kernel_samsung_sm7125/arch/i386/kernel/traps.c

1088 lines
28 KiB

/*
* linux/arch/i386/traps.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* 'Traps.c' handles hardware traps and faults after we have saved some
* state in 'asm.s'.
*/
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#include <linux/kallsyms.h>
#include <linux/ptrace.h>
#include <linux/utsname.h>
#include <linux/kprobes.h>
#ifdef CONFIG_EISA
#include <linux/ioport.h>
#include <linux/eisa.h>
#endif
#ifdef CONFIG_MCA
#include <linux/mca.h>
#endif
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/atomic.h>
#include <asm/debugreg.h>
#include <asm/desc.h>
#include <asm/i387.h>
#include <asm/nmi.h>
#include <asm/smp.h>
#include <asm/arch_hooks.h>
#include <asm/kdebug.h>
#include <linux/irq.h>
#include <linux/module.h>
#include "mach_traps.h"
asmlinkage int system_call(void);
struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 } };
/* Do we ignore FPU interrupts ? */
char ignore_fpu_irq = 0;
/*
* The IDT has to be page-aligned to simplify the Pentium
* F0 0F bug workaround.. We have a special link segment
* for this.
*/
struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
asmlinkage void divide_error(void);
asmlinkage void debug(void);
asmlinkage void nmi(void);
asmlinkage void int3(void);
asmlinkage void overflow(void);
asmlinkage void bounds(void);
asmlinkage void invalid_op(void);
asmlinkage void device_not_available(void);
asmlinkage void coprocessor_segment_overrun(void);
asmlinkage void invalid_TSS(void);
asmlinkage void segment_not_present(void);
asmlinkage void stack_segment(void);
asmlinkage void general_protection(void);
asmlinkage void page_fault(void);
asmlinkage void coprocessor_error(void);
asmlinkage void simd_coprocessor_error(void);
asmlinkage void alignment_check(void);
asmlinkage void spurious_interrupt_bug(void);
asmlinkage void machine_check(void);
static int kstack_depth_to_print = 24;
struct notifier_block *i386die_chain;
static DEFINE_SPINLOCK(die_notifier_lock);
int register_die_notifier(struct notifier_block *nb)
{
int err = 0;
unsigned long flags;
spin_lock_irqsave(&die_notifier_lock, flags);
err = notifier_chain_register(&i386die_chain, nb);
spin_unlock_irqrestore(&die_notifier_lock, flags);
return err;
}
EXPORT_SYMBOL(register_die_notifier);
static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
{
return p > (void *)tinfo &&
p < (void *)tinfo + THREAD_SIZE - 3;
}
static inline unsigned long print_context_stack(struct thread_info *tinfo,
unsigned long *stack, unsigned long ebp)
{
unsigned long addr;
#ifdef CONFIG_FRAME_POINTER
while (valid_stack_ptr(tinfo, (void *)ebp)) {
addr = *(unsigned long *)(ebp + 4);
printk(" [<%08lx>] ", addr);
print_symbol("%s", addr);
printk("\n");
ebp = *(unsigned long *)ebp;
}
#else
while (valid_stack_ptr(tinfo, stack)) {
addr = *stack++;
if (__kernel_text_address(addr)) {
printk(" [<%08lx>]", addr);
print_symbol(" %s", addr);
printk("\n");
}
}
#endif
return ebp;
}
void show_trace(struct task_struct *task, unsigned long * stack)
{
unsigned long ebp;
if (!task)
task = current;
if (task == current) {
/* Grab ebp right from our regs */
asm ("movl %%ebp, %0" : "=r" (ebp) : );
} else {
/* ebp is the last reg pushed by switch_to */
ebp = *(unsigned long *) task->thread.esp;
}
while (1) {
struct thread_info *context;
context = (struct thread_info *)
((unsigned long)stack & (~(THREAD_SIZE - 1)));
ebp = print_context_stack(context, stack, ebp);
stack = (unsigned long*)context->previous_esp;
if (!stack)
break;
printk(" =======================\n");
}
}
void show_stack(struct task_struct *task, unsigned long *esp)
{
unsigned long *stack;
int i;
if (esp == NULL) {
if (task)
esp = (unsigned long*)task->thread.esp;
else
esp = (unsigned long *)&esp;
}
stack = esp;
for(i = 0; i < kstack_depth_to_print; i++) {
if (kstack_end(stack))
break;
if (i && ((i % 8) == 0))
printk("\n ");
printk("%08lx ", *stack++);
}
printk("\nCall Trace:\n");
show_trace(task, esp);
}
/*
* The architecture-independent dump_stack generator
*/
void dump_stack(void)
{
unsigned long stack;
show_trace(current, &stack);
}
EXPORT_SYMBOL(dump_stack);
void show_registers(struct pt_regs *regs)
{
int i;
int in_kernel = 1;
unsigned long esp;
unsigned short ss;
esp = (unsigned long) (&regs->esp);
ss = __KERNEL_DS;
if (regs->xcs & 3) {
in_kernel = 0;
esp = regs->esp;
ss = regs->xss & 0xffff;
}
print_modules();
printk("CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\nEFLAGS: %08lx"
" (%s) \n",
smp_processor_id(), 0xffff & regs->xcs, regs->eip,
print_tainted(), regs->eflags, system_utsname.release);
print_symbol("EIP is at %s\n", regs->eip);
printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
regs->eax, regs->ebx, regs->ecx, regs->edx);
printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
regs->esi, regs->edi, regs->ebp, esp);
printk("ds: %04x es: %04x ss: %04x\n",
regs->xds & 0xffff, regs->xes & 0xffff, ss);
printk("Process %s (pid: %d, threadinfo=%p task=%p)",
current->comm, current->pid, current_thread_info(), current);
/*
* When in-kernel, we also print out the stack and code at the
* time of the fault..
*/
if (in_kernel) {
u8 *eip;
printk("\nStack: ");
show_stack(NULL, (unsigned long*)esp);
printk("Code: ");
eip = (u8 *)regs->eip - 43;
for (i = 0; i < 64; i++, eip++) {
unsigned char c;
if (eip < (u8 *)PAGE_OFFSET || __get_user(c, eip)) {
printk(" Bad EIP value.");
break;
}
if (eip == (u8 *)regs->eip)
printk("<%02x> ", c);
else
printk("%02x ", c);
}
}
printk("\n");
}
static void handle_BUG(struct pt_regs *regs)
{
unsigned short ud2;
unsigned short line;
char *file;
char c;
unsigned long eip;
if (regs->xcs & 3)
goto no_bug; /* Not in kernel */
eip = regs->eip;
if (eip < PAGE_OFFSET)
goto no_bug;
if (__get_user(ud2, (unsigned short *)eip))
goto no_bug;
if (ud2 != 0x0b0f)
goto no_bug;
if (__get_user(line, (unsigned short *)(eip + 2)))
goto bug;
if (__get_user(file, (char **)(eip + 4)) ||
(unsigned long)file < PAGE_OFFSET || __get_user(c, file))
file = "<bad filename>";
printk("------------[ cut here ]------------\n");
printk(KERN_ALERT "kernel BUG at %s:%d!\n", file, line);
no_bug:
return;
/* Here we know it was a BUG but file-n-line is unavailable */
bug:
printk("Kernel BUG\n");
}
void die(const char * str, struct pt_regs * regs, long err)
{
static struct {
spinlock_t lock;
u32 lock_owner;
int lock_owner_depth;
} die = {
.lock = SPIN_LOCK_UNLOCKED,
.lock_owner = -1,
.lock_owner_depth = 0
};
static int die_counter;
if (die.lock_owner != raw_smp_processor_id()) {
console_verbose();
spin_lock_irq(&die.lock);
die.lock_owner = smp_processor_id();
die.lock_owner_depth = 0;
bust_spinlocks(1);
}
if (++die.lock_owner_depth < 3) {
int nl = 0;
handle_BUG(regs);
printk(KERN_ALERT "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
nl = 1;
#endif
#ifdef CONFIG_SMP
printk("SMP ");
nl = 1;
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC");
nl = 1;
#endif
if (nl)
printk("\n");
notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV);
show_registers(regs);
} else
printk(KERN_ERR "Recursive die() failure, output suppressed\n");
bust_spinlocks(0);
die.lock_owner = -1;
spin_unlock_irq(&die.lock);
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops) {
printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
ssleep(5);
panic("Fatal exception");
}
do_exit(SIGSEGV);
}
static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
{
if (!(regs->eflags & VM_MASK) && !(3 & regs->xcs))
die(str, regs, err);
}
static void do_trap(int trapnr, int signr, char *str, int vm86,
struct pt_regs * regs, long error_code, siginfo_t *info)
{
if (regs->eflags & VM_MASK) {
if (vm86)
goto vm86_trap;
goto trap_signal;
}
if (!(regs->xcs & 3))
goto kernel_trap;
trap_signal: {
struct task_struct *tsk = current;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
if (info)
force_sig_info(signr, info, tsk);
else
force_sig(signr, tsk);
return;
}
kernel_trap: {
if (!fixup_exception(regs))
die(str, regs, error_code);
return;
}
vm86_trap: {
int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
if (ret) goto trap_signal;
return;
}
}
#define DO_ERROR(trapnr, signr, str, name) \
fastcall void do_##name(struct pt_regs * regs, long error_code) \
{ \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
}
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
fastcall void do_##name(struct pt_regs * regs, long error_code) \
{ \
siginfo_t info; \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
}
#define DO_VM86_ERROR(trapnr, signr, str, name) \
fastcall void do_##name(struct pt_regs * regs, long error_code) \
{ \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
}
#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
fastcall void do_##name(struct pt_regs * regs, long error_code) \
{ \
siginfo_t info; \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
}
DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
#ifndef CONFIG_KPROBES
DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
#endif
DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
DO_ERROR_INFO( 6, SIGILL, "invalid operand", invalid_op, ILL_ILLOPN, regs->eip)
DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
fastcall void do_general_protection(struct pt_regs * regs, long error_code)
{
int cpu = get_cpu();
struct tss_struct *tss = &per_cpu(init_tss, cpu);
struct thread_struct *thread = &current->thread;
/*
* Perform the lazy TSS's I/O bitmap copy. If the TSS has an
* invalid offset set (the LAZY one) and the faulting thread has
* a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
* and we set the offset field correctly. Then we let the CPU to
* restart the faulting instruction.
*/
if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
thread->io_bitmap_ptr) {
memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
thread->io_bitmap_max);
/*
* If the previously set map was extending to higher ports
* than the current one, pad extra space with 0xff (no access).
*/
if (thread->io_bitmap_max < tss->io_bitmap_max)
memset((char *) tss->io_bitmap +
thread->io_bitmap_max, 0xff,
tss->io_bitmap_max - thread->io_bitmap_max);
tss->io_bitmap_max = thread->io_bitmap_max;
tss->io_bitmap_base = IO_BITMAP_OFFSET;
put_cpu();
return;
}
put_cpu();
if (regs->eflags & VM_MASK)
goto gp_in_vm86;
if (!(regs->xcs & 3))
goto gp_in_kernel;
current->thread.error_code = error_code;
current->thread.trap_no = 13;
force_sig(SIGSEGV, current);
return;
gp_in_vm86:
local_irq_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
return;
gp_in_kernel:
if (!fixup_exception(regs)) {
if (notify_die(DIE_GPF, "general protection fault", regs,
error_code, 13, SIGSEGV) == NOTIFY_STOP)
return;
die("general protection fault", regs, error_code);
}
}
static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
{
printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
printk("You probably have a hardware problem with your RAM chips\n");
/* Clear and disable the memory parity error line. */
clear_mem_error(reason);
}
static void io_check_error(unsigned char reason, struct pt_regs * regs)
{
unsigned long i;
printk("NMI: IOCK error (debug interrupt?)\n");
show_registers(regs);
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & 0xf) | 8;
outb(reason, 0x61);
i = 2000;
while (--i) udelay(1000);
reason &= ~8;
outb(reason, 0x61);
}
static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
{
#ifdef CONFIG_MCA
/* Might actually be able to figure out what the guilty party
* is. */
if( MCA_bus ) {
mca_handle_nmi();
return;
}
#endif
printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
printk("Dazed and confused, but trying to continue\n");
printk("Do you have a strange power saving mode enabled?\n");
}
static DEFINE_SPINLOCK(nmi_print_lock);
void die_nmi (struct pt_regs *regs, const char *msg)
{
spin_lock(&nmi_print_lock);
/*
* We are in trouble anyway, lets at least try
* to get a message out.
*/
bust_spinlocks(1);
printk(msg);
printk(" on CPU%d, eip %08lx, registers:\n",
smp_processor_id(), regs->eip);
show_registers(regs);
printk("console shuts up ...\n");
console_silent();
spin_unlock(&nmi_print_lock);
bust_spinlocks(0);
do_exit(SIGSEGV);
}
static void default_do_nmi(struct pt_regs * regs)
{
unsigned char reason = 0;
/* Only the BSP gets external NMIs from the system. */
if (!smp_processor_id())
reason = get_nmi_reason();
if (!(reason & 0xc0)) {
if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT)
== NOTIFY_STOP)
return;
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Ok, so this is none of the documented NMI sources,
* so it must be the NMI watchdog.
*/
if (nmi_watchdog) {
nmi_watchdog_tick(regs);
return;
}
#endif
unknown_nmi_error(reason, regs);
return;
}
if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP)
return;
if (reason & 0x80)
mem_parity_error(reason, regs);
if (reason & 0x40)
io_check_error(reason, regs);
/*
* Reassert NMI in case it became active meanwhile
* as it's edge-triggered.
*/
reassert_nmi();
}
static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
{
return 0;
}
static nmi_callback_t nmi_callback = dummy_nmi_callback;
fastcall void do_nmi(struct pt_regs * regs, long error_code)
{
int cpu;
nmi_enter();
cpu = smp_processor_id();
++nmi_count(cpu);
if (!nmi_callback(regs, cpu))
default_do_nmi(regs);
nmi_exit();
}
void set_nmi_callback(nmi_callback_t callback)
{
nmi_callback = callback;
}
EXPORT_SYMBOL_GPL(set_nmi_callback);
void unset_nmi_callback(void)
{
nmi_callback = dummy_nmi_callback;
}
EXPORT_SYMBOL_GPL(unset_nmi_callback);
#ifdef CONFIG_KPROBES
fastcall void do_int3(struct pt_regs *regs, long error_code)
{
if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
== NOTIFY_STOP)
return;
/* This is an interrupt gate, because kprobes wants interrupts
disabled. Normal trap handlers don't. */
restore_interrupts(regs);
do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
}
#endif
/*
* Our handling of the processor debug registers is non-trivial.
* We do not clear them on entry and exit from the kernel. Therefore
* it is possible to get a watchpoint trap here from inside the kernel.
* However, the code in ./ptrace.c has ensured that the user can
* only set watchpoints on userspace addresses. Therefore the in-kernel
* watchpoint trap can only occur in code which is reading/writing
* from user space. Such code must not hold kernel locks (since it
* can equally take a page fault), therefore it is safe to call
* force_sig_info even though that claims and releases locks.
*
* Code in ./signal.c ensures that the debug control register
* is restored before we deliver any signal, and therefore that
* user code runs with the correct debug control register even though
* we clear it here.
*
* Being careful here means that we don't have to be as careful in a
* lot of more complicated places (task switching can be a bit lazy
* about restoring all the debug state, and ptrace doesn't have to
* find every occurrence of the TF bit that could be saved away even
* by user code)
*/
fastcall void do_debug(struct pt_regs * regs, long error_code)
{
unsigned int condition;
struct task_struct *tsk = current;
__asm__ __volatile__("movl %%db6,%0" : "=r" (condition));
if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
SIGTRAP) == NOTIFY_STOP)
return;
/* It's safe to allow irq's after DR6 has been saved */
if (regs->eflags & X86_EFLAGS_IF)
local_irq_enable();
/* Mask out spurious debug traps due to lazy DR7 setting */
if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
if (!tsk->thread.debugreg[7])
goto clear_dr7;
}
if (regs->eflags & VM_MASK)
goto debug_vm86;
/* Save debug status register where ptrace can see it */
tsk->thread.debugreg[6] = condition;
/*
* Single-stepping through TF: make sure we ignore any events in
* kernel space (but re-enable TF when returning to user mode).
*/
if (condition & DR_STEP) {
/*
* We already checked v86 mode above, so we can
* check for kernel mode by just checking the CPL
* of CS.
*/
if ((regs->xcs & 3) == 0)
goto clear_TF_reenable;
}
/* Ok, finally something we can handle */
send_sigtrap(tsk, regs, error_code);
/* Disable additional traps. They'll be re-enabled when
* the signal is delivered.
*/
clear_dr7:
__asm__("movl %0,%%db7"
: /* no output */
: "r" (0));
return;
debug_vm86:
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
return;
clear_TF_reenable:
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
regs->eflags &= ~TF_MASK;
return;
}
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
void math_error(void __user *eip)
{
struct task_struct * task;
siginfo_t info;
unsigned short cwd, swd;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 16;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = eip;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't syncronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception
*/
cwd = get_fpu_cwd(task);
swd = get_fpu_swd(task);
switch (((~cwd) & swd & 0x3f) | (swd & 0x240)) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
case 0x041: /* Stack Fault */
case 0x241: /* Stack Fault | Direction */
info.si_code = FPE_FLTINV;
/* Should we clear the SF or let user space do it ???? */
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
{
ignore_fpu_irq = 1;
math_error((void __user *)regs->eip);
}
static void simd_math_error(void __user *eip)
{
struct task_struct * task;
siginfo_t info;
unsigned short mxcsr;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 19;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = eip;
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
mxcsr = get_fpu_mxcsr(task);
switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
long error_code)
{
if (cpu_has_xmm) {
/* Handle SIMD FPU exceptions on PIII+ processors. */
ignore_fpu_irq = 1;
simd_math_error((void __user *)regs->eip);
} else {
/*
* Handle strange cache flush from user space exception
* in all other cases. This is undocumented behaviour.
*/
if (regs->eflags & VM_MASK) {
handle_vm86_fault((struct kernel_vm86_regs *)regs,
error_code);
return;
}
die_if_kernel("cache flush denied", regs, error_code);
current->thread.trap_no = 19;
current->thread.error_code = error_code;
force_sig(SIGSEGV, current);
}
}
fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
long error_code)
{
#if 0
/* No need to warn about this any longer. */
printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
#endif
}
fastcall void setup_x86_bogus_stack(unsigned char * stk)
{
unsigned long *switch16_ptr, *switch32_ptr;
struct pt_regs *regs;
unsigned long stack_top, stack_bot;
unsigned short iret_frame16_off;
int cpu = smp_processor_id();
/* reserve the space on 32bit stack for the magic switch16 pointer */
memmove(stk, stk + 8, sizeof(struct pt_regs));
switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
regs = (struct pt_regs *)stk;
/* now the switch32 on 16bit stack */
stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
switch32_ptr = (unsigned long *)(stack_top - 8);
iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
/* copy iret frame on 16bit stack */
memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
/* fill in the switch pointers */
switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
switch16_ptr[1] = __ESPFIX_SS;
switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
8 - CPU_16BIT_STACK_SIZE;
switch32_ptr[1] = __KERNEL_DS;
}
fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
{
unsigned long *switch32_ptr;
unsigned char *stack16, *stack32;
unsigned long stack_top, stack_bot;
int len;
int cpu = smp_processor_id();
stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
switch32_ptr = (unsigned long *)(stack_top - 8);
/* copy the data from 16bit stack to 32bit stack */
len = CPU_16BIT_STACK_SIZE - 8 - sp;
stack16 = (unsigned char *)(stack_bot + sp);
stack32 = (unsigned char *)
(switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
memcpy(stack32, stack16, len);
return stack32;
}
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*
* Must be called with kernel preemption disabled (in this case,
* local interrupts are disabled at the call-site in entry.S).
*/
asmlinkage void math_state_restore(struct pt_regs regs)
{
struct thread_info *thread = current_thread_info();
struct task_struct *tsk = thread->task;
clts(); /* Allow maths ops (or we recurse) */
if (!tsk_used_math(tsk))
init_fpu(tsk);
restore_fpu(tsk);
thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
}
#ifndef CONFIG_MATH_EMULATION
asmlinkage void math_emulate(long arg)
{
printk("math-emulation not enabled and no coprocessor found.\n");
printk("killing %s.\n",current->comm);
force_sig(SIGFPE,current);
schedule();
}
#endif /* CONFIG_MATH_EMULATION */
#ifdef CONFIG_X86_F00F_BUG
void __init trap_init_f00f_bug(void)
{
__set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
/*
* Update the IDT descriptor and reload the IDT so that
* it uses the read-only mapped virtual address.
*/
idt_descr.address = fix_to_virt(FIX_F00F_IDT);
__asm__ __volatile__("lidt %0" : : "m" (idt_descr));
}
#endif
#define _set_gate(gate_addr,type,dpl,addr,seg) \
do { \
int __d0, __d1; \
__asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
"movw %4,%%dx\n\t" \
"movl %%eax,%0\n\t" \
"movl %%edx,%1" \
:"=m" (*((long *) (gate_addr))), \
"=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
:"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
"3" ((char *) (addr)),"2" ((seg) << 16)); \
} while (0)
/*
* This needs to use 'idt_table' rather than 'idt', and
* thus use the _nonmapped_ version of the IDT, as the
* Pentium F0 0F bugfix can have resulted in the mapped
* IDT being write-protected.
*/
void set_intr_gate(unsigned int n, void *addr)
{
_set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
}
/*
* This routine sets up an interrupt gate at directory privilege level 3.
*/
static inline void set_system_intr_gate(unsigned int n, void *addr)
{
_set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
}
static void __init set_trap_gate(unsigned int n, void *addr)
{
_set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
}
static void __init set_system_gate(unsigned int n, void *addr)
{
_set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
}
static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
{
_set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
}
void __init trap_init(void)
{
#ifdef CONFIG_EISA
void __iomem *p = ioremap(0x0FFFD9, 4);
if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
EISA_bus = 1;
}
iounmap(p);
#endif
#ifdef CONFIG_X86_LOCAL_APIC
init_apic_mappings();
#endif
set_trap_gate(0,&divide_error);
set_intr_gate(1,&debug);
set_intr_gate(2,&nmi);
set_system_intr_gate(3, &int3); /* int3-5 can be called from all */
set_system_gate(4,&overflow);
set_system_gate(5,&bounds);
set_trap_gate(6,&invalid_op);
set_trap_gate(7,&device_not_available);
set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
set_trap_gate(9,&coprocessor_segment_overrun);
set_trap_gate(10,&invalid_TSS);
set_trap_gate(11,&segment_not_present);
set_trap_gate(12,&stack_segment);
set_trap_gate(13,&general_protection);
set_intr_gate(14,&page_fault);
set_trap_gate(15,&spurious_interrupt_bug);
set_trap_gate(16,&coprocessor_error);
set_trap_gate(17,&alignment_check);
#ifdef CONFIG_X86_MCE
set_trap_gate(18,&machine_check);
#endif
set_trap_gate(19,&simd_coprocessor_error);
set_system_gate(SYSCALL_VECTOR,&system_call);
/*
* Should be a barrier for any external CPU state.
*/
cpu_init();
trap_init_hook();
}
static int __init kstack_setup(char *s)
{
kstack_depth_to_print = simple_strtoul(s, NULL, 0);
return 0;
}
__setup("kstack=", kstack_setup);