You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
632 lines
18 KiB
632 lines
18 KiB
20 years ago
|
/*
|
||
|
* Kernel Probes (KProbes)
|
||
|
* arch/x86_64/kernel/kprobes.c
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
*
|
||
|
* Copyright (C) IBM Corporation, 2002, 2004
|
||
|
*
|
||
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
||
|
* Probes initial implementation ( includes contributions from
|
||
|
* Rusty Russell).
|
||
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
||
|
* interface to access function arguments.
|
||
|
* 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
|
||
|
* <prasanna@in.ibm.com> adapted for x86_64
|
||
|
* 2005-Mar Roland McGrath <roland@redhat.com>
|
||
|
* Fixed to handle %rip-relative addressing mode correctly.
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/preempt.h>
|
||
|
#include <linux/moduleloader.h>
|
||
|
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/kdebug.h>
|
||
|
|
||
|
static DECLARE_MUTEX(kprobe_mutex);
|
||
|
|
||
|
/* kprobe_status settings */
|
||
|
#define KPROBE_HIT_ACTIVE 0x00000001
|
||
|
#define KPROBE_HIT_SS 0x00000002
|
||
|
|
||
|
static struct kprobe *current_kprobe;
|
||
|
static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags;
|
||
|
static struct pt_regs jprobe_saved_regs;
|
||
|
static long *jprobe_saved_rsp;
|
||
|
static kprobe_opcode_t *get_insn_slot(void);
|
||
|
static void free_insn_slot(kprobe_opcode_t *slot);
|
||
|
void jprobe_return_end(void);
|
||
|
|
||
|
/* copy of the kernel stack at the probe fire time */
|
||
|
static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
|
||
|
|
||
|
/*
|
||
|
* returns non-zero if opcode modifies the interrupt flag.
|
||
|
*/
|
||
|
static inline int is_IF_modifier(kprobe_opcode_t *insn)
|
||
|
{
|
||
|
switch (*insn) {
|
||
|
case 0xfa: /* cli */
|
||
|
case 0xfb: /* sti */
|
||
|
case 0xcf: /* iret/iretd */
|
||
|
case 0x9d: /* popf/popfd */
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int arch_prepare_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
/* insn: must be on special executable page on x86_64. */
|
||
|
up(&kprobe_mutex);
|
||
|
p->ainsn.insn = get_insn_slot();
|
||
|
down(&kprobe_mutex);
|
||
|
if (!p->ainsn.insn) {
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determine if the instruction uses the %rip-relative addressing mode.
|
||
|
* If it does, return the address of the 32-bit displacement word.
|
||
|
* If not, return null.
|
||
|
*/
|
||
|
static inline s32 *is_riprel(u8 *insn)
|
||
|
{
|
||
|
#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
|
||
|
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
|
||
|
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
|
||
|
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
|
||
|
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
|
||
|
<< (row % 64))
|
||
|
static const u64 onebyte_has_modrm[256 / 64] = {
|
||
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
|
/* ------------------------------- */
|
||
|
W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
|
||
|
W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
|
||
|
W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
|
||
|
W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
|
||
|
W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
|
||
|
W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
|
||
|
W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
|
||
|
W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
|
||
|
W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
|
||
|
W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
|
||
|
W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
|
||
|
W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
|
||
|
W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
|
||
|
W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
|
||
|
W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
|
||
|
W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
|
||
|
/* ------------------------------- */
|
||
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
|
};
|
||
|
static const u64 twobyte_has_modrm[256 / 64] = {
|
||
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
|
/* ------------------------------- */
|
||
|
W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
|
||
|
W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
|
||
|
W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
|
||
|
W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
|
||
|
W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
|
||
|
W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
|
||
|
W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
|
||
|
W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
|
||
|
W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
|
||
|
W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
|
||
|
W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
|
||
|
W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
|
||
|
W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
|
||
|
W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
|
||
|
W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
|
||
|
W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
|
||
|
/* ------------------------------- */
|
||
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
|
};
|
||
|
#undef W
|
||
|
int need_modrm;
|
||
|
|
||
|
/* Skip legacy instruction prefixes. */
|
||
|
while (1) {
|
||
|
switch (*insn) {
|
||
|
case 0x66:
|
||
|
case 0x67:
|
||
|
case 0x2e:
|
||
|
case 0x3e:
|
||
|
case 0x26:
|
||
|
case 0x64:
|
||
|
case 0x65:
|
||
|
case 0x36:
|
||
|
case 0xf0:
|
||
|
case 0xf3:
|
||
|
case 0xf2:
|
||
|
++insn;
|
||
|
continue;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Skip REX instruction prefix. */
|
||
|
if ((*insn & 0xf0) == 0x40)
|
||
|
++insn;
|
||
|
|
||
|
if (*insn == 0x0f) { /* Two-byte opcode. */
|
||
|
++insn;
|
||
|
need_modrm = test_bit(*insn, twobyte_has_modrm);
|
||
|
} else { /* One-byte opcode. */
|
||
|
need_modrm = test_bit(*insn, onebyte_has_modrm);
|
||
|
}
|
||
|
|
||
|
if (need_modrm) {
|
||
|
u8 modrm = *++insn;
|
||
|
if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
|
||
|
/* Displacement follows ModRM byte. */
|
||
|
return (s32 *) ++insn;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* No %rip-relative addressing mode here. */
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
void arch_copy_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
s32 *ripdisp;
|
||
|
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
|
||
|
ripdisp = is_riprel(p->ainsn.insn);
|
||
|
if (ripdisp) {
|
||
|
/*
|
||
|
* The copied instruction uses the %rip-relative
|
||
|
* addressing mode. Adjust the displacement for the
|
||
|
* difference between the original location of this
|
||
|
* instruction and the location of the copy that will
|
||
|
* actually be run. The tricky bit here is making sure
|
||
|
* that the sign extension happens correctly in this
|
||
|
* calculation, since we need a signed 32-bit result to
|
||
|
* be sign-extended to 64 bits when it's added to the
|
||
|
* %rip value and yield the same 64-bit result that the
|
||
|
* sign-extension of the original signed 32-bit
|
||
|
* displacement would have given.
|
||
|
*/
|
||
|
s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
|
||
|
BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
|
||
|
*ripdisp = disp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void arch_remove_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
up(&kprobe_mutex);
|
||
|
free_insn_slot(p->ainsn.insn);
|
||
|
down(&kprobe_mutex);
|
||
|
}
|
||
|
|
||
|
static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
*p->addr = p->opcode;
|
||
|
regs->rip = (unsigned long)p->addr;
|
||
|
}
|
||
|
|
||
|
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
regs->eflags |= TF_MASK;
|
||
|
regs->eflags &= ~IF_MASK;
|
||
|
/*single step inline if the instruction is an int3*/
|
||
|
if (p->opcode == BREAKPOINT_INSTRUCTION)
|
||
|
regs->rip = (unsigned long)p->addr;
|
||
|
else
|
||
|
regs->rip = (unsigned long)p->ainsn.insn;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interrupts are disabled on entry as trap3 is an interrupt gate and they
|
||
|
* remain disabled thorough out this function.
|
||
|
*/
|
||
|
int kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe *p;
|
||
|
int ret = 0;
|
||
|
kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
|
||
|
|
||
|
/* We're in an interrupt, but this is clear and BUG()-safe. */
|
||
|
preempt_disable();
|
||
|
|
||
|
/* Check we're not actually recursing */
|
||
|
if (kprobe_running()) {
|
||
|
/* We *are* holding lock here, so this is safe.
|
||
|
Disarm the probe we just hit, and ignore it. */
|
||
|
p = get_kprobe(addr);
|
||
|
if (p) {
|
||
|
if (kprobe_status == KPROBE_HIT_SS) {
|
||
|
regs->eflags &= ~TF_MASK;
|
||
|
regs->eflags |= kprobe_saved_rflags;
|
||
|
unlock_kprobes();
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
disarm_kprobe(p, regs);
|
||
|
ret = 1;
|
||
|
} else {
|
||
|
p = current_kprobe;
|
||
|
if (p->break_handler && p->break_handler(p, regs)) {
|
||
|
goto ss_probe;
|
||
|
}
|
||
|
}
|
||
|
/* If it's not ours, can't be delete race, (we hold lock). */
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
|
||
|
lock_kprobes();
|
||
|
p = get_kprobe(addr);
|
||
|
if (!p) {
|
||
|
unlock_kprobes();
|
||
|
if (*addr != BREAKPOINT_INSTRUCTION) {
|
||
|
/*
|
||
|
* The breakpoint instruction was removed right
|
||
|
* after we hit it. Another cpu has removed
|
||
|
* either a probepoint or a debugger breakpoint
|
||
|
* at this address. In either case, no further
|
||
|
* handling of this interrupt is appropriate.
|
||
|
*/
|
||
|
ret = 1;
|
||
|
}
|
||
|
/* Not one of ours: let kernel handle it */
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
|
||
|
kprobe_status = KPROBE_HIT_ACTIVE;
|
||
|
current_kprobe = p;
|
||
|
kprobe_saved_rflags = kprobe_old_rflags
|
||
|
= (regs->eflags & (TF_MASK | IF_MASK));
|
||
|
if (is_IF_modifier(p->ainsn.insn))
|
||
|
kprobe_saved_rflags &= ~IF_MASK;
|
||
|
|
||
|
if (p->pre_handler && p->pre_handler(p, regs))
|
||
|
/* handler has already set things up, so skip ss setup */
|
||
|
return 1;
|
||
|
|
||
|
ss_probe:
|
||
|
prepare_singlestep(p, regs);
|
||
|
kprobe_status = KPROBE_HIT_SS;
|
||
|
return 1;
|
||
|
|
||
|
no_kprobe:
|
||
|
preempt_enable_no_resched();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called after single-stepping. p->addr is the address of the
|
||
|
* instruction whose first byte has been replaced by the "int 3"
|
||
|
* instruction. To avoid the SMP problems that can occur when we
|
||
|
* temporarily put back the original opcode to single-step, we
|
||
|
* single-stepped a copy of the instruction. The address of this
|
||
|
* copy is p->ainsn.insn.
|
||
|
*
|
||
|
* This function prepares to return from the post-single-step
|
||
|
* interrupt. We have to fix up the stack as follows:
|
||
|
*
|
||
|
* 0) Except in the case of absolute or indirect jump or call instructions,
|
||
|
* the new rip is relative to the copied instruction. We need to make
|
||
|
* it relative to the original instruction.
|
||
|
*
|
||
|
* 1) If the single-stepped instruction was pushfl, then the TF and IF
|
||
|
* flags are set in the just-pushed eflags, and may need to be cleared.
|
||
|
*
|
||
|
* 2) If the single-stepped instruction was a call, the return address
|
||
|
* that is atop the stack is the address following the copied instruction.
|
||
|
* We need to make it the address following the original instruction.
|
||
|
*/
|
||
|
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long *tos = (unsigned long *)regs->rsp;
|
||
|
unsigned long next_rip = 0;
|
||
|
unsigned long copy_rip = (unsigned long)p->ainsn.insn;
|
||
|
unsigned long orig_rip = (unsigned long)p->addr;
|
||
|
kprobe_opcode_t *insn = p->ainsn.insn;
|
||
|
|
||
|
/*skip the REX prefix*/
|
||
|
if (*insn >= 0x40 && *insn <= 0x4f)
|
||
|
insn++;
|
||
|
|
||
|
switch (*insn) {
|
||
|
case 0x9c: /* pushfl */
|
||
|
*tos &= ~(TF_MASK | IF_MASK);
|
||
|
*tos |= kprobe_old_rflags;
|
||
|
break;
|
||
|
case 0xe8: /* call relative - Fix return addr */
|
||
|
*tos = orig_rip + (*tos - copy_rip);
|
||
|
break;
|
||
|
case 0xff:
|
||
|
if ((*insn & 0x30) == 0x10) {
|
||
|
/* call absolute, indirect */
|
||
|
/* Fix return addr; rip is correct. */
|
||
|
next_rip = regs->rip;
|
||
|
*tos = orig_rip + (*tos - copy_rip);
|
||
|
} else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
|
||
|
((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
|
||
|
/* rip is correct. */
|
||
|
next_rip = regs->rip;
|
||
|
}
|
||
|
break;
|
||
|
case 0xea: /* jmp absolute -- rip is correct */
|
||
|
next_rip = regs->rip;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
regs->eflags &= ~TF_MASK;
|
||
|
if (next_rip) {
|
||
|
regs->rip = next_rip;
|
||
|
} else {
|
||
|
regs->rip = orig_rip + (regs->rip - copy_rip);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interrupts are disabled on entry as trap1 is an interrupt gate and they
|
||
|
* remain disabled thoroughout this function. And we hold kprobe lock.
|
||
|
*/
|
||
|
int post_kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
if (!kprobe_running())
|
||
|
return 0;
|
||
|
|
||
|
if (current_kprobe->post_handler)
|
||
|
current_kprobe->post_handler(current_kprobe, regs, 0);
|
||
|
|
||
|
resume_execution(current_kprobe, regs);
|
||
|
regs->eflags |= kprobe_saved_rflags;
|
||
|
|
||
|
unlock_kprobes();
|
||
|
preempt_enable_no_resched();
|
||
|
|
||
|
/*
|
||
|
* if somebody else is singlestepping across a probe point, eflags
|
||
|
* will have TF set, in which case, continue the remaining processing
|
||
|
* of do_debug, as if this is not a probe hit.
|
||
|
*/
|
||
|
if (regs->eflags & TF_MASK)
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Interrupts disabled, kprobe_lock held. */
|
||
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
if (current_kprobe->fault_handler
|
||
|
&& current_kprobe->fault_handler(current_kprobe, regs, trapnr))
|
||
|
return 1;
|
||
|
|
||
|
if (kprobe_status & KPROBE_HIT_SS) {
|
||
|
resume_execution(current_kprobe, regs);
|
||
|
regs->eflags |= kprobe_old_rflags;
|
||
|
|
||
|
unlock_kprobes();
|
||
|
preempt_enable_no_resched();
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wrapper routine for handling exceptions.
|
||
|
*/
|
||
|
int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
|
||
|
void *data)
|
||
|
{
|
||
|
struct die_args *args = (struct die_args *)data;
|
||
|
switch (val) {
|
||
|
case DIE_INT3:
|
||
|
if (kprobe_handler(args->regs))
|
||
|
return NOTIFY_STOP;
|
||
|
break;
|
||
|
case DIE_DEBUG:
|
||
|
if (post_kprobe_handler(args->regs))
|
||
|
return NOTIFY_STOP;
|
||
|
break;
|
||
|
case DIE_GPF:
|
||
|
if (kprobe_running() &&
|
||
|
kprobe_fault_handler(args->regs, args->trapnr))
|
||
|
return NOTIFY_STOP;
|
||
|
break;
|
||
|
case DIE_PAGE_FAULT:
|
||
|
if (kprobe_running() &&
|
||
|
kprobe_fault_handler(args->regs, args->trapnr))
|
||
|
return NOTIFY_STOP;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
||
|
unsigned long addr;
|
||
|
|
||
|
jprobe_saved_regs = *regs;
|
||
|
jprobe_saved_rsp = (long *) regs->rsp;
|
||
|
addr = (unsigned long)jprobe_saved_rsp;
|
||
|
/*
|
||
|
* As Linus pointed out, gcc assumes that the callee
|
||
|
* owns the argument space and could overwrite it, e.g.
|
||
|
* tailcall optimization. So, to be absolutely safe
|
||
|
* we also save and restore enough stack bytes to cover
|
||
|
* the argument area.
|
||
|
*/
|
||
|
memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
|
||
|
regs->eflags &= ~IF_MASK;
|
||
|
regs->rip = (unsigned long)(jp->entry);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
void jprobe_return(void)
|
||
|
{
|
||
|
preempt_enable_no_resched();
|
||
|
asm volatile (" xchg %%rbx,%%rsp \n"
|
||
|
" int3 \n"
|
||
|
" .globl jprobe_return_end \n"
|
||
|
" jprobe_return_end: \n"
|
||
|
" nop \n"::"b"
|
||
|
(jprobe_saved_rsp):"memory");
|
||
|
}
|
||
|
|
||
|
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
u8 *addr = (u8 *) (regs->rip - 1);
|
||
|
unsigned long stack_addr = (unsigned long)jprobe_saved_rsp;
|
||
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
||
|
|
||
|
if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
|
||
|
if ((long *)regs->rsp != jprobe_saved_rsp) {
|
||
|
struct pt_regs *saved_regs =
|
||
|
container_of(jprobe_saved_rsp, struct pt_regs, rsp);
|
||
|
printk("current rsp %p does not match saved rsp %p\n",
|
||
|
(long *)regs->rsp, jprobe_saved_rsp);
|
||
|
printk("Saved registers for jprobe %p\n", jp);
|
||
|
show_registers(saved_regs);
|
||
|
printk("Current registers\n");
|
||
|
show_registers(regs);
|
||
|
BUG();
|
||
|
}
|
||
|
*regs = jprobe_saved_regs;
|
||
|
memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
|
||
|
MIN_STACK_SIZE(stack_addr));
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* kprobe->ainsn.insn points to the copy of the instruction to be single-stepped.
|
||
|
* By default on x86_64, pages we get from kmalloc or vmalloc are not
|
||
|
* executable. Single-stepping an instruction on such a page yields an
|
||
|
* oops. So instead of storing the instruction copies in their respective
|
||
|
* kprobe objects, we allocate a page, map it executable, and store all the
|
||
|
* instruction copies there. (We can allocate additional pages if somebody
|
||
|
* inserts a huge number of probes.) Each page can hold up to INSNS_PER_PAGE
|
||
|
* instruction slots, each of which is MAX_INSN_SIZE*sizeof(kprobe_opcode_t)
|
||
|
* bytes.
|
||
|
*/
|
||
|
#define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE*sizeof(kprobe_opcode_t)))
|
||
|
struct kprobe_insn_page {
|
||
|
struct hlist_node hlist;
|
||
|
kprobe_opcode_t *insns; /* page of instruction slots */
|
||
|
char slot_used[INSNS_PER_PAGE];
|
||
|
int nused;
|
||
|
};
|
||
|
|
||
|
static struct hlist_head kprobe_insn_pages;
|
||
|
|
||
|
/**
|
||
|
* get_insn_slot() - Find a slot on an executable page for an instruction.
|
||
|
* We allocate an executable page if there's no room on existing ones.
|
||
|
*/
|
||
|
static kprobe_opcode_t *get_insn_slot(void)
|
||
|
{
|
||
|
struct kprobe_insn_page *kip;
|
||
|
struct hlist_node *pos;
|
||
|
|
||
|
hlist_for_each(pos, &kprobe_insn_pages) {
|
||
|
kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
|
||
|
if (kip->nused < INSNS_PER_PAGE) {
|
||
|
int i;
|
||
|
for (i = 0; i < INSNS_PER_PAGE; i++) {
|
||
|
if (!kip->slot_used[i]) {
|
||
|
kip->slot_used[i] = 1;
|
||
|
kip->nused++;
|
||
|
return kip->insns + (i*MAX_INSN_SIZE);
|
||
|
}
|
||
|
}
|
||
|
/* Surprise! No unused slots. Fix kip->nused. */
|
||
|
kip->nused = INSNS_PER_PAGE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* All out of space. Need to allocate a new page. Use slot 0.*/
|
||
|
kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
|
||
|
if (!kip) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For the %rip-relative displacement fixups to be doable, we
|
||
|
* need our instruction copy to be within +/- 2GB of any data it
|
||
|
* might access via %rip. That is, within 2GB of where the
|
||
|
* kernel image and loaded module images reside. So we allocate
|
||
|
* a page in the module loading area.
|
||
|
*/
|
||
|
kip->insns = module_alloc(PAGE_SIZE);
|
||
|
if (!kip->insns) {
|
||
|
kfree(kip);
|
||
|
return NULL;
|
||
|
}
|
||
|
INIT_HLIST_NODE(&kip->hlist);
|
||
|
hlist_add_head(&kip->hlist, &kprobe_insn_pages);
|
||
|
memset(kip->slot_used, 0, INSNS_PER_PAGE);
|
||
|
kip->slot_used[0] = 1;
|
||
|
kip->nused = 1;
|
||
|
return kip->insns;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* free_insn_slot() - Free instruction slot obtained from get_insn_slot().
|
||
|
*/
|
||
|
static void free_insn_slot(kprobe_opcode_t *slot)
|
||
|
{
|
||
|
struct kprobe_insn_page *kip;
|
||
|
struct hlist_node *pos;
|
||
|
|
||
|
hlist_for_each(pos, &kprobe_insn_pages) {
|
||
|
kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
|
||
|
if (kip->insns <= slot
|
||
|
&& slot < kip->insns+(INSNS_PER_PAGE*MAX_INSN_SIZE)) {
|
||
|
int i = (slot - kip->insns) / MAX_INSN_SIZE;
|
||
|
kip->slot_used[i] = 0;
|
||
|
kip->nused--;
|
||
|
if (kip->nused == 0) {
|
||
|
/*
|
||
|
* Page is no longer in use. Free it unless
|
||
|
* it's the last one. We keep the last one
|
||
|
* so as not to have to set it up again the
|
||
|
* next time somebody inserts a probe.
|
||
|
*/
|
||
|
hlist_del(&kip->hlist);
|
||
|
if (hlist_empty(&kprobe_insn_pages)) {
|
||
|
INIT_HLIST_NODE(&kip->hlist);
|
||
|
hlist_add_head(&kip->hlist,
|
||
|
&kprobe_insn_pages);
|
||
|
} else {
|
||
|
module_free(NULL, kip->insns);
|
||
|
kfree(kip);
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|