This change adds TILE-Gx SIMD instructions to the software raid (md), modeling the Altivec implementation. This is only for Syndrome generation; there is more that could be done to improve recovery, as in the recent Intel SSE3 recovery implementation. The code unrolls 8 times; this turns out to be the best on tilegx hardware among the set 1, 2, 4, 8 or 16. The code reads one cache-line of data from each disk, stores P and Q then goes to the next cache-line. The test code in sys/linux/lib/raid6/test reports 2008 MB/s data read rate for syndrome generation using 18 disks (16 data and 2 parity). It was 1512 MB/s before this SIMD optimizations. This is running on 1 core with all the data in cache. This is based on the paper The Mathematics of RAID-6. (http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf). Signed-off-by: Ken Steele <ken@tilera.com> Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: NeilBrown <neilb@suse.de>tirimbino
parent
275c51c4e3
commit
ae77cbc1e7
@ -0,0 +1,86 @@ |
||||
/* -*- linux-c -*- ------------------------------------------------------- * |
||||
* |
||||
* Copyright 2002 H. Peter Anvin - All Rights Reserved |
||||
* Copyright 2012 Tilera Corporation - All Rights Reserved |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation, Inc., 53 Temple Place Ste 330, |
||||
* Boston MA 02111-1307, USA; either version 2 of the License, or |
||||
* (at your option) any later version; incorporated herein by reference. |
||||
* |
||||
* ----------------------------------------------------------------------- */ |
||||
|
||||
/* |
||||
* tilegx$#.c |
||||
* |
||||
* $#-way unrolled TILE-Gx SIMD for RAID-6 math. |
||||
* |
||||
* This file is postprocessed using unroll.awk. |
||||
* |
||||
*/ |
||||
|
||||
#include <linux/raid/pq.h> |
||||
|
||||
/* Create 8 byte copies of constant byte */ |
||||
# define NBYTES(x) (__insn_v1addi(0, x)) |
||||
# define NSIZE 8 |
||||
|
||||
/* |
||||
* The SHLBYTE() operation shifts each byte left by 1, *not* |
||||
* rolling over into the next byte |
||||
*/ |
||||
static inline __attribute_const__ u64 SHLBYTE(u64 v) |
||||
{ |
||||
/* Vector One Byte Shift Left Immediate. */ |
||||
return __insn_v1shli(v, 1); |
||||
} |
||||
|
||||
/* |
||||
* The MASK() operation returns 0xFF in any byte for which the high |
||||
* bit is 1, 0x00 for any byte for which the high bit is 0. |
||||
*/ |
||||
static inline __attribute_const__ u64 MASK(u64 v) |
||||
{ |
||||
/* Vector One Byte Shift Right Signed Immediate. */ |
||||
return __insn_v1shrsi(v, 7); |
||||
} |
||||
|
||||
|
||||
void raid6_tilegx$#_gen_syndrome(int disks, size_t bytes, void **ptrs) |
||||
{ |
||||
u8 **dptr = (u8 **)ptrs; |
||||
u64 *p, *q; |
||||
int d, z, z0; |
||||
|
||||
u64 wd$$, wq$$, wp$$, w1$$, w2$$; |
||||
u64 x1d = NBYTES(0x1d); |
||||
u64 * z0ptr; |
||||
|
||||
z0 = disks - 3; /* Highest data disk */ |
||||
p = (u64 *)dptr[z0+1]; /* XOR parity */ |
||||
q = (u64 *)dptr[z0+2]; /* RS syndrome */ |
||||
|
||||
z0ptr = (u64 *)&dptr[z0][0]; |
||||
for ( d = 0 ; d < bytes ; d += NSIZE*$# ) { |
||||
wq$$ = wp$$ = *z0ptr++; |
||||
for ( z = z0-1 ; z >= 0 ; z-- ) { |
||||
wd$$ = *(u64 *)&dptr[z][d+$$*NSIZE]; |
||||
wp$$ = wp$$ ^ wd$$; |
||||
w2$$ = MASK(wq$$); |
||||
w1$$ = SHLBYTE(wq$$); |
||||
w2$$ = w2$$ & x1d; |
||||
w1$$ = w1$$ ^ w2$$; |
||||
wq$$ = w1$$ ^ wd$$; |
||||
} |
||||
*p++ = wp$$; |
||||
*q++ = wq$$; |
||||
} |
||||
} |
||||
|
||||
const struct raid6_calls raid6_tilegx$# = { |
||||
raid6_tilegx$#_gen_syndrome, |
||||
NULL, |
||||
"tilegx$#", |
||||
0 |
||||
}; |
Loading…
Reference in new issue