Add an imx6q-cpufreq driver for Freescale i.MX6Q SoC to handle the hardware specific frequency and voltage scaling requirements. The driver supports module build and is instantiated by the platform device/driver mechanism, so that it will not be instantiated on other platforms, as IMX is built with multiplatform support. Signed-off-by: Shawn Guo <shawn.guo@linaro.org> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>tirimbino
parent
73bf0fc2b0
commit
1dd538f072
@ -0,0 +1,336 @@ |
||||
/*
|
||||
* Copyright (C) 2013 Freescale Semiconductor, Inc. |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License version 2 as |
||||
* published by the Free Software Foundation. |
||||
*/ |
||||
|
||||
#include <linux/clk.h> |
||||
#include <linux/cpufreq.h> |
||||
#include <linux/delay.h> |
||||
#include <linux/err.h> |
||||
#include <linux/module.h> |
||||
#include <linux/of.h> |
||||
#include <linux/opp.h> |
||||
#include <linux/platform_device.h> |
||||
#include <linux/regulator/consumer.h> |
||||
|
||||
#define PU_SOC_VOLTAGE_NORMAL 1250000 |
||||
#define PU_SOC_VOLTAGE_HIGH 1275000 |
||||
#define FREQ_1P2_GHZ 1200000000 |
||||
|
||||
static struct regulator *arm_reg; |
||||
static struct regulator *pu_reg; |
||||
static struct regulator *soc_reg; |
||||
|
||||
static struct clk *arm_clk; |
||||
static struct clk *pll1_sys_clk; |
||||
static struct clk *pll1_sw_clk; |
||||
static struct clk *step_clk; |
||||
static struct clk *pll2_pfd2_396m_clk; |
||||
|
||||
static struct device *cpu_dev; |
||||
static struct cpufreq_frequency_table *freq_table; |
||||
static unsigned int transition_latency; |
||||
|
||||
static int imx6q_verify_speed(struct cpufreq_policy *policy) |
||||
{ |
||||
return cpufreq_frequency_table_verify(policy, freq_table); |
||||
} |
||||
|
||||
static unsigned int imx6q_get_speed(unsigned int cpu) |
||||
{ |
||||
return clk_get_rate(arm_clk) / 1000; |
||||
} |
||||
|
||||
static int imx6q_set_target(struct cpufreq_policy *policy, |
||||
unsigned int target_freq, unsigned int relation) |
||||
{ |
||||
struct cpufreq_freqs freqs; |
||||
struct opp *opp; |
||||
unsigned long freq_hz, volt, volt_old; |
||||
unsigned int index, cpu; |
||||
int ret; |
||||
|
||||
ret = cpufreq_frequency_table_target(policy, freq_table, target_freq, |
||||
relation, &index); |
||||
if (ret) { |
||||
dev_err(cpu_dev, "failed to match target frequency %d: %d\n", |
||||
target_freq, ret); |
||||
return ret; |
||||
} |
||||
|
||||
freqs.new = freq_table[index].frequency; |
||||
freq_hz = freqs.new * 1000; |
||||
freqs.old = clk_get_rate(arm_clk) / 1000; |
||||
|
||||
if (freqs.old == freqs.new) |
||||
return 0; |
||||
|
||||
for_each_online_cpu(cpu) { |
||||
freqs.cpu = cpu; |
||||
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
||||
} |
||||
|
||||
rcu_read_lock(); |
||||
opp = opp_find_freq_ceil(cpu_dev, &freq_hz); |
||||
if (IS_ERR(opp)) { |
||||
rcu_read_unlock(); |
||||
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); |
||||
return PTR_ERR(opp); |
||||
} |
||||
|
||||
volt = opp_get_voltage(opp); |
||||
rcu_read_unlock(); |
||||
volt_old = regulator_get_voltage(arm_reg); |
||||
|
||||
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", |
||||
freqs.old / 1000, volt_old / 1000, |
||||
freqs.new / 1000, volt / 1000); |
||||
|
||||
/* scaling up? scale voltage before frequency */ |
||||
if (freqs.new > freqs.old) { |
||||
ret = regulator_set_voltage_tol(arm_reg, volt, 0); |
||||
if (ret) { |
||||
dev_err(cpu_dev, |
||||
"failed to scale vddarm up: %d\n", ret); |
||||
return ret; |
||||
} |
||||
|
||||
/*
|
||||
* Need to increase vddpu and vddsoc for safety |
||||
* if we are about to run at 1.2 GHz. |
||||
*/ |
||||
if (freqs.new == FREQ_1P2_GHZ / 1000) { |
||||
regulator_set_voltage_tol(pu_reg, |
||||
PU_SOC_VOLTAGE_HIGH, 0); |
||||
regulator_set_voltage_tol(soc_reg, |
||||
PU_SOC_VOLTAGE_HIGH, 0); |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
* The setpoints are selected per PLL/PDF frequencies, so we need to |
||||
* reprogram PLL for frequency scaling. The procedure of reprogramming |
||||
* PLL1 is as below. |
||||
* |
||||
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it |
||||
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it |
||||
* - Disable pll2_pfd2_396m_clk |
||||
*/ |
||||
clk_prepare_enable(pll2_pfd2_396m_clk); |
||||
clk_set_parent(step_clk, pll2_pfd2_396m_clk); |
||||
clk_set_parent(pll1_sw_clk, step_clk); |
||||
if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { |
||||
clk_set_rate(pll1_sys_clk, freqs.new * 1000); |
||||
/*
|
||||
* If we are leaving 396 MHz set-point, we need to enable |
||||
* pll1_sys_clk and disable pll2_pfd2_396m_clk to keep |
||||
* their use count correct. |
||||
*/ |
||||
if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) { |
||||
clk_prepare_enable(pll1_sys_clk); |
||||
clk_disable_unprepare(pll2_pfd2_396m_clk); |
||||
} |
||||
clk_set_parent(pll1_sw_clk, pll1_sys_clk); |
||||
clk_disable_unprepare(pll2_pfd2_396m_clk); |
||||
} else { |
||||
/*
|
||||
* Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient |
||||
* to provide the frequency. |
||||
*/ |
||||
clk_disable_unprepare(pll1_sys_clk); |
||||
} |
||||
|
||||
/* Ensure the arm clock divider is what we expect */ |
||||
ret = clk_set_rate(arm_clk, freqs.new * 1000); |
||||
if (ret) { |
||||
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); |
||||
regulator_set_voltage_tol(arm_reg, volt_old, 0); |
||||
return ret; |
||||
} |
||||
|
||||
/* scaling down? scale voltage after frequency */ |
||||
if (freqs.new < freqs.old) { |
||||
ret = regulator_set_voltage_tol(arm_reg, volt, 0); |
||||
if (ret) |
||||
dev_warn(cpu_dev, |
||||
"failed to scale vddarm down: %d\n", ret); |
||||
|
||||
if (freqs.old == FREQ_1P2_GHZ / 1000) { |
||||
regulator_set_voltage_tol(pu_reg, |
||||
PU_SOC_VOLTAGE_NORMAL, 0); |
||||
regulator_set_voltage_tol(soc_reg, |
||||
PU_SOC_VOLTAGE_NORMAL, 0); |
||||
} |
||||
} |
||||
|
||||
for_each_online_cpu(cpu) { |
||||
freqs.cpu = cpu; |
||||
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static int imx6q_cpufreq_init(struct cpufreq_policy *policy) |
||||
{ |
||||
int ret; |
||||
|
||||
ret = cpufreq_frequency_table_cpuinfo(policy, freq_table); |
||||
if (ret) { |
||||
dev_err(cpu_dev, "invalid frequency table: %d\n", ret); |
||||
return ret; |
||||
} |
||||
|
||||
policy->cpuinfo.transition_latency = transition_latency; |
||||
policy->cur = clk_get_rate(arm_clk) / 1000; |
||||
cpumask_setall(policy->cpus); |
||||
cpufreq_frequency_table_get_attr(freq_table, policy->cpu); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static int imx6q_cpufreq_exit(struct cpufreq_policy *policy) |
||||
{ |
||||
cpufreq_frequency_table_put_attr(policy->cpu); |
||||
return 0; |
||||
} |
||||
|
||||
static struct freq_attr *imx6q_cpufreq_attr[] = { |
||||
&cpufreq_freq_attr_scaling_available_freqs, |
||||
NULL, |
||||
}; |
||||
|
||||
static struct cpufreq_driver imx6q_cpufreq_driver = { |
||||
.verify = imx6q_verify_speed, |
||||
.target = imx6q_set_target, |
||||
.get = imx6q_get_speed, |
||||
.init = imx6q_cpufreq_init, |
||||
.exit = imx6q_cpufreq_exit, |
||||
.name = "imx6q-cpufreq", |
||||
.attr = imx6q_cpufreq_attr, |
||||
}; |
||||
|
||||
static int imx6q_cpufreq_probe(struct platform_device *pdev) |
||||
{ |
||||
struct device_node *np; |
||||
struct opp *opp; |
||||
unsigned long min_volt, max_volt; |
||||
int num, ret; |
||||
|
||||
cpu_dev = &pdev->dev; |
||||
|
||||
np = of_find_node_by_path("/cpus/cpu@0"); |
||||
if (!np) { |
||||
dev_err(cpu_dev, "failed to find cpu0 node\n"); |
||||
return -ENOENT; |
||||
} |
||||
|
||||
cpu_dev->of_node = np; |
||||
|
||||
arm_clk = devm_clk_get(cpu_dev, "arm"); |
||||
pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys"); |
||||
pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw"); |
||||
step_clk = devm_clk_get(cpu_dev, "step"); |
||||
pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m"); |
||||
if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) || |
||||
IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) { |
||||
dev_err(cpu_dev, "failed to get clocks\n"); |
||||
ret = -ENOENT; |
||||
goto put_node; |
||||
} |
||||
|
||||
arm_reg = devm_regulator_get(cpu_dev, "arm"); |
||||
pu_reg = devm_regulator_get(cpu_dev, "pu"); |
||||
soc_reg = devm_regulator_get(cpu_dev, "soc"); |
||||
if (!arm_reg || !pu_reg || !soc_reg) { |
||||
dev_err(cpu_dev, "failed to get regulators\n"); |
||||
ret = -ENOENT; |
||||
goto put_node; |
||||
} |
||||
|
||||
/* We expect an OPP table supplied by platform */ |
||||
num = opp_get_opp_count(cpu_dev); |
||||
if (num < 0) { |
||||
ret = num; |
||||
dev_err(cpu_dev, "no OPP table is found: %d\n", ret); |
||||
goto put_node; |
||||
} |
||||
|
||||
ret = opp_init_cpufreq_table(cpu_dev, &freq_table); |
||||
if (ret) { |
||||
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); |
||||
goto put_node; |
||||
} |
||||
|
||||
if (of_property_read_u32(np, "clock-latency", &transition_latency)) |
||||
transition_latency = CPUFREQ_ETERNAL; |
||||
|
||||
/*
|
||||
* OPP is maintained in order of increasing frequency, and |
||||
* freq_table initialised from OPP is therefore sorted in the |
||||
* same order. |
||||
*/ |
||||
rcu_read_lock(); |
||||
opp = opp_find_freq_exact(cpu_dev, |
||||
freq_table[0].frequency * 1000, true); |
||||
min_volt = opp_get_voltage(opp); |
||||
opp = opp_find_freq_exact(cpu_dev, |
||||
freq_table[--num].frequency * 1000, true); |
||||
max_volt = opp_get_voltage(opp); |
||||
rcu_read_unlock(); |
||||
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); |
||||
if (ret > 0) |
||||
transition_latency += ret * 1000; |
||||
|
||||
/* Count vddpu and vddsoc latency in for 1.2 GHz support */ |
||||
if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) { |
||||
ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL, |
||||
PU_SOC_VOLTAGE_HIGH); |
||||
if (ret > 0) |
||||
transition_latency += ret * 1000; |
||||
ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL, |
||||
PU_SOC_VOLTAGE_HIGH); |
||||
if (ret > 0) |
||||
transition_latency += ret * 1000; |
||||
} |
||||
|
||||
ret = cpufreq_register_driver(&imx6q_cpufreq_driver); |
||||
if (ret) { |
||||
dev_err(cpu_dev, "failed register driver: %d\n", ret); |
||||
goto free_freq_table; |
||||
} |
||||
|
||||
of_node_put(np); |
||||
return 0; |
||||
|
||||
free_freq_table: |
||||
opp_free_cpufreq_table(cpu_dev, &freq_table); |
||||
put_node: |
||||
of_node_put(np); |
||||
return ret; |
||||
} |
||||
|
||||
static int imx6q_cpufreq_remove(struct platform_device *pdev) |
||||
{ |
||||
cpufreq_unregister_driver(&imx6q_cpufreq_driver); |
||||
opp_free_cpufreq_table(cpu_dev, &freq_table); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static struct platform_driver imx6q_cpufreq_platdrv = { |
||||
.driver = { |
||||
.name = "imx6q-cpufreq", |
||||
.owner = THIS_MODULE, |
||||
}, |
||||
.probe = imx6q_cpufreq_probe, |
||||
.remove = imx6q_cpufreq_remove, |
||||
}; |
||||
module_platform_driver(imx6q_cpufreq_platdrv); |
||||
|
||||
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); |
||||
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); |
||||
MODULE_LICENSE("GPL"); |
Loading…
Reference in new issue