mm/zsmalloc: adjust order of functions

Currently functions in zsmalloc.c does not arranged in a readable and
reasonable sequence.  With the more and more functions added, we may
meet below inconvenience.  For example:

Current functions:

    void zs_init()
    {
    }

    static void get_maxobj_per_zspage()
    {
    }

Then I want to add a func_1() which is called from zs_init(), and this
new added function func_1() will used get_maxobj_per_zspage() which is
defined below zs_init().

    void func_1()
    {
        get_maxobj_per_zspage()
    }

    void zs_init()
    {
        func_1()
    }

    static void get_maxobj_per_zspage()
    {
    }

This will cause compiling issue. So we must add a declaration:

    static void get_maxobj_per_zspage();

before func_1() if we do not put get_maxobj_per_zspage() before
func_1().

In addition, puting module_[init|exit] functions at the bottom of the
file conforms to our habit.

So, this patch ajusts function sequence as:

    /* helper functions */
    ...
    obj_location_to_handle()
    ...

    /* Some exported functions */
    ...

    zs_map_object()
    zs_unmap_object()

    zs_malloc()
    zs_free()

    zs_init()
    zs_exit()

Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tirimbino
Ganesh Mahendran 10 years ago committed by Linus Torvalds
parent 136f49b917
commit 66cdef663c
  1. 374
      mm/zsmalloc.c

@ -884,19 +884,6 @@ static struct notifier_block zs_cpu_nb = {
.notifier_call = zs_cpu_notifier
};
static void zs_unregister_cpu_notifier(void)
{
int cpu;
cpu_notifier_register_begin();
for_each_online_cpu(cpu)
zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
__unregister_cpu_notifier(&zs_cpu_nb);
cpu_notifier_register_done();
}
static int zs_register_cpu_notifier(void)
{
int cpu, uninitialized_var(ret);
@ -914,40 +901,28 @@ static int zs_register_cpu_notifier(void)
return notifier_to_errno(ret);
}
static void init_zs_size_classes(void)
static void zs_unregister_cpu_notifier(void)
{
int nr;
int cpu;
nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
nr += 1;
cpu_notifier_register_begin();
zs_size_classes = nr;
}
for_each_online_cpu(cpu)
zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
__unregister_cpu_notifier(&zs_cpu_nb);
static void __exit zs_exit(void)
{
#ifdef CONFIG_ZPOOL
zpool_unregister_driver(&zs_zpool_driver);
#endif
zs_unregister_cpu_notifier();
cpu_notifier_register_done();
}
static int __init zs_init(void)
static void init_zs_size_classes(void)
{
int ret = zs_register_cpu_notifier();
if (ret) {
zs_unregister_cpu_notifier();
return ret;
}
int nr;
init_zs_size_classes();
nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
nr += 1;
#ifdef CONFIG_ZPOOL
zpool_register_driver(&zs_zpool_driver);
#endif
return 0;
zs_size_classes = nr;
}
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
@ -967,113 +942,101 @@ static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
return true;
}
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);
/**
* zs_create_pool - Creates an allocation pool to work from.
* @flags: allocation flags used to allocate pool metadata
* zs_map_object - get address of allocated object from handle.
* @pool: pool from which the object was allocated
* @handle: handle returned from zs_malloc
*
* This function must be called before anything when using
* the zsmalloc allocator.
* Before using an object allocated from zs_malloc, it must be mapped using
* this function. When done with the object, it must be unmapped using
* zs_unmap_object.
*
* On success, a pointer to the newly created pool is returned,
* otherwise NULL.
* Only one object can be mapped per cpu at a time. There is no protection
* against nested mappings.
*
* This function returns with preemption and page faults disabled.
*/
struct zs_pool *zs_create_pool(gfp_t flags)
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
enum zs_mapmode mm)
{
int i;
struct zs_pool *pool;
struct size_class *prev_class = NULL;
struct page *page;
unsigned long obj_idx, off;
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool)
return NULL;
unsigned int class_idx;
enum fullness_group fg;
struct size_class *class;
struct mapping_area *area;
struct page *pages[2];
pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
GFP_KERNEL);
if (!pool->size_class) {
kfree(pool);
return NULL;
}
BUG_ON(!handle);
/*
* Iterate reversly, because, size of size_class that we want to use
* for merging should be larger or equal to current size.
* Because we use per-cpu mapping areas shared among the
* pools/users, we can't allow mapping in interrupt context
* because it can corrupt another users mappings.
*/
for (i = zs_size_classes - 1; i >= 0; i--) {
int size;
int pages_per_zspage;
struct size_class *class;
size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
if (size > ZS_MAX_ALLOC_SIZE)
size = ZS_MAX_ALLOC_SIZE;
pages_per_zspage = get_pages_per_zspage(size);
/*
* size_class is used for normal zsmalloc operation such
* as alloc/free for that size. Although it is natural that we
* have one size_class for each size, there is a chance that we
* can get more memory utilization if we use one size_class for
* many different sizes whose size_class have same
* characteristics. So, we makes size_class point to
* previous size_class if possible.
*/
if (prev_class) {
if (can_merge(prev_class, size, pages_per_zspage)) {
pool->size_class[i] = prev_class;
continue;
}
}
class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
if (!class)
goto err;
BUG_ON(in_interrupt());
class->size = size;
class->index = i;
class->pages_per_zspage = pages_per_zspage;
spin_lock_init(&class->lock);
pool->size_class[i] = class;
obj_handle_to_location(handle, &page, &obj_idx);
get_zspage_mapping(get_first_page(page), &class_idx, &fg);
class = pool->size_class[class_idx];
off = obj_idx_to_offset(page, obj_idx, class->size);
prev_class = class;
area = &get_cpu_var(zs_map_area);
area->vm_mm = mm;
if (off + class->size <= PAGE_SIZE) {
/* this object is contained entirely within a page */
area->vm_addr = kmap_atomic(page);
return area->vm_addr + off;
}
pool->flags = flags;
return pool;
/* this object spans two pages */
pages[0] = page;
pages[1] = get_next_page(page);
BUG_ON(!pages[1]);
err:
zs_destroy_pool(pool);
return NULL;
return __zs_map_object(area, pages, off, class->size);
}
EXPORT_SYMBOL_GPL(zs_create_pool);
EXPORT_SYMBOL_GPL(zs_map_object);
void zs_destroy_pool(struct zs_pool *pool)
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
{
int i;
struct page *page;
unsigned long obj_idx, off;
for (i = 0; i < zs_size_classes; i++) {
int fg;
struct size_class *class = pool->size_class[i];
unsigned int class_idx;
enum fullness_group fg;
struct size_class *class;
struct mapping_area *area;
if (!class)
continue;
BUG_ON(!handle);
if (class->index != i)
continue;
obj_handle_to_location(handle, &page, &obj_idx);
get_zspage_mapping(get_first_page(page), &class_idx, &fg);
class = pool->size_class[class_idx];
off = obj_idx_to_offset(page, obj_idx, class->size);
for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
if (class->fullness_list[fg]) {
pr_info("Freeing non-empty class with size %db, fullness group %d\n",
class->size, fg);
}
}
kfree(class);
}
area = this_cpu_ptr(&zs_map_area);
if (off + class->size <= PAGE_SIZE)
kunmap_atomic(area->vm_addr);
else {
struct page *pages[2];
kfree(pool->size_class);
kfree(pool);
pages[0] = page;
pages[1] = get_next_page(page);
BUG_ON(!pages[1]);
__zs_unmap_object(area, pages, off, class->size);
}
put_cpu_var(zs_map_area);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
EXPORT_SYMBOL_GPL(zs_unmap_object);
/**
* zs_malloc - Allocate block of given size from pool.
@ -1176,100 +1139,137 @@ void zs_free(struct zs_pool *pool, unsigned long obj)
EXPORT_SYMBOL_GPL(zs_free);
/**
* zs_map_object - get address of allocated object from handle.
* @pool: pool from which the object was allocated
* @handle: handle returned from zs_malloc
*
* Before using an object allocated from zs_malloc, it must be mapped using
* this function. When done with the object, it must be unmapped using
* zs_unmap_object.
* zs_create_pool - Creates an allocation pool to work from.
* @flags: allocation flags used to allocate pool metadata
*
* Only one object can be mapped per cpu at a time. There is no protection
* against nested mappings.
* This function must be called before anything when using
* the zsmalloc allocator.
*
* This function returns with preemption and page faults disabled.
* On success, a pointer to the newly created pool is returned,
* otherwise NULL.
*/
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
enum zs_mapmode mm)
struct zs_pool *zs_create_pool(gfp_t flags)
{
struct page *page;
unsigned long obj_idx, off;
int i;
struct zs_pool *pool;
struct size_class *prev_class = NULL;
unsigned int class_idx;
enum fullness_group fg;
struct size_class *class;
struct mapping_area *area;
struct page *pages[2];
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool)
return NULL;
BUG_ON(!handle);
pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
GFP_KERNEL);
if (!pool->size_class) {
kfree(pool);
return NULL;
}
/*
* Because we use per-cpu mapping areas shared among the
* pools/users, we can't allow mapping in interrupt context
* because it can corrupt another users mappings.
* Iterate reversly, because, size of size_class that we want to use
* for merging should be larger or equal to current size.
*/
BUG_ON(in_interrupt());
for (i = zs_size_classes - 1; i >= 0; i--) {
int size;
int pages_per_zspage;
struct size_class *class;
obj_handle_to_location(handle, &page, &obj_idx);
get_zspage_mapping(get_first_page(page), &class_idx, &fg);
class = pool->size_class[class_idx];
off = obj_idx_to_offset(page, obj_idx, class->size);
size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
if (size > ZS_MAX_ALLOC_SIZE)
size = ZS_MAX_ALLOC_SIZE;
pages_per_zspage = get_pages_per_zspage(size);
area = &get_cpu_var(zs_map_area);
area->vm_mm = mm;
if (off + class->size <= PAGE_SIZE) {
/* this object is contained entirely within a page */
area->vm_addr = kmap_atomic(page);
return area->vm_addr + off;
/*
* size_class is used for normal zsmalloc operation such
* as alloc/free for that size. Although it is natural that we
* have one size_class for each size, there is a chance that we
* can get more memory utilization if we use one size_class for
* many different sizes whose size_class have same
* characteristics. So, we makes size_class point to
* previous size_class if possible.
*/
if (prev_class) {
if (can_merge(prev_class, size, pages_per_zspage)) {
pool->size_class[i] = prev_class;
continue;
}
}
class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
if (!class)
goto err;
class->size = size;
class->index = i;
class->pages_per_zspage = pages_per_zspage;
spin_lock_init(&class->lock);
pool->size_class[i] = class;
prev_class = class;
}
/* this object spans two pages */
pages[0] = page;
pages[1] = get_next_page(page);
BUG_ON(!pages[1]);
pool->flags = flags;
return __zs_map_object(area, pages, off, class->size);
return pool;
err:
zs_destroy_pool(pool);
return NULL;
}
EXPORT_SYMBOL_GPL(zs_map_object);
EXPORT_SYMBOL_GPL(zs_create_pool);
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
void zs_destroy_pool(struct zs_pool *pool)
{
struct page *page;
unsigned long obj_idx, off;
int i;
unsigned int class_idx;
enum fullness_group fg;
struct size_class *class;
struct mapping_area *area;
for (i = 0; i < zs_size_classes; i++) {
int fg;
struct size_class *class = pool->size_class[i];
BUG_ON(!handle);
if (!class)
continue;
obj_handle_to_location(handle, &page, &obj_idx);
get_zspage_mapping(get_first_page(page), &class_idx, &fg);
class = pool->size_class[class_idx];
off = obj_idx_to_offset(page, obj_idx, class->size);
if (class->index != i)
continue;
area = this_cpu_ptr(&zs_map_area);
if (off + class->size <= PAGE_SIZE)
kunmap_atomic(area->vm_addr);
else {
struct page *pages[2];
for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
if (class->fullness_list[fg]) {
pr_info("Freeing non-empty class with size %db, fullness group %d\n",
class->size, fg);
}
}
kfree(class);
}
pages[0] = page;
pages[1] = get_next_page(page);
BUG_ON(!pages[1]);
kfree(pool->size_class);
kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
__zs_unmap_object(area, pages, off, class->size);
static int __init zs_init(void)
{
int ret = zs_register_cpu_notifier();
if (ret) {
zs_unregister_cpu_notifier();
return ret;
}
put_cpu_var(zs_map_area);
init_zs_size_classes();
#ifdef CONFIG_ZPOOL
zpool_register_driver(&zs_zpool_driver);
#endif
return 0;
}
EXPORT_SYMBOL_GPL(zs_unmap_object);
unsigned long zs_get_total_pages(struct zs_pool *pool)
static void __exit zs_exit(void)
{
return atomic_long_read(&pool->pages_allocated);
#ifdef CONFIG_ZPOOL
zpool_unregister_driver(&zs_zpool_driver);
#endif
zs_unregister_cpu_notifier();
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);
module_init(zs_init);
module_exit(zs_exit);

Loading…
Cancel
Save