You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/fs/select.c

848 lines
21 KiB

/*
* This file contains the procedures for the handling of select and poll
*
* Created for Linux based loosely upon Mathius Lattner's minix
* patches by Peter MacDonald. Heavily edited by Linus.
*
* 4 February 1994
* COFF/ELF binary emulation. If the process has the STICKY_TIMEOUTS
* flag set in its personality we do *not* modify the given timeout
* parameter to reflect time remaining.
*
* 24 January 2000
* Changed sys_poll()/do_poll() to use PAGE_SIZE chunk-based allocation
* of fds to overcome nfds < 16390 descriptors limit (Tigran Aivazian).
*/
#include <linux/syscalls.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/poll.h>
#include <linux/personality.h> /* for STICKY_TIMEOUTS */
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/rcupdate.h>
#include <asm/uaccess.h>
#define ROUND_UP(x,y) (((x)+(y)-1)/(y))
#define DEFAULT_POLLMASK (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)
struct poll_table_page {
struct poll_table_page * next;
struct poll_table_entry * entry;
struct poll_table_entry entries[0];
};
#define POLL_TABLE_FULL(table) \
((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table))
/*
* Ok, Peter made a complicated, but straightforward multiple_wait() function.
* I have rewritten this, taking some shortcuts: This code may not be easy to
* follow, but it should be free of race-conditions, and it's practical. If you
* understand what I'm doing here, then you understand how the linux
* sleep/wakeup mechanism works.
*
* Two very simple procedures, poll_wait() and poll_freewait() make all the
* work. poll_wait() is an inline-function defined in <linux/poll.h>,
* as all select/poll functions have to call it to add an entry to the
* poll table.
*/
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
poll_table *p);
void poll_initwait(struct poll_wqueues *pwq)
{
init_poll_funcptr(&pwq->pt, __pollwait);
pwq->error = 0;
pwq->table = NULL;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
pwq->inline_index = 0;
}
EXPORT_SYMBOL(poll_initwait);
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
static void free_poll_entry(struct poll_table_entry *entry)
{
remove_wait_queue(entry->wait_address,&entry->wait);
fput(entry->filp);
}
void poll_freewait(struct poll_wqueues *pwq)
{
struct poll_table_page * p = pwq->table;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
int i;
for (i = 0; i < pwq->inline_index; i++)
free_poll_entry(pwq->inline_entries + i);
while (p) {
struct poll_table_entry * entry;
struct poll_table_page *old;
entry = p->entry;
do {
entry--;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
free_poll_entry(entry);
} while (entry > p->entries);
old = p;
p = p->next;
free_page((unsigned long) old);
}
}
EXPORT_SYMBOL(poll_freewait);
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
static struct poll_table_entry *poll_get_entry(poll_table *_p)
{
struct poll_wqueues *p = container_of(_p, struct poll_wqueues, pt);
struct poll_table_page *table = p->table;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (p->inline_index < N_INLINE_POLL_ENTRIES)
return p->inline_entries + p->inline_index++;
if (!table || POLL_TABLE_FULL(table)) {
struct poll_table_page *new_table;
new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
if (!new_table) {
p->error = -ENOMEM;
__set_current_state(TASK_RUNNING);
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
return NULL;
}
new_table->entry = new_table->entries;
new_table->next = table;
p->table = new_table;
table = new_table;
}
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
return table->entry++;
}
/* Add a new entry */
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
poll_table *p)
{
struct poll_table_entry *entry = poll_get_entry(p);
if (!entry)
return;
get_file(filp);
entry->filp = filp;
entry->wait_address = wait_address;
init_waitqueue_entry(&entry->wait, current);
add_wait_queue(wait_address,&entry->wait);
}
#define FDS_IN(fds, n) (fds->in + n)
#define FDS_OUT(fds, n) (fds->out + n)
#define FDS_EX(fds, n) (fds->ex + n)
#define BITS(fds, n) (*FDS_IN(fds, n)|*FDS_OUT(fds, n)|*FDS_EX(fds, n))
static int max_select_fd(unsigned long n, fd_set_bits *fds)
{
unsigned long *open_fds;
unsigned long set;
int max;
struct fdtable *fdt;
/* handle last in-complete long-word first */
set = ~(~0UL << (n & (__NFDBITS-1)));
n /= __NFDBITS;
fdt = files_fdtable(current->files);
open_fds = fdt->open_fds->fds_bits+n;
max = 0;
if (set) {
set &= BITS(fds, n);
if (set) {
if (!(set & ~*open_fds))
goto get_max;
return -EBADF;
}
}
while (n) {
open_fds--;
n--;
set = BITS(fds, n);
if (!set)
continue;
if (set & ~*open_fds)
return -EBADF;
if (max)
continue;
get_max:
do {
max++;
set >>= 1;
} while (set);
max += n * __NFDBITS;
}
return max;
}
#define BIT(i) (1UL << ((i)&(__NFDBITS-1)))
#define MEM(i,m) ((m)+(unsigned)(i)/__NFDBITS)
#define ISSET(i,m) (((i)&*(m)) != 0)
#define SET(i,m) (*(m) |= (i))
#define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
#define POLLEX_SET (POLLPRI)
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
int do_select(int n, fd_set_bits *fds, s64 *timeout)
{
struct poll_wqueues table;
poll_table *wait;
int retval, i;
rcu_read_lock();
retval = max_select_fd(n, fds);
rcu_read_unlock();
if (retval < 0)
return retval;
n = retval;
poll_initwait(&table);
wait = &table.pt;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (!*timeout)
wait = NULL;
retval = 0;
for (;;) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
long __timeout;
set_current_state(TASK_INTERRUPTIBLE);
inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
unsigned long res_in = 0, res_out = 0, res_ex = 0;
const struct file_operations *f_op = NULL;
struct file *file = NULL;
in = *inp++; out = *outp++; ex = *exp++;
all_bits = in | out | ex;
if (all_bits == 0) {
i += __NFDBITS;
continue;
}
for (j = 0; j < __NFDBITS; ++j, ++i, bit <<= 1) {
int fput_needed;
if (i >= n)
break;
if (!(bit & all_bits))
continue;
file = fget_light(i, &fput_needed);
if (file) {
f_op = file->f_op;
mask = DEFAULT_POLLMASK;
if (f_op && f_op->poll)
mask = (*f_op->poll)(file, retval ? NULL : wait);
fput_light(file, fput_needed);
if ((mask & POLLIN_SET) && (in & bit)) {
res_in |= bit;
retval++;
}
if ((mask & POLLOUT_SET) && (out & bit)) {
res_out |= bit;
retval++;
}
if ((mask & POLLEX_SET) && (ex & bit)) {
res_ex |= bit;
retval++;
}
}
cond_resched();
}
if (res_in)
*rinp = res_in;
if (res_out)
*routp = res_out;
if (res_ex)
*rexp = res_ex;
}
wait = NULL;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (retval || !*timeout || signal_pending(current))
break;
if(table.error) {
retval = table.error;
break;
}
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (*timeout < 0) {
/* Wait indefinitely */
__timeout = MAX_SCHEDULE_TIMEOUT;
} else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT - 1)) {
/* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in a loop */
__timeout = MAX_SCHEDULE_TIMEOUT - 1;
*timeout -= __timeout;
} else {
__timeout = *timeout;
*timeout = 0;
}
__timeout = schedule_timeout(__timeout);
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (*timeout >= 0)
*timeout += __timeout;
}
__set_current_state(TASK_RUNNING);
poll_freewait(&table);
return retval;
}
/*
* We can actually return ERESTARTSYS instead of EINTR, but I'd
* like to be certain this leads to no problems. So I return
* EINTR just for safety.
*
* Update: ERESTARTSYS breaks at least the xview clock binary, so
* I'm trying ERESTARTNOHAND which restart only when you want to.
*/
#define MAX_SELECT_SECONDS \
((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
static int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, s64 *timeout)
{
fd_set_bits fds;
void *bits;
int ret, max_fdset;
unsigned int size;
struct fdtable *fdt;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
/* Allocate small arguments on the stack to save memory and be faster */
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
ret = -EINVAL;
if (n < 0)
goto out_nofds;
/* max_fdset can increase, so grab it once to avoid race */
rcu_read_lock();
fdt = files_fdtable(current->files);
max_fdset = fdt->max_fdset;
rcu_read_unlock();
if (n > max_fdset)
n = max_fdset;
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
size = FDS_BYTES(n);
bits = stack_fds;
if (size > sizeof(stack_fds) / 6) {
/* Not enough space in on-stack array; must use kmalloc */
ret = -ENOMEM;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
bits = kmalloc(6 * size, GFP_KERNEL);
if (!bits)
goto out_nofds;
}
fds.in = bits;
fds.out = bits + size;
fds.ex = bits + 2*size;
fds.res_in = bits + 3*size;
fds.res_out = bits + 4*size;
fds.res_ex = bits + 5*size;
if ((ret = get_fd_set(n, inp, fds.in)) ||
(ret = get_fd_set(n, outp, fds.out)) ||
(ret = get_fd_set(n, exp, fds.ex)))
goto out;
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
ret = do_select(n, &fds, timeout);
if (ret < 0)
goto out;
if (!ret) {
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = 0;
}
if (set_fd_set(n, inp, fds.res_in) ||
set_fd_set(n, outp, fds.res_out) ||
set_fd_set(n, exp, fds.res_ex))
ret = -EFAULT;
out:
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (bits != stack_fds)
kfree(bits);
out_nofds:
return ret;
}
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
asmlinkage long sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timeval __user *tvp)
{
s64 timeout = -1;
struct timeval tv;
int ret;
if (tvp) {
if (copy_from_user(&tv, tvp, sizeof(tv)))
return -EFAULT;
if (tv.tv_sec < 0 || tv.tv_usec < 0)
return -EINVAL;
/* Cast to u64 to make GCC stop complaining */
if ((u64)tv.tv_sec >= (u64)MAX_INT64_SECONDS)
timeout = -1; /* infinite */
else {
timeout = ROUND_UP(tv.tv_usec, USEC_PER_SEC/HZ);
timeout += tv.tv_sec * HZ;
}
}
ret = core_sys_select(n, inp, outp, exp, &timeout);
if (tvp) {
struct timeval rtv;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
rtv.tv_usec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ));
rtv.tv_sec = timeout;
if (timeval_compare(&rtv, &tv) >= 0)
rtv = tv;
if (copy_to_user(tvp, &rtv, sizeof(rtv))) {
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
}
}
return ret;
}
#ifdef TIF_RESTORE_SIGMASK
asmlinkage long sys_pselect7(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec __user *tsp,
const sigset_t __user *sigmask, size_t sigsetsize)
{
s64 timeout = MAX_SCHEDULE_TIMEOUT;
sigset_t ksigmask, sigsaved;
struct timespec ts;
int ret;
if (tsp) {
if (copy_from_user(&ts, tsp, sizeof(ts)))
return -EFAULT;
if (ts.tv_sec < 0 || ts.tv_nsec < 0)
return -EINVAL;
/* Cast to u64 to make GCC stop complaining */
if ((u64)ts.tv_sec >= (u64)MAX_INT64_SECONDS)
timeout = -1; /* infinite */
else {
timeout = ROUND_UP(ts.tv_nsec, NSEC_PER_SEC/HZ);
timeout += ts.tv_sec * HZ;
}
}
if (sigmask) {
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
return -EFAULT;
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
}
ret = core_sys_select(n, inp, outp, exp, &timeout);
if (tsp) {
struct timespec rts;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
rts.tv_nsec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ)) *
1000;
rts.tv_sec = timeout;
if (timespec_compare(&rts, &ts) >= 0)
rts = ts;
if (copy_to_user(tsp, &rts, sizeof(rts))) {
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
}
}
if (ret == -ERESTARTNOHAND) {
/*
* Don't restore the signal mask yet. Let do_signal() deliver
* the signal on the way back to userspace, before the signal
* mask is restored.
*/
if (sigmask) {
memcpy(&current->saved_sigmask, &sigsaved,
sizeof(sigsaved));
set_thread_flag(TIF_RESTORE_SIGMASK);
}
} else if (sigmask)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return ret;
}
/*
* Most architectures can't handle 7-argument syscalls. So we provide a
* 6-argument version where the sixth argument is a pointer to a structure
* which has a pointer to the sigset_t itself followed by a size_t containing
* the sigset size.
*/
asmlinkage long sys_pselect6(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec __user *tsp, void __user *sig)
{
size_t sigsetsize = 0;
sigset_t __user *up = NULL;
if (sig) {
if (!access_ok(VERIFY_READ, sig, sizeof(void *)+sizeof(size_t))
|| __get_user(up, (sigset_t __user * __user *)sig)
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|| __get_user(sigsetsize,
(size_t __user *)(sig+sizeof(void *))))
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
return -EFAULT;
}
return sys_pselect7(n, inp, outp, exp, tsp, up, sigsetsize);
}
#endif /* TIF_RESTORE_SIGMASK */
struct poll_list {
struct poll_list *next;
int len;
struct pollfd entries[0];
};
#define POLLFD_PER_PAGE ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd))
/*
* Fish for pollable events on the pollfd->fd file descriptor. We're only
* interested in events matching the pollfd->events mask, and the result
* matching that mask is both recorded in pollfd->revents and returned. The
* pwait poll_table will be used by the fd-provided poll handler for waiting,
* if non-NULL.
*/
static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait)
{
unsigned int mask;
int fd;
mask = 0;
fd = pollfd->fd;
if (fd >= 0) {
int fput_needed;
struct file * file;
file = fget_light(fd, &fput_needed);
mask = POLLNVAL;
if (file != NULL) {
mask = DEFAULT_POLLMASK;
if (file->f_op && file->f_op->poll)
mask = file->f_op->poll(file, pwait);
/* Mask out unneeded events. */
mask &= pollfd->events | POLLERR | POLLHUP;
fput_light(file, fput_needed);
}
}
pollfd->revents = mask;
return mask;
}
static int do_poll(unsigned int nfds, struct poll_list *list,
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
struct poll_wqueues *wait, s64 *timeout)
{
int count = 0;
poll_table* pt = &wait->pt;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
/* Optimise the no-wait case */
if (!(*timeout))
pt = NULL;
for (;;) {
struct poll_list *walk;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
long __timeout;
set_current_state(TASK_INTERRUPTIBLE);
for (walk = list; walk != NULL; walk = walk->next) {
struct pollfd * pfd, * pfd_end;
pfd = walk->entries;
pfd_end = pfd + walk->len;
for (; pfd != pfd_end; pfd++) {
/*
* Fish for events. If we found one, record it
* and kill the poll_table, so we don't
* needlessly register any other waiters after
* this. They'll get immediately deregistered
* when we break out and return.
*/
if (do_pollfd(pfd, pt)) {
count++;
pt = NULL;
}
}
}
/*
* All waiters have already been registered, so don't provide
* a poll_table to them on the next loop iteration.
*/
pt = NULL;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (count || !*timeout || signal_pending(current))
break;
count = wait->error;
if (count)
break;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (*timeout < 0) {
/* Wait indefinitely */
__timeout = MAX_SCHEDULE_TIMEOUT;
} else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT-1)) {
/*
* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in
* a loop
*/
__timeout = MAX_SCHEDULE_TIMEOUT - 1;
*timeout -= __timeout;
} else {
__timeout = *timeout;
*timeout = 0;
}
__timeout = schedule_timeout(__timeout);
if (*timeout >= 0)
*timeout += __timeout;
}
__set_current_state(TASK_RUNNING);
return count;
}
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
#define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list)) / \
sizeof(struct pollfd))
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds, s64 *timeout)
{
struct poll_wqueues table;
int fdcount, err;
unsigned int i;
struct poll_list *head;
struct poll_list *walk;
struct fdtable *fdt;
int max_fdset;
/* Allocate small arguments on the stack to save memory and be
faster - use long to make sure the buffer is aligned properly
on 64 bit archs to avoid unaligned access */
long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
struct poll_list *stack_pp = NULL;
/* Do a sanity check on nfds ... */
rcu_read_lock();
fdt = files_fdtable(current->files);
max_fdset = fdt->max_fdset;
rcu_read_unlock();
if (nfds > max_fdset && nfds > OPEN_MAX)
return -EINVAL;
poll_initwait(&table);
head = NULL;
walk = NULL;
i = nfds;
err = -ENOMEM;
while(i!=0) {
struct poll_list *pp;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
int num, size;
if (stack_pp == NULL)
num = N_STACK_PPS;
else
num = POLLFD_PER_PAGE;
if (num > i)
num = i;
size = sizeof(struct poll_list) + sizeof(struct pollfd)*num;
if (!stack_pp)
stack_pp = pp = (struct poll_list *)stack_pps;
else {
pp = kmalloc(size, GFP_KERNEL);
if (!pp)
goto out_fds;
}
pp->next=NULL;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
pp->len = num;
if (head == NULL)
head = pp;
else
walk->next = pp;
walk = pp;
if (copy_from_user(pp->entries, ufds + nfds-i,
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
sizeof(struct pollfd)*num)) {
err = -EFAULT;
goto out_fds;
}
i -= pp->len;
}
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
fdcount = do_poll(nfds, head, &table, timeout);
/* OK, now copy the revents fields back to user space. */
walk = head;
err = -EFAULT;
while(walk != NULL) {
struct pollfd *fds = walk->entries;
int j;
for (j=0; j < walk->len; j++, ufds++) {
if(__put_user(fds[j].revents, &ufds->revents))
goto out_fds;
}
walk = walk->next;
}
err = fdcount;
if (!fdcount && signal_pending(current))
err = -EINTR;
out_fds:
walk = head;
while(walk!=NULL) {
struct poll_list *pp = walk->next;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (walk != stack_pp)
kfree(walk);
walk = pp;
}
poll_freewait(&table);
return err;
}
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
asmlinkage long sys_poll(struct pollfd __user *ufds, unsigned int nfds,
long timeout_msecs)
{
s64 timeout_jiffies;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (timeout_msecs > 0) {
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
#if HZ > 1000
/* We can only overflow if HZ > 1000 */
if (timeout_msecs / 1000 > (s64)0x7fffffffffffffffULL / (s64)HZ)
timeout_jiffies = -1;
else
#endif
timeout_jiffies = msecs_to_jiffies(timeout_msecs);
} else {
/* Infinite (< 0) or no (0) timeout */
timeout_jiffies = timeout_msecs;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
}
return do_sys_poll(ufds, nfds, &timeout_jiffies);
}
#ifdef TIF_RESTORE_SIGMASK
asmlinkage long sys_ppoll(struct pollfd __user *ufds, unsigned int nfds,
struct timespec __user *tsp, const sigset_t __user *sigmask,
size_t sigsetsize)
{
sigset_t ksigmask, sigsaved;
struct timespec ts;
s64 timeout = -1;
int ret;
if (tsp) {
if (copy_from_user(&ts, tsp, sizeof(ts)))
return -EFAULT;
/* Cast to u64 to make GCC stop complaining */
if ((u64)ts.tv_sec >= (u64)MAX_INT64_SECONDS)
timeout = -1; /* infinite */
else {
timeout = ROUND_UP(ts.tv_nsec, NSEC_PER_SEC/HZ);
timeout += ts.tv_sec * HZ;
}
}
if (sigmask) {
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
return -EFAULT;
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
}
ret = do_sys_poll(ufds, nfds, &timeout);
/* We can restart this syscall, usually */
if (ret == -EINTR) {
/*
* Don't restore the signal mask yet. Let do_signal() deliver
* the signal on the way back to userspace, before the signal
* mask is restored.
*/
if (sigmask) {
memcpy(&current->saved_sigmask, &sigsaved,
sizeof(sigsaved));
set_thread_flag(TIF_RESTORE_SIGMASK);
}
ret = -ERESTARTNOHAND;
} else if (sigmask)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
if (tsp && timeout >= 0) {
struct timespec rts;
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
/* Yes, we know it's actually an s64, but it's also positive. */
rts.tv_nsec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ)) *
1000;
rts.tv_sec = timeout;
if (timespec_compare(&rts, &ts) >= 0)
rts = ts;
if (copy_to_user(tsp, &rts, sizeof(rts))) {
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND && timeout >= 0)
ret = -EINTR;
}
}
return ret;
}
#endif /* TIF_RESTORE_SIGMASK */