Changes v5 => v6: - Blk-crypto's kernel crypto API fallback is no longer restricted to 8-byte DUNs. It's also now separately configurable from blk-crypto, and can be disabled entirely, while still allowing the kernel to use inline encryption hardware. Further, struct bio_crypt_ctx takes up less space, and no longer contains the information needed by the crypto API fallback - the fallback allocates the required memory when necessary. - Blk-crypto now supports all file content encryption modes supported by fscrypt. - Fixed bio merging logic in blk-merge.c - Fscrypt now supports inline encryption with the direct key policy, since blk-crypto now has support for larger DUNs. - Keyslot manager now uses a hashtable to lookup which keyslot contains any particular key (thanks Eric!) - Fscrypt support for inline encryption now handles filesystems with multiple underlying block devices (thanks Eric!) - Numerous cleanups Backport notes: In the time between the update from v5 to v6, "scsi: ufs: override auto suspend tunables for ufs" was merged in upstream, and as a result, UFSHCD_CAP_RPM_AUTOSUSPEND took up the 7th bit in the ufs crypto caps - however, that patch has not been backported to 4.14 yet, so we manually change UFSHCD_CAP_CRYPTO to use the 8th bit (to reflect what's in v6 in android-mainline). Bug: 137270441 Test: refer to I26376479ee38259b8c35732cb3a1d7e15f9b05a3 Change-Id: I13e2e327e0b4784b394cb1e7cf32a04856d95f01 Link: https://lore.kernel.org/linux-block/20191218145136.172774-1-satyat@google.com/ Signed-off-by: Satya Tangirala <satyat@google.com>tirimbino
parent
8e8f55d1a7
commit
e12563c18d
@ -0,0 +1,647 @@ |
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright 2019 Google LLC |
||||
*/ |
||||
|
||||
/*
|
||||
* Refer to Documentation/block/inline-encryption.rst for detailed explanation. |
||||
*/ |
||||
|
||||
#define pr_fmt(fmt) "blk-crypto-fallback: " fmt |
||||
|
||||
#include <crypto/skcipher.h> |
||||
#include <linux/blk-cgroup.h> |
||||
#include <linux/blk-crypto.h> |
||||
#include <linux/crypto.h> |
||||
#include <linux/keyslot-manager.h> |
||||
#include <linux/mempool.h> |
||||
#include <linux/module.h> |
||||
#include <linux/random.h> |
||||
|
||||
#include "blk-crypto-internal.h" |
||||
|
||||
static unsigned int num_prealloc_bounce_pg = 32; |
||||
module_param(num_prealloc_bounce_pg, uint, 0); |
||||
MODULE_PARM_DESC(num_prealloc_bounce_pg, |
||||
"Number of preallocated bounce pages for the blk-crypto crypto API fallback"); |
||||
|
||||
static unsigned int blk_crypto_num_keyslots = 100; |
||||
module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0); |
||||
MODULE_PARM_DESC(num_keyslots, |
||||
"Number of keyslots for the blk-crypto crypto API fallback"); |
||||
|
||||
static unsigned int num_prealloc_fallback_crypt_ctxs = 128; |
||||
module_param(num_prealloc_fallback_crypt_ctxs, uint, 0); |
||||
MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs, |
||||
"Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback"); |
||||
|
||||
struct bio_fallback_crypt_ctx { |
||||
struct bio_crypt_ctx crypt_ctx; |
||||
/*
|
||||
* Copy of the bvec_iter when this bio was submitted. |
||||
* We only want to en/decrypt the part of the bio as described by the |
||||
* bvec_iter upon submission because bio might be split before being |
||||
* resubmitted |
||||
*/ |
||||
struct bvec_iter crypt_iter; |
||||
u64 fallback_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
||||
}; |
||||
|
||||
/* The following few vars are only used during the crypto API fallback */ |
||||
static struct kmem_cache *bio_fallback_crypt_ctx_cache; |
||||
static mempool_t *bio_fallback_crypt_ctx_pool; |
||||
|
||||
/*
|
||||
* Allocating a crypto tfm during I/O can deadlock, so we have to preallocate |
||||
* all of a mode's tfms when that mode starts being used. Since each mode may |
||||
* need all the keyslots at some point, each mode needs its own tfm for each |
||||
* keyslot; thus, a keyslot may contain tfms for multiple modes. However, to |
||||
* match the behavior of real inline encryption hardware (which only supports a |
||||
* single encryption context per keyslot), we only allow one tfm per keyslot to |
||||
* be used at a time - the rest of the unused tfms have their keys cleared. |
||||
*/ |
||||
static DEFINE_MUTEX(tfms_init_lock); |
||||
static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX]; |
||||
|
||||
struct blk_crypto_decrypt_work { |
||||
struct work_struct work; |
||||
struct bio *bio; |
||||
}; |
||||
|
||||
static struct blk_crypto_keyslot { |
||||
struct crypto_skcipher *tfm; |
||||
enum blk_crypto_mode_num crypto_mode; |
||||
struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX]; |
||||
} *blk_crypto_keyslots; |
||||
|
||||
/* The following few vars are only used during the crypto API fallback */ |
||||
static struct keyslot_manager *blk_crypto_ksm; |
||||
static struct workqueue_struct *blk_crypto_wq; |
||||
static mempool_t *blk_crypto_bounce_page_pool; |
||||
static struct kmem_cache *blk_crypto_decrypt_work_cache; |
||||
|
||||
bool bio_crypt_fallback_crypted(const struct bio_crypt_ctx *bc) |
||||
{ |
||||
return bc && bc->bc_ksm == blk_crypto_ksm; |
||||
} |
||||
|
||||
/*
|
||||
* This is the key we set when evicting a keyslot. This *should* be the all 0's |
||||
* key, but AES-XTS rejects that key, so we use some random bytes instead. |
||||
*/ |
||||
static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE]; |
||||
|
||||
static void blk_crypto_evict_keyslot(unsigned int slot) |
||||
{ |
||||
struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; |
||||
enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode; |
||||
int err; |
||||
|
||||
WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID); |
||||
|
||||
/* Clear the key in the skcipher */ |
||||
err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key, |
||||
blk_crypto_modes[crypto_mode].keysize); |
||||
WARN_ON(err); |
||||
slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID; |
||||
} |
||||
|
||||
static int blk_crypto_keyslot_program(struct keyslot_manager *ksm, |
||||
const struct blk_crypto_key *key, |
||||
unsigned int slot) |
||||
{ |
||||
struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; |
||||
const enum blk_crypto_mode_num crypto_mode = key->crypto_mode; |
||||
int err; |
||||
|
||||
if (crypto_mode != slotp->crypto_mode && |
||||
slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) { |
||||
blk_crypto_evict_keyslot(slot); |
||||
} |
||||
|
||||
if (!slotp->tfms[crypto_mode]) |
||||
return -ENOMEM; |
||||
slotp->crypto_mode = crypto_mode; |
||||
err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw, |
||||
key->size); |
||||
if (err) { |
||||
blk_crypto_evict_keyslot(slot); |
||||
return err; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
static int blk_crypto_keyslot_evict(struct keyslot_manager *ksm, |
||||
const struct blk_crypto_key *key, |
||||
unsigned int slot) |
||||
{ |
||||
blk_crypto_evict_keyslot(slot); |
||||
return 0; |
||||
} |
||||
|
||||
/*
|
||||
* The crypto API fallback KSM ops - only used for a bio when it specifies a |
||||
* blk_crypto_mode for which we failed to get a keyslot in the device's inline |
||||
* encryption hardware (which probably means the device doesn't have inline |
||||
* encryption hardware that supports that crypto mode). |
||||
*/ |
||||
static const struct keyslot_mgmt_ll_ops blk_crypto_ksm_ll_ops = { |
||||
.keyslot_program = blk_crypto_keyslot_program, |
||||
.keyslot_evict = blk_crypto_keyslot_evict, |
||||
}; |
||||
|
||||
static void blk_crypto_encrypt_endio(struct bio *enc_bio) |
||||
{ |
||||
struct bio *src_bio = enc_bio->bi_private; |
||||
int i; |
||||
|
||||
for (i = 0; i < enc_bio->bi_vcnt; i++) |
||||
mempool_free(enc_bio->bi_io_vec[i].bv_page, |
||||
blk_crypto_bounce_page_pool); |
||||
|
||||
src_bio->bi_status = enc_bio->bi_status; |
||||
|
||||
bio_put(enc_bio); |
||||
bio_endio(src_bio); |
||||
} |
||||
|
||||
static struct bio *blk_crypto_clone_bio(struct bio *bio_src) |
||||
{ |
||||
struct bvec_iter iter; |
||||
struct bio_vec bv; |
||||
struct bio *bio; |
||||
|
||||
bio = bio_alloc_bioset(GFP_NOIO, bio_segments(bio_src), NULL); |
||||
if (!bio) |
||||
return NULL; |
||||
bio->bi_disk = bio_src->bi_disk; |
||||
bio->bi_opf = bio_src->bi_opf; |
||||
bio->bi_ioprio = bio_src->bi_ioprio; |
||||
bio->bi_write_hint = bio_src->bi_write_hint; |
||||
bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; |
||||
bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; |
||||
|
||||
bio_for_each_segment(bv, bio_src, iter) |
||||
bio->bi_io_vec[bio->bi_vcnt++] = bv; |
||||
|
||||
if (bio_integrity(bio_src) && |
||||
bio_integrity_clone(bio, bio_src, GFP_NOIO) < 0) { |
||||
bio_put(bio); |
||||
return NULL; |
||||
} |
||||
|
||||
bio_clone_blkcg_association(bio, bio_src); |
||||
|
||||
return bio; |
||||
} |
||||
|
||||
static int blk_crypto_alloc_cipher_req(struct bio *src_bio, |
||||
struct skcipher_request **ciph_req_ret, |
||||
struct crypto_wait *wait) |
||||
{ |
||||
struct skcipher_request *ciph_req; |
||||
const struct blk_crypto_keyslot *slotp; |
||||
|
||||
slotp = &blk_crypto_keyslots[src_bio->bi_crypt_context->bc_keyslot]; |
||||
ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode], |
||||
GFP_NOIO); |
||||
if (!ciph_req) { |
||||
src_bio->bi_status = BLK_STS_RESOURCE; |
||||
return -ENOMEM; |
||||
} |
||||
|
||||
skcipher_request_set_callback(ciph_req, |
||||
CRYPTO_TFM_REQ_MAY_BACKLOG | |
||||
CRYPTO_TFM_REQ_MAY_SLEEP, |
||||
crypto_req_done, wait); |
||||
*ciph_req_ret = ciph_req; |
||||
return 0; |
||||
} |
||||
|
||||
static int blk_crypto_split_bio_if_needed(struct bio **bio_ptr) |
||||
{ |
||||
struct bio *bio = *bio_ptr; |
||||
unsigned int i = 0; |
||||
unsigned int num_sectors = 0; |
||||
struct bio_vec bv; |
||||
struct bvec_iter iter; |
||||
|
||||
bio_for_each_segment(bv, bio, iter) { |
||||
num_sectors += bv.bv_len >> SECTOR_SHIFT; |
||||
if (++i == BIO_MAX_PAGES) |
||||
break; |
||||
} |
||||
if (num_sectors < bio_sectors(bio)) { |
||||
struct bio *split_bio; |
||||
|
||||
split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL); |
||||
if (!split_bio) { |
||||
bio->bi_status = BLK_STS_RESOURCE; |
||||
return -ENOMEM; |
||||
} |
||||
bio_chain(split_bio, bio); |
||||
generic_make_request(bio); |
||||
*bio_ptr = split_bio; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
union blk_crypto_iv { |
||||
__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
||||
u8 bytes[BLK_CRYPTO_MAX_IV_SIZE]; |
||||
}; |
||||
|
||||
static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], |
||||
union blk_crypto_iv *iv) |
||||
{ |
||||
int i; |
||||
|
||||
for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) |
||||
iv->dun[i] = cpu_to_le64(dun[i]); |
||||
} |
||||
|
||||
/*
|
||||
* The crypto API fallback's encryption routine. |
||||
* Allocate a bounce bio for encryption, encrypt the input bio using crypto API, |
||||
* and replace *bio_ptr with the bounce bio. May split input bio if it's too |
||||
* large. |
||||
*/ |
||||
static int blk_crypto_encrypt_bio(struct bio **bio_ptr) |
||||
{ |
||||
struct bio *src_bio; |
||||
struct skcipher_request *ciph_req = NULL; |
||||
DECLARE_CRYPTO_WAIT(wait); |
||||
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
||||
union blk_crypto_iv iv; |
||||
struct scatterlist src, dst; |
||||
struct bio *enc_bio; |
||||
unsigned int i, j; |
||||
int data_unit_size; |
||||
struct bio_crypt_ctx *bc; |
||||
int err = 0; |
||||
|
||||
/* Split the bio if it's too big for single page bvec */ |
||||
err = blk_crypto_split_bio_if_needed(bio_ptr); |
||||
if (err) |
||||
return err; |
||||
|
||||
src_bio = *bio_ptr; |
||||
bc = src_bio->bi_crypt_context; |
||||
data_unit_size = bc->bc_key->data_unit_size; |
||||
|
||||
/* Allocate bounce bio for encryption */ |
||||
enc_bio = blk_crypto_clone_bio(src_bio); |
||||
if (!enc_bio) { |
||||
src_bio->bi_status = BLK_STS_RESOURCE; |
||||
return -ENOMEM; |
||||
} |
||||
|
||||
/*
|
||||
* Use the crypto API fallback keyslot manager to get a crypto_skcipher |
||||
* for the algorithm and key specified for this bio. |
||||
*/ |
||||
err = bio_crypt_ctx_acquire_keyslot(bc, blk_crypto_ksm); |
||||
if (err) { |
||||
src_bio->bi_status = BLK_STS_IOERR; |
||||
goto out_put_enc_bio; |
||||
} |
||||
|
||||
/* and then allocate an skcipher_request for it */ |
||||
err = blk_crypto_alloc_cipher_req(src_bio, &ciph_req, &wait); |
||||
if (err) |
||||
goto out_release_keyslot; |
||||
|
||||
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); |
||||
sg_init_table(&src, 1); |
||||
sg_init_table(&dst, 1); |
||||
|
||||
skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size, |
||||
iv.bytes); |
||||
|
||||
/* Encrypt each page in the bounce bio */ |
||||
for (i = 0; i < enc_bio->bi_vcnt; i++) { |
||||
struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i]; |
||||
struct page *plaintext_page = enc_bvec->bv_page; |
||||
struct page *ciphertext_page = |
||||
mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO); |
||||
|
||||
enc_bvec->bv_page = ciphertext_page; |
||||
|
||||
if (!ciphertext_page) { |
||||
src_bio->bi_status = BLK_STS_RESOURCE; |
||||
err = -ENOMEM; |
||||
goto out_free_bounce_pages; |
||||
} |
||||
|
||||
sg_set_page(&src, plaintext_page, data_unit_size, |
||||
enc_bvec->bv_offset); |
||||
sg_set_page(&dst, ciphertext_page, data_unit_size, |
||||
enc_bvec->bv_offset); |
||||
|
||||
/* Encrypt each data unit in this page */ |
||||
for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) { |
||||
blk_crypto_dun_to_iv(curr_dun, &iv); |
||||
err = crypto_wait_req(crypto_skcipher_encrypt(ciph_req), |
||||
&wait); |
||||
if (err) { |
||||
i++; |
||||
src_bio->bi_status = BLK_STS_RESOURCE; |
||||
goto out_free_bounce_pages; |
||||
} |
||||
bio_crypt_dun_increment(curr_dun, 1); |
||||
src.offset += data_unit_size; |
||||
dst.offset += data_unit_size; |
||||
} |
||||
} |
||||
|
||||
enc_bio->bi_private = src_bio; |
||||
enc_bio->bi_end_io = blk_crypto_encrypt_endio; |
||||
*bio_ptr = enc_bio; |
||||
|
||||
enc_bio = NULL; |
||||
err = 0; |
||||
goto out_free_ciph_req; |
||||
|
||||
out_free_bounce_pages: |
||||
while (i > 0) |
||||
mempool_free(enc_bio->bi_io_vec[--i].bv_page, |
||||
blk_crypto_bounce_page_pool); |
||||
out_free_ciph_req: |
||||
skcipher_request_free(ciph_req); |
||||
out_release_keyslot: |
||||
bio_crypt_ctx_release_keyslot(bc); |
||||
out_put_enc_bio: |
||||
if (enc_bio) |
||||
bio_put(enc_bio); |
||||
|
||||
return err; |
||||
} |
||||
|
||||
static void blk_crypto_free_fallback_crypt_ctx(struct bio *bio) |
||||
{ |
||||
mempool_free(container_of(bio->bi_crypt_context, |
||||
struct bio_fallback_crypt_ctx, |
||||
crypt_ctx), |
||||
bio_fallback_crypt_ctx_pool); |
||||
bio->bi_crypt_context = NULL; |
||||
} |
||||
|
||||
/*
|
||||
* The crypto API fallback's main decryption routine. |
||||
* Decrypts input bio in place. |
||||
*/ |
||||
static void blk_crypto_decrypt_bio(struct work_struct *work) |
||||
{ |
||||
struct blk_crypto_decrypt_work *decrypt_work = |
||||
container_of(work, struct blk_crypto_decrypt_work, work); |
||||
struct bio *bio = decrypt_work->bio; |
||||
struct skcipher_request *ciph_req = NULL; |
||||
DECLARE_CRYPTO_WAIT(wait); |
||||
struct bio_vec bv; |
||||
struct bvec_iter iter; |
||||
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
||||
union blk_crypto_iv iv; |
||||
struct scatterlist sg; |
||||
struct bio_crypt_ctx *bc = bio->bi_crypt_context; |
||||
struct bio_fallback_crypt_ctx *f_ctx = |
||||
container_of(bc, struct bio_fallback_crypt_ctx, crypt_ctx); |
||||
const int data_unit_size = bc->bc_key->data_unit_size; |
||||
unsigned int i; |
||||
int err; |
||||
|
||||
/*
|
||||
* Use the crypto API fallback keyslot manager to get a crypto_skcipher |
||||
* for the algorithm and key specified for this bio. |
||||
*/ |
||||
if (bio_crypt_ctx_acquire_keyslot(bc, blk_crypto_ksm)) { |
||||
bio->bi_status = BLK_STS_RESOURCE; |
||||
goto out_no_keyslot; |
||||
} |
||||
|
||||
/* and then allocate an skcipher_request for it */ |
||||
err = blk_crypto_alloc_cipher_req(bio, &ciph_req, &wait); |
||||
if (err) |
||||
goto out; |
||||
|
||||
memcpy(curr_dun, f_ctx->fallback_dun, sizeof(curr_dun)); |
||||
sg_init_table(&sg, 1); |
||||
skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size, |
||||
iv.bytes); |
||||
|
||||
/* Decrypt each segment in the bio */ |
||||
__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) { |
||||
struct page *page = bv.bv_page; |
||||
|
||||
sg_set_page(&sg, page, data_unit_size, bv.bv_offset); |
||||
|
||||
/* Decrypt each data unit in the segment */ |
||||
for (i = 0; i < bv.bv_len; i += data_unit_size) { |
||||
blk_crypto_dun_to_iv(curr_dun, &iv); |
||||
if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req), |
||||
&wait)) { |
||||
bio->bi_status = BLK_STS_IOERR; |
||||
goto out; |
||||
} |
||||
bio_crypt_dun_increment(curr_dun, 1); |
||||
sg.offset += data_unit_size; |
||||
} |
||||
} |
||||
|
||||
out: |
||||
skcipher_request_free(ciph_req); |
||||
bio_crypt_ctx_release_keyslot(bc); |
||||
out_no_keyslot: |
||||
kmem_cache_free(blk_crypto_decrypt_work_cache, decrypt_work); |
||||
blk_crypto_free_fallback_crypt_ctx(bio); |
||||
bio_endio(bio); |
||||
} |
||||
|
||||
/*
|
||||
* Queue bio for decryption. |
||||
* Returns true iff bio was queued for decryption. |
||||
*/ |
||||
bool blk_crypto_queue_decrypt_bio(struct bio *bio) |
||||
{ |
||||
struct blk_crypto_decrypt_work *decrypt_work; |
||||
|
||||
/* If there was an IO error, don't queue for decrypt. */ |
||||
if (bio->bi_status) |
||||
goto out; |
||||
|
||||
decrypt_work = kmem_cache_zalloc(blk_crypto_decrypt_work_cache, |
||||
GFP_ATOMIC); |
||||
if (!decrypt_work) { |
||||
bio->bi_status = BLK_STS_RESOURCE; |
||||
goto out; |
||||
} |
||||
|
||||
INIT_WORK(&decrypt_work->work, blk_crypto_decrypt_bio); |
||||
decrypt_work->bio = bio; |
||||
queue_work(blk_crypto_wq, &decrypt_work->work); |
||||
|
||||
return true; |
||||
out: |
||||
blk_crypto_free_fallback_crypt_ctx(bio); |
||||
return false; |
||||
} |
||||
|
||||
/**
|
||||
* blk_crypto_start_using_mode() - Start using a crypto algorithm on a device |
||||
* @mode_num: the blk_crypto_mode we want to allocate ciphers for. |
||||
* @data_unit_size: the data unit size that will be used |
||||
* @q: the request queue for the device |
||||
* |
||||
* Upper layers must call this function to ensure that a the crypto API fallback |
||||
* has transforms for this algorithm, if they become necessary. |
||||
* |
||||
* Return: 0 on success and -err on error. |
||||
*/ |
||||
int blk_crypto_start_using_mode(enum blk_crypto_mode_num mode_num, |
||||
unsigned int data_unit_size, |
||||
struct request_queue *q) |
||||
{ |
||||
struct blk_crypto_keyslot *slotp; |
||||
unsigned int i; |
||||
int err = 0; |
||||
|
||||
/*
|
||||
* Fast path |
||||
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] |
||||
* for each i are visible before we try to access them. |
||||
*/ |
||||
if (likely(smp_load_acquire(&tfms_inited[mode_num]))) |
||||
return 0; |
||||
|
||||
/*
|
||||
* If the keyslot manager of the request queue supports this |
||||
* crypto mode, then we don't need to allocate this mode. |
||||
*/ |
||||
if (keyslot_manager_crypto_mode_supported(q->ksm, mode_num, |
||||
data_unit_size)) |
||||
return 0; |
||||
|
||||
mutex_lock(&tfms_init_lock); |
||||
if (likely(tfms_inited[mode_num])) |
||||
goto out; |
||||
|
||||
for (i = 0; i < blk_crypto_num_keyslots; i++) { |
||||
slotp = &blk_crypto_keyslots[i]; |
||||
slotp->tfms[mode_num] = crypto_alloc_skcipher( |
||||
blk_crypto_modes[mode_num].cipher_str, |
||||
0, 0); |
||||
if (IS_ERR(slotp->tfms[mode_num])) { |
||||
err = PTR_ERR(slotp->tfms[mode_num]); |
||||
slotp->tfms[mode_num] = NULL; |
||||
goto out_free_tfms; |
||||
} |
||||
|
||||
crypto_skcipher_set_flags(slotp->tfms[mode_num], |
||||
CRYPTO_TFM_REQ_WEAK_KEY); |
||||
} |
||||
|
||||
/*
|
||||
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] |
||||
* for each i are visible before we set tfms_inited[mode_num]. |
||||
*/ |
||||
smp_store_release(&tfms_inited[mode_num], true); |
||||
goto out; |
||||
|
||||
out_free_tfms: |
||||
for (i = 0; i < blk_crypto_num_keyslots; i++) { |
||||
slotp = &blk_crypto_keyslots[i]; |
||||
crypto_free_skcipher(slotp->tfms[mode_num]); |
||||
slotp->tfms[mode_num] = NULL; |
||||
} |
||||
out: |
||||
mutex_unlock(&tfms_init_lock); |
||||
return err; |
||||
} |
||||
|
||||
int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) |
||||
{ |
||||
return keyslot_manager_evict_key(blk_crypto_ksm, key); |
||||
} |
||||
|
||||
int blk_crypto_fallback_submit_bio(struct bio **bio_ptr) |
||||
{ |
||||
struct bio *bio = *bio_ptr; |
||||
struct bio_crypt_ctx *bc = bio->bi_crypt_context; |
||||
struct bio_fallback_crypt_ctx *f_ctx; |
||||
|
||||
if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_mode])) { |
||||
bio->bi_status = BLK_STS_IOERR; |
||||
return -EIO; |
||||
} |
||||
|
||||
if (bio_data_dir(bio) == WRITE) |
||||
return blk_crypto_encrypt_bio(bio_ptr); |
||||
|
||||
/*
|
||||
* Mark bio as fallback crypted and replace the bio_crypt_ctx with |
||||
* another one contained in a bio_fallback_crypt_ctx, so that the |
||||
* fallback has space to store the info it needs for decryption. |
||||
*/ |
||||
bc->bc_ksm = blk_crypto_ksm; |
||||
f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO); |
||||
f_ctx->crypt_ctx = *bc; |
||||
memcpy(f_ctx->fallback_dun, bc->bc_dun, sizeof(f_ctx->fallback_dun)); |
||||
f_ctx->crypt_iter = bio->bi_iter; |
||||
|
||||
bio_crypt_free_ctx(bio); |
||||
bio->bi_crypt_context = &f_ctx->crypt_ctx; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int __init blk_crypto_fallback_init(void) |
||||
{ |
||||
int i; |
||||
unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX]; |
||||
|
||||
prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE); |
||||
|
||||
/* All blk-crypto modes have a crypto API fallback. */ |
||||
for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) |
||||
crypto_mode_supported[i] = 0xFFFFFFFF; |
||||
crypto_mode_supported[BLK_ENCRYPTION_MODE_INVALID] = 0; |
||||
|
||||
blk_crypto_ksm = keyslot_manager_create(blk_crypto_num_keyslots, |
||||
&blk_crypto_ksm_ll_ops, |
||||
crypto_mode_supported, NULL); |
||||
if (!blk_crypto_ksm) |
||||
return -ENOMEM; |
||||
|
||||
blk_crypto_wq = alloc_workqueue("blk_crypto_wq", |
||||
WQ_UNBOUND | WQ_HIGHPRI | |
||||
WQ_MEM_RECLAIM, num_online_cpus()); |
||||
if (!blk_crypto_wq) |
||||
return -ENOMEM; |
||||
|
||||
blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots, |
||||
sizeof(blk_crypto_keyslots[0]), |
||||
GFP_KERNEL); |
||||
if (!blk_crypto_keyslots) |
||||
return -ENOMEM; |
||||
|
||||
blk_crypto_bounce_page_pool = |
||||
mempool_create_page_pool(num_prealloc_bounce_pg, 0); |
||||
if (!blk_crypto_bounce_page_pool) |
||||
return -ENOMEM; |
||||
|
||||
blk_crypto_decrypt_work_cache = KMEM_CACHE(blk_crypto_decrypt_work, |
||||
SLAB_RECLAIM_ACCOUNT); |
||||
if (!blk_crypto_decrypt_work_cache) |
||||
return -ENOMEM; |
||||
|
||||
bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0); |
||||
if (!bio_fallback_crypt_ctx_cache) |
||||
return -ENOMEM; |
||||
|
||||
bio_fallback_crypt_ctx_pool = |
||||
mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs, |
||||
bio_fallback_crypt_ctx_cache); |
||||
if (!bio_fallback_crypt_ctx_pool) |
||||
return -ENOMEM; |
||||
|
||||
return 0; |
||||
} |
@ -0,0 +1,58 @@ |
||||
/* SPDX-License-Identifier: GPL-2.0 */ |
||||
/*
|
||||
* Copyright 2019 Google LLC |
||||
*/ |
||||
|
||||
#ifndef __LINUX_BLK_CRYPTO_INTERNAL_H |
||||
#define __LINUX_BLK_CRYPTO_INTERNAL_H |
||||
|
||||
#include <linux/bio.h> |
||||
|
||||
/* Represents a crypto mode supported by blk-crypto */ |
||||
struct blk_crypto_mode { |
||||
const char *cipher_str; /* crypto API name (for fallback case) */ |
||||
unsigned int keysize; /* key size in bytes */ |
||||
unsigned int ivsize; /* iv size in bytes */ |
||||
}; |
||||
|
||||
extern const struct blk_crypto_mode blk_crypto_modes[]; |
||||
|
||||
#ifdef CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK |
||||
|
||||
int blk_crypto_fallback_submit_bio(struct bio **bio_ptr); |
||||
|
||||
bool blk_crypto_queue_decrypt_bio(struct bio *bio); |
||||
|
||||
int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key); |
||||
|
||||
bool bio_crypt_fallback_crypted(const struct bio_crypt_ctx *bc); |
||||
|
||||
#else /* CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK */ |
||||
|
||||
static inline bool bio_crypt_fallback_crypted(const struct bio_crypt_ctx *bc) |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
static inline int blk_crypto_fallback_submit_bio(struct bio **bio_ptr) |
||||
{ |
||||
pr_warn_once("blk-crypto crypto API fallback disabled; failing request"); |
||||
(*bio_ptr)->bi_status = BLK_STS_NOTSUPP; |
||||
return -EIO; |
||||
} |
||||
|
||||
static inline bool blk_crypto_queue_decrypt_bio(struct bio *bio) |
||||
{ |
||||
WARN_ON(1); |
||||
return false; |
||||
} |
||||
|
||||
static inline int |
||||
blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) |
||||
{ |
||||
return 0; |
||||
} |
||||
|
||||
#endif /* CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK */ |
||||
|
||||
#endif /* __LINUX_BLK_CRYPTO_INTERNAL_H */ |
Loading…
Reference in new issue