatically if necessary.
Note that we cannot get PMU interrupts in the interval during
context switch between switch_mm (which switches the user address
space) and switch_to (which actually changes current to the new
process). On 64-bit this is because interrupts are hard-disabled
in switch_mm and stay hard-disabled until they are soft-enabled
later, after switch_to has returned. So there is no possibility
of trying to do a user stack trace when the user address space is
not current's address space.
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This provides a mechanism to allow the perf_counters code to access
user memory in a PMU interrupt routine. Such an access can cause
various kinds of interrupt: SLB miss, MMU hash table miss, segment
table miss, or TLB miss, depending on the processor. This commit
only deals with 64-bit classic/server processors, which use an MMU
hash table. 32-bit processors are already able to access user memory
at interrupt time. Since we don't soft-disable on 32-bit, we avoid
the possibility of reentering hash_page or the TLB miss handlers,
since they run with interrupts disabled.
On 64-bit processors, an SLB miss interrupt on a user address will
update the slb_cache and slb_cache_ptr fields in the paca. This is
OK except in the case where a PMU interrupt occurs in switch_slb,
which also accesses those fields. To prevent this, we hard-disable
interrupts in switch_slb. Interrupts are already soft-disabled at
this point, and will get hard-enabled when they get soft-enabled
later.
This also reworks slb_flush_and_rebolt: to avoid hard-disabling twice,
and to make sure that it clears the slb_cache_ptr when called from
other callers than switch_slb, the existing routine is renamed to
__slb_flush_and_rebolt, which is called by switch_slb and the new
version of slb_flush_and_rebolt.
Similarly, switch_stab (used on POWER3 and RS64 processors) gets a
hard_irq_disable() to protect the per-cpu variables used there and
in ste_allocate.
If a MMU hashtable miss interrupt occurs, normally we would call
hash_page to look up the Linux PTE for the address and create a HPTE.
However, hash_page is fairly complex and takes some locks, so to
avoid the possibility of deadlock, we check the preemption count
to see if we are in a (pseudo-)NMI handler, and if so, we don't call
hash_page but instead treat it like a bad access that will get
reported up through the exception table mechanism. An interrupt
whose handler runs even though the interrupt occurred when
soft-disabled (such as the PMU interrupt) is considered a pseudo-NMI
handler, which should use nmi_enter()/nmi_exit() rather than
irq_enter()/irq_exit().
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>