Add missing IRQs and IRQ descriptions to /proc/interrupts.
/proc/interrupts is most useful when it displays every IRQ vector in use by
the system, not just those somebody thought would be interesting.
This patch inserts the following vector displays to the i386 and x86_64
platforms, as appropriate:
rescheduling interrupts
TLB flush interrupts
function call interrupts
thermal event interrupts
threshold interrupts
spurious interrupts
A threshold interrupt occurs when ECC memory correction is occuring at too
high a frequency. Thresholds are used by the ECC hardware as occasional
ECC failures are part of normal operation, but long sequences of ECC
failures usually indicate a memory chip that is about to fail.
Thermal event interrupts occur when a temperature threshold has been
exceeded for some CPU chip. IIRC, a thermal interrupt is also generated
when the temperature drops back to a normal level.
A spurious interrupt is an interrupt that was raised then lowered by the
device before it could be fully processed by the APIC. Hence the apic sees
the interrupt but does not know what device it came from. For this case
the APIC hardware will assume a vector of 0xff.
Rescheduling, call, and TLB flush interrupts are sent from one CPU to
another per the needs of the OS. Typically, their statistics would be used
to discover if an interrupt flood of the given type has been occuring.
AK: merged v2 and v4 which had some more tweaks
AK: replace Local interrupts with Local timer interrupts
AK: Fixed description of interrupt types.
[ tglx: arch/x86 adaptation ]
[ mingo: small cleanup ]
Signed-off-by: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Tim Hockin <thockin@hockin.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Doh, I completely missed that devices marked DUMMY are not running
the set_mode function. So we force broadcasting, but we keep the
local APIC timer running.
Let the clock event layer mark the device _after_ switching it off.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The 64bit SMP bootup is slightly different to the 32bit one. It enables
the boot CPU local APIC timer before all CPUs are brought up. Some AMD C1E
systems have the C1E feature flag only set in the secondary CPU. Due to
the early enable of the boot CPU local APIC timer the APIC timer is
registered as a fully functional device. When we detect the wreckage during
the bringup of the secondary CPU, we need to force the boot CPU into
broadcast mode.
Check the C1E caused APIC timer disable, when the secondary APIC timer is
initialized. If the boot CPU APIC timer was registered as a functional
clock event device, then fix this up and utilize the
CLOCK_EVT_NOTIFY_BROADCAST_FORCE mechanism to force the already
registered boot CPU APIC timer into broadcast mode.
Tested by force injecting the failure mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make variables static.
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove the unused code after the switch to clock events.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
AMDs C1E enabled CPUs stop the local apic timer, when both cores are
idle. This is a hardware feature which breaks highres/dynticks.
Add the same quirk as we have for 32 bit already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Finally switch to the clockevents code. Share code with i386 for
hpet and PIT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
setup_APIC_timer disables interrupts anyway. So no need to do the same
in setup_boot_APIC_clock and setup_secondary_APIC_clock. Disable
interrupts explicit in the calibration code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
setup_APIC_timer takes the file global calibration result as an argument.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
APIC_DIVISOR is rather useless. It makes the calibration result more
accurate in the first place, but we discard this later when we write
the value to the APIC timer by dividing the calibration value by
APIC_DIVISOR.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Let the calibration code fill in calibration_result directly and
move the variable on top of the file.
Fixup a printk w/o log level while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
The APIC timer setup code synchronizes the local APIC timer to the
PIT/HPET. This is pointless as the PIT and the local APIC timer
frequency are not correlated and the APIC timer calibration can never
be accurate enough to avoid that the local APIC timer and the PIT/HPET
drift apart.
Simply remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Change __setup_APIC_LVTT so it takes the arguments which are necessary
for the later clock events switch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
[ tglx: arch/x86 adaptation ]
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
I have had four seperate system lockups attributable to this exact problem
in two days of testing. Instead of trying to handle all the weird end
cases and wrap, how about changing it to look for exactly what we appear
to want.
The following patch removes a couple races in setup_APIC_timer. One occurs
when the HPET advances the COUNTER past the T0_CMP value between the time
the T0_CMP was originally read and when COUNTER is read. This results in
a delay waiting for the counter to wrap. The other results from the counter
wrapping.
This change takes a snapshot of T0_CMP at the beginning of the loop and
simply loops until T0_CMP has changed (a tick has happened).
<later>
I have one small concern about the patch. I am not sure it meets the intent
as well as it should. I think we are trying to match APIC timer interrupts up
with the hpet counter increment. The event which appears to be disturbing
this loop in our test environment is the NMI watchdog. What we believe has
been happening with the existing code is the setup_APIC_timer loop has read
the CMP value, and the NMI watchdog code fires for the first time. This
results in a series of icache miss slowdowns and by the time we get back to
things it has wrapped.
I think this code is trying to get the CMP as close to the counter value as
possible. If that is the intent, maybe we should really be testing against a
"window" around the CMP. Something like COUNTER = CMP+/2. It appears COUNTER
should get advanced every 89nSec (IIRC). The above seems like an unreasonably
small window, but may be necessary. Without documentation, I am not sure of
the original intent with this code.
In summary, this code fixes my boot hangs, but since I am not certain of the
intent of the existing code, I am not certain this has not introduced new bugs
or unexpected behaviors.
Signed-off-by: Robin Holt <holt@sgi.com>
Acked-by: Andi Kleen <ak@suse.de>
Cc: Vojtech Pavlik <vojtech@suse.cz>
Cc: "Aaron Durbin" <adurbin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Use 64bit TSC calculations to avoid handling overflow
- Use 32bit unsigned arithmetic for the APIC timer. This
way overflows are handled correctly.
- Fix exit check of loop to account for apic timer counting down
Signed-off-by: dpreed@reed.com
Signed-off-by: Andi Kleen <ak@suse.de>
apic_wait_icr_idle looks like this:
static __inline__ void apic_wait_icr_idle(void)
{
while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
cpu_relax();
}
The busy loop in this function would not be problematic if the
corresponding status bit in the ICR were always updated, but that does
not seem to be the case under certain crash scenarios. Kdump uses an IPI
to stop the other CPUs in the event of a crash, but when any of the
other CPUs are locked-up inside the NMI handler the CPU that sends the
IPI will end up looping forever in the ICR check, effectively
hard-locking the whole system.
Quoting from Intel's "MultiProcessor Specification" (Version 1.4), B-3:
"A local APIC unit indicates successful dispatch of an IPI by
resetting the Delivery Status bit in the Interrupt Command
Register (ICR). The operating system polls the delivery status
bit after sending an INIT or STARTUP IPI until the command has
been dispatched.
A period of 20 microseconds should be sufficient for IPI dispatch
to complete under normal operating conditions. If the IPI is not
successfully dispatched, the operating system can abort the
command. Alternatively, the operating system can retry the IPI by
writing the lower 32-bit double word of the ICR. This “time-outâ€
mechanism can be implemented through an external interrupt, if
interrupts are enabled on the processor, or through execution of
an instruction or time-stamp counter spin loop."
Intel's documentation suggests the implementation of a time-out
mechanism, which, by the way, is already being open-coded in some parts
of the kernel that tinker with ICR.
Create a apic_wait_icr_idle replacement that implements the time-out
mechanism and that can be used to solve the aforementioned problem.
AK: moved both functions out of line
AK: Added improved loop from Keith Owens
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Andi Kleen <ak@suse.de>
Ray Lee reported, that on an UP kernel with "noapic" command line option
set, the box locks hard during boot.
Adding some debug printks revealed, that the last action on the box
before stalling was "Send IPI" - a debug printk which was put into
smp_send_timer_broadcast_ipi().
It seems that send_IPI_mask(mask, LOCAL_TIMER_VECTOR) fails when
"noapic" is set on the command line on an UP kernel.
Aside of that it does not make much sense to trigger an interrupt
instead of calling the function directly on the CPU which gets the
PIT/HPET interrupt in case of broadcasting.
Reported-by: Ray Lee <ray-lk@madrabbit.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ray Lee <ray-lk@madrabbit.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Needed for any architecture that claims ARCH_APICTIMER_STOPS_ON_C3,
not just i386.
I'm hoping Thomas will clean this up a bit later..
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch converts x86_64 to use the GENERIC_TIME infrastructure and adds
clocksource structures for both TSC and HPET (ACPI PM is shared w/ i386).
[akpm@osdl.org: fix printk timestamps]
[akpm@osdl.org: fix printk ckeanups]
[akpm@osdl.org: hpet build fix]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for supporting generic timekeeping, this patch cleans up
x86-64's use of vxtime.hpet_address, changing it to just hpet_address as is
also used in i386. This is necessary since the vxtime structure will be going
away.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Read/Write APIC_LVTPC and APIC_LVTTHMR only,
if get_maxlvt() returns certain values.
This is done like everywhere else in i386/kernel/apic.c,
so I guess its correct.
Suspends/Resumes to disk fine and eleminates an smp_error_interrupt()
here on a K8.
AK: ported to x86-64 too
Signed-off-by: Karsten Wiese <fzu@wemgehoertderstaat.de>
Signed-off-by: Andi Kleen <ak@suse.de>
Insert the Local APIC and IO APIC(s) into the resource tree. It allows the
APIC resources to be visible within /proc/iomem. The patch also takes into
account IO APIC(s) mapped in the PCI space by deferring the insertion until
after PCI has allocated its necessary resources.
Signed-off-by: Aaron Durbin <adurbin@google.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@muc.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
smp_apic_timer_interrupt() needs to stack the pt_regs* for profile_tick.
If any other of those APIC interrupt handlers want to run get_irq_regs() then
their C entrypoint handlers will need the same treatment.
Cc: Andi Kleen <ak@muc.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Acked-by: Andrew Vasquez <andrew.vasquez@qlogic.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
Commit 54dbc0c9eb is causing various
people's machines to fail to map PCI resources.
Revert it in preparation for addressing the show-APICs-in-/proc/iomem
requirement in a different manner.
Cc: Aaron Durbin <adurbin@google.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch places the IOAPIC(s) and the Local APIC specified by ACPI
tables into the resource map. The APICs will then be visible within
/proc/iomem
Signed-off-by: Aaron Durbin <adurbin@google.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Lockdep can call the dwarf2 unwinder early, and the dwarf2 code
uses safe_smp_processor_id which tries to access the local APIC page.
But that doesn't work before the APIC code has set up its fixmap.
Check for this case and always return boot cpu then.
Cc: jbeulich@novell.com
Cc: mingo@elte.hu
Signed-off-by: Andi Kleen <ak@suse.de>
The combination of "local_save_flags" and "local_irq_disable" seems to be
equivalent to "local_irq_save" (see code snips below). Consequently, replace
occurrences of local_save_flags+local_irq_disable with local_irq_save.
* local_irq_save
#define raw_local_irq_save(flags) \
do { (flags) = __raw_local_irq_save(); } while (0)
static inline unsigned long __raw_local_irq_save(void)
{
unsigned long flags = __raw_local_save_flags();
raw_local_irq_disable();
return flags;
}
* local_save_flags
#define raw_local_save_flags(flags) \
do { (flags) = __raw_local_save_flags(); } while (0)
Signed-off-by: Fernando Vazquez <fernando@intellilink.co.jp>
Signed-off-by: Andi Kleen <ak@suse.de>
Instead of hackish manual parsing
Requires earlier i386 patchkit, but also fixes i386 early_printk again.
I removed some obsolete really early parameters which didn't do anything useful.
Also made a few parameters that needed it early (mostly oops printing setup)
Also removed one panic check that wasn't visible without
early console anyways (the early console is now initialized after that
panic)
This cleans up a lot of code.
Signed-off-by: Andi Kleen <ak@suse.de>
PIC mode is an outdated way to drive the APICs that was used on
some early MP boards. It is not supported in the ACPI model.
It is unlikely to be ever configured by any x86-64 system
Remove it thus.
Signed-off-by: Andi Kleen <ak@suse.de>
IO-APIC or local APIC can only be disabled at runtime anyways and
Kconfig has forced these options on for a long time now.
The Kconfigs are kept only now for the benefit of the shared acpi
boot.c code.
Signed-off-by: Andi Kleen <ak@suse.de>
A few trivial spelling and grammar mistakes picked up in
"arch/x86_64/aperture.c", "arch/x86_64/crash.c" and
"arch/x86_64/apic.c". I think all are correct fixes but am ever aware
of my fallibility :o) This is my first patch submission so all
feedback is appreciated, esp. WRT CCing to Linus, Andi and
trivial@kernel.org, is this correct? And which is the most appropriate
kernel version to diff against? If any.
Should apply cleanly to 2.6.18-rc1
Signed-off-by: Adam Henley <adamazing@gmail.com>
Signed-off-by: Andi Kleen <ak@suse.de>
- adam
This patch includes the changes to make the nmi watchdog on x86_64 SMP
aware. A bunch of code was moved around to make it simpler to read. In
addition, it is now possible to determine if a particular NMI was the result
of the watchdog or not. This feature allows the kernel to filter out
unknown NMIs easier.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Appended patch fixes the "APIC error on CPUX: 00(40)" observed during bootup.
From SDM Vol-3A "Valid Interrupt Vectors" section:
"When an illegal vector value (0-15) is written to an LVT entry
and the delivery mode is Fixed, the APIC may signal an illegal
vector error, with out regard to whether the mask bit is set
or whether an interrupt is actually seen on input."
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add support for extended APIC LVT found in future AMD processors.
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rename oem_force_hpet_timer to apic_is_clustered_box, to give the
function a better fitting name - it really isn't at all about HPET.
Signed-off-by: Vojtech Pavlik <vojtech@suse.cz>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The boot cmdline is parsed in parse_early_param() and
parse_args(,unknown_bootoption).
And __setup() is used in obsolete_checksetup().
start_kernel()
-> parse_args()
-> unknown_bootoption()
-> obsolete_checksetup()
If __setup()'s callback (->setup_func()) returns 1 in
obsolete_checksetup(), obsolete_checksetup() thinks a parameter was
handled.
If ->setup_func() returns 0, obsolete_checksetup() tries other
->setup_func(). If all ->setup_func() that matched a parameter returns 0,
a parameter is seted to argv_init[].
Then, when runing /sbin/init or init=app, argv_init[] is passed to the app.
If the app doesn't ignore those arguments, it will warning and exit.
This patch fixes a wrong usage of it, however fixes obvious one only.
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>