|
|
|
/* SCTP kernel reference Implementation
|
|
|
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
|
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
|
|
* Copyright (c) 2001-2003 International Business Machines Corp.
|
|
|
|
* Copyright (c) 2001 Intel Corp.
|
|
|
|
* Copyright (c) 2001 La Monte H.P. Yarroll
|
|
|
|
*
|
|
|
|
* This file is part of the SCTP kernel reference Implementation
|
|
|
|
*
|
|
|
|
* This module provides the abstraction for an SCTP tranport representing
|
|
|
|
* a remote transport address. For local transport addresses, we just use
|
|
|
|
* union sctp_addr.
|
|
|
|
*
|
|
|
|
* The SCTP reference implementation is free software;
|
|
|
|
* you can redistribute it and/or modify it under the terms of
|
|
|
|
* the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
|
|
* any later version.
|
|
|
|
*
|
|
|
|
* The SCTP reference implementation is distributed in the hope that it
|
|
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
|
|
* ************************
|
|
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
* See the GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with GNU CC; see the file COPYING. If not, write to
|
|
|
|
* the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
|
|
* Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* Please send any bug reports or fixes you make to the
|
|
|
|
* email address(es):
|
|
|
|
* lksctp developers <lksctp-developers@lists.sourceforge.net>
|
|
|
|
*
|
|
|
|
* Or submit a bug report through the following website:
|
|
|
|
* http://www.sf.net/projects/lksctp
|
|
|
|
*
|
|
|
|
* Written or modified by:
|
|
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
|
|
* Jon Grimm <jgrimm@us.ibm.com>
|
|
|
|
* Xingang Guo <xingang.guo@intel.com>
|
|
|
|
* Hui Huang <hui.huang@nokia.com>
|
|
|
|
* Sridhar Samudrala <sri@us.ibm.com>
|
|
|
|
* Ardelle Fan <ardelle.fan@intel.com>
|
|
|
|
*
|
|
|
|
* Any bugs reported given to us we will try to fix... any fixes shared will
|
|
|
|
* be incorporated into the next SCTP release.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <net/sctp/sctp.h>
|
|
|
|
#include <net/sctp/sm.h>
|
|
|
|
|
|
|
|
/* 1st Level Abstractions. */
|
|
|
|
|
|
|
|
/* Initialize a new transport from provided memory. */
|
|
|
|
static struct sctp_transport *sctp_transport_init(struct sctp_transport *peer,
|
|
|
|
const union sctp_addr *addr,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
|
|
|
/* Copy in the address. */
|
|
|
|
peer->ipaddr = *addr;
|
|
|
|
peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
|
|
|
|
peer->asoc = NULL;
|
|
|
|
|
|
|
|
peer->dst = NULL;
|
|
|
|
memset(&peer->saddr, 0, sizeof(union sctp_addr));
|
|
|
|
|
|
|
|
/* From 6.3.1 RTO Calculation:
|
|
|
|
*
|
|
|
|
* C1) Until an RTT measurement has been made for a packet sent to the
|
|
|
|
* given destination transport address, set RTO to the protocol
|
|
|
|
* parameter 'RTO.Initial'.
|
|
|
|
*/
|
|
|
|
peer->rtt = 0;
|
|
|
|
peer->rto = sctp_rto_initial;
|
|
|
|
peer->rttvar = 0;
|
|
|
|
peer->srtt = 0;
|
|
|
|
peer->rto_pending = 0;
|
|
|
|
|
|
|
|
peer->last_time_heard = jiffies;
|
|
|
|
peer->last_time_used = jiffies;
|
|
|
|
peer->last_time_ecne_reduced = jiffies;
|
|
|
|
|
|
|
|
peer->init_sent_count = 0;
|
|
|
|
|
|
|
|
peer->state = SCTP_ACTIVE;
|
|
|
|
peer->hb_allowed = 0;
|
|
|
|
|
|
|
|
/* Initialize the default path max_retrans. */
|
|
|
|
peer->max_retrans = sctp_max_retrans_path;
|
|
|
|
peer->error_count = 0;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&peer->transmitted);
|
|
|
|
INIT_LIST_HEAD(&peer->send_ready);
|
|
|
|
INIT_LIST_HEAD(&peer->transports);
|
|
|
|
|
|
|
|
/* Set up the retransmission timer. */
|
|
|
|
init_timer(&peer->T3_rtx_timer);
|
|
|
|
peer->T3_rtx_timer.function = sctp_generate_t3_rtx_event;
|
|
|
|
peer->T3_rtx_timer.data = (unsigned long)peer;
|
|
|
|
|
|
|
|
/* Set up the heartbeat timer. */
|
|
|
|
init_timer(&peer->hb_timer);
|
|
|
|
peer->hb_timer.function = sctp_generate_heartbeat_event;
|
|
|
|
peer->hb_timer.data = (unsigned long)peer;
|
|
|
|
|
|
|
|
atomic_set(&peer->refcnt, 1);
|
|
|
|
peer->dead = 0;
|
|
|
|
|
|
|
|
peer->malloced = 0;
|
|
|
|
|
|
|
|
/* Initialize the state information for SFR-CACC */
|
|
|
|
peer->cacc.changeover_active = 0;
|
|
|
|
peer->cacc.cycling_changeover = 0;
|
|
|
|
peer->cacc.next_tsn_at_change = 0;
|
|
|
|
peer->cacc.cacc_saw_newack = 0;
|
|
|
|
|
|
|
|
return peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate and initialize a new transport. */
|
|
|
|
struct sctp_transport *sctp_transport_new(const union sctp_addr *addr,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
|
|
|
struct sctp_transport *transport;
|
|
|
|
|
|
|
|
transport = t_new(struct sctp_transport, gfp);
|
|
|
|
if (!transport)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
if (!sctp_transport_init(transport, addr, gfp))
|
|
|
|
goto fail_init;
|
|
|
|
|
|
|
|
transport->malloced = 1;
|
|
|
|
SCTP_DBG_OBJCNT_INC(transport);
|
|
|
|
|
|
|
|
return transport;
|
|
|
|
|
|
|
|
fail_init:
|
|
|
|
kfree(transport);
|
|
|
|
|
|
|
|
fail:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This transport is no longer needed. Free up if possible, or
|
|
|
|
* delay until it last reference count.
|
|
|
|
*/
|
|
|
|
void sctp_transport_free(struct sctp_transport *transport)
|
|
|
|
{
|
|
|
|
transport->dead = 1;
|
|
|
|
|
|
|
|
/* Try to delete the heartbeat timer. */
|
|
|
|
if (del_timer(&transport->hb_timer))
|
|
|
|
sctp_transport_put(transport);
|
|
|
|
|
|
|
|
/* Delete the T3_rtx timer if it's active.
|
|
|
|
* There is no point in not doing this now and letting
|
|
|
|
* structure hang around in memory since we know
|
|
|
|
* the tranport is going away.
|
|
|
|
*/
|
|
|
|
if (timer_pending(&transport->T3_rtx_timer) &&
|
|
|
|
del_timer(&transport->T3_rtx_timer))
|
|
|
|
sctp_transport_put(transport);
|
|
|
|
|
|
|
|
|
|
|
|
sctp_transport_put(transport);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Destroy the transport data structure.
|
|
|
|
* Assumes there are no more users of this structure.
|
|
|
|
*/
|
|
|
|
static void sctp_transport_destroy(struct sctp_transport *transport)
|
|
|
|
{
|
|
|
|
SCTP_ASSERT(transport->dead, "Transport is not dead", return);
|
|
|
|
|
|
|
|
if (transport->asoc)
|
|
|
|
sctp_association_put(transport->asoc);
|
|
|
|
|
|
|
|
sctp_packet_free(&transport->packet);
|
|
|
|
|
|
|
|
dst_release(transport->dst);
|
|
|
|
kfree(transport);
|
|
|
|
SCTP_DBG_OBJCNT_DEC(transport);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Start T3_rtx timer if it is not already running and update the heartbeat
|
|
|
|
* timer. This routine is called every time a DATA chunk is sent.
|
|
|
|
*/
|
|
|
|
void sctp_transport_reset_timers(struct sctp_transport *transport)
|
|
|
|
{
|
|
|
|
/* RFC 2960 6.3.2 Retransmission Timer Rules
|
|
|
|
*
|
|
|
|
* R1) Every time a DATA chunk is sent to any address(including a
|
|
|
|
* retransmission), if the T3-rtx timer of that address is not running
|
|
|
|
* start it running so that it will expire after the RTO of that
|
|
|
|
* address.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!timer_pending(&transport->T3_rtx_timer))
|
|
|
|
if (!mod_timer(&transport->T3_rtx_timer,
|
|
|
|
jiffies + transport->rto))
|
|
|
|
sctp_transport_hold(transport);
|
|
|
|
|
|
|
|
/* When a data chunk is sent, reset the heartbeat interval. */
|
|
|
|
if (!mod_timer(&transport->hb_timer,
|
|
|
|
sctp_transport_timeout(transport)))
|
|
|
|
sctp_transport_hold(transport);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This transport has been assigned to an association.
|
|
|
|
* Initialize fields from the association or from the sock itself.
|
|
|
|
* Register the reference count in the association.
|
|
|
|
*/
|
|
|
|
void sctp_transport_set_owner(struct sctp_transport *transport,
|
|
|
|
struct sctp_association *asoc)
|
|
|
|
{
|
|
|
|
transport->asoc = asoc;
|
|
|
|
sctp_association_hold(asoc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Initialize the pmtu of a transport. */
|
|
|
|
void sctp_transport_pmtu(struct sctp_transport *transport)
|
|
|
|
{
|
|
|
|
struct dst_entry *dst;
|
|
|
|
|
|
|
|
dst = transport->af_specific->get_dst(NULL, &transport->ipaddr, NULL);
|
|
|
|
|
|
|
|
if (dst) {
|
|
|
|
transport->pmtu = dst_mtu(dst);
|
|
|
|
dst_release(dst);
|
|
|
|
} else
|
|
|
|
transport->pmtu = SCTP_DEFAULT_MAXSEGMENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Caches the dst entry and source address for a transport's destination
|
|
|
|
* address.
|
|
|
|
*/
|
|
|
|
void sctp_transport_route(struct sctp_transport *transport,
|
|
|
|
union sctp_addr *saddr, struct sctp_sock *opt)
|
|
|
|
{
|
|
|
|
struct sctp_association *asoc = transport->asoc;
|
|
|
|
struct sctp_af *af = transport->af_specific;
|
|
|
|
union sctp_addr *daddr = &transport->ipaddr;
|
|
|
|
struct dst_entry *dst;
|
|
|
|
|
|
|
|
dst = af->get_dst(asoc, daddr, saddr);
|
|
|
|
|
|
|
|
if (saddr)
|
|
|
|
memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
|
|
|
|
else
|
|
|
|
af->get_saddr(asoc, dst, daddr, &transport->saddr);
|
|
|
|
|
|
|
|
transport->dst = dst;
|
|
|
|
if (dst) {
|
|
|
|
transport->pmtu = dst_mtu(dst);
|
|
|
|
|
|
|
|
/* Initialize sk->sk_rcv_saddr, if the transport is the
|
|
|
|
* association's active path for getsockname().
|
|
|
|
*/
|
|
|
|
if (asoc && (transport == asoc->peer.active_path))
|
|
|
|
opt->pf->af->to_sk_saddr(&transport->saddr,
|
|
|
|
asoc->base.sk);
|
|
|
|
} else
|
|
|
|
transport->pmtu = SCTP_DEFAULT_MAXSEGMENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Hold a reference to a transport. */
|
|
|
|
void sctp_transport_hold(struct sctp_transport *transport)
|
|
|
|
{
|
|
|
|
atomic_inc(&transport->refcnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Release a reference to a transport and clean up
|
|
|
|
* if there are no more references.
|
|
|
|
*/
|
|
|
|
void sctp_transport_put(struct sctp_transport *transport)
|
|
|
|
{
|
|
|
|
if (atomic_dec_and_test(&transport->refcnt))
|
|
|
|
sctp_transport_destroy(transport);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update transport's RTO based on the newly calculated RTT. */
|
|
|
|
void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
|
|
|
|
{
|
|
|
|
/* Check for valid transport. */
|
|
|
|
SCTP_ASSERT(tp, "NULL transport", return);
|
|
|
|
|
|
|
|
/* We should not be doing any RTO updates unless rto_pending is set. */
|
|
|
|
SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return);
|
|
|
|
|
|
|
|
if (tp->rttvar || tp->srtt) {
|
|
|
|
/* 6.3.1 C3) When a new RTT measurement R' is made, set
|
|
|
|
* RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
|
|
|
|
* SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Note: The above algorithm has been rewritten to
|
|
|
|
* express rto_beta and rto_alpha as inverse powers
|
|
|
|
* of two.
|
|
|
|
* For example, assuming the default value of RTO.Alpha of
|
|
|
|
* 1/8, rto_alpha would be expressed as 3.
|
|
|
|
*/
|
|
|
|
tp->rttvar = tp->rttvar - (tp->rttvar >> sctp_rto_beta)
|
|
|
|
+ ((abs(tp->srtt - rtt)) >> sctp_rto_beta);
|
|
|
|
tp->srtt = tp->srtt - (tp->srtt >> sctp_rto_alpha)
|
|
|
|
+ (rtt >> sctp_rto_alpha);
|
|
|
|
} else {
|
|
|
|
/* 6.3.1 C2) When the first RTT measurement R is made, set
|
|
|
|
* SRTT <- R, RTTVAR <- R/2.
|
|
|
|
*/
|
|
|
|
tp->srtt = rtt;
|
|
|
|
tp->rttvar = rtt >> 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
|
|
|
|
* adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
|
|
|
|
*/
|
|
|
|
if (tp->rttvar == 0)
|
|
|
|
tp->rttvar = SCTP_CLOCK_GRANULARITY;
|
|
|
|
|
|
|
|
/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
|
|
|
|
tp->rto = tp->srtt + (tp->rttvar << 2);
|
|
|
|
|
|
|
|
/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
|
|
|
|
* seconds then it is rounded up to RTO.Min seconds.
|
|
|
|
*/
|
|
|
|
if (tp->rto < tp->asoc->rto_min)
|
|
|
|
tp->rto = tp->asoc->rto_min;
|
|
|
|
|
|
|
|
/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
|
|
|
|
* at least RTO.max seconds.
|
|
|
|
*/
|
|
|
|
if (tp->rto > tp->asoc->rto_max)
|
|
|
|
tp->rto = tp->asoc->rto_max;
|
|
|
|
|
|
|
|
tp->rtt = rtt;
|
|
|
|
|
|
|
|
/* Reset rto_pending so that a new RTT measurement is started when a
|
|
|
|
* new data chunk is sent.
|
|
|
|
*/
|
|
|
|
tp->rto_pending = 0;
|
|
|
|
|
|
|
|
SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d "
|
|
|
|
"rttvar: %d, rto: %d\n", __FUNCTION__,
|
|
|
|
tp, rtt, tp->srtt, tp->rttvar, tp->rto);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This routine updates the transport's cwnd and partial_bytes_acked
|
|
|
|
* parameters based on the bytes acked in the received SACK.
|
|
|
|
*/
|
|
|
|
void sctp_transport_raise_cwnd(struct sctp_transport *transport,
|
|
|
|
__u32 sack_ctsn, __u32 bytes_acked)
|
|
|
|
{
|
|
|
|
__u32 cwnd, ssthresh, flight_size, pba, pmtu;
|
|
|
|
|
|
|
|
cwnd = transport->cwnd;
|
|
|
|
flight_size = transport->flight_size;
|
|
|
|
|
|
|
|
/* The appropriate cwnd increase algorithm is performed if, and only
|
|
|
|
* if the cumulative TSN has advanced and the congestion window is
|
|
|
|
* being fully utilized.
|
|
|
|
*/
|
|
|
|
if ((transport->asoc->ctsn_ack_point >= sack_ctsn) ||
|
|
|
|
(flight_size < cwnd))
|
|
|
|
return;
|
|
|
|
|
|
|
|
ssthresh = transport->ssthresh;
|
|
|
|
pba = transport->partial_bytes_acked;
|
|
|
|
pmtu = transport->asoc->pmtu;
|
|
|
|
|
|
|
|
if (cwnd <= ssthresh) {
|
|
|
|
/* RFC 2960 7.2.1, sctpimpguide-05 2.14.2 When cwnd is less
|
|
|
|
* than or equal to ssthresh an SCTP endpoint MUST use the
|
|
|
|
* slow start algorithm to increase cwnd only if the current
|
|
|
|
* congestion window is being fully utilized and an incoming
|
|
|
|
* SACK advances the Cumulative TSN Ack Point. Only when these
|
|
|
|
* two conditions are met can the cwnd be increased otherwise
|
|
|
|
* the cwnd MUST not be increased. If these conditions are met
|
|
|
|
* then cwnd MUST be increased by at most the lesser of
|
|
|
|
* 1) the total size of the previously outstanding DATA
|
|
|
|
* chunk(s) acknowledged, and 2) the destination's path MTU.
|
|
|
|
*/
|
|
|
|
if (bytes_acked > pmtu)
|
|
|
|
cwnd += pmtu;
|
|
|
|
else
|
|
|
|
cwnd += bytes_acked;
|
|
|
|
SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, "
|
|
|
|
"bytes_acked: %d, cwnd: %d, ssthresh: %d, "
|
|
|
|
"flight_size: %d, pba: %d\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
transport, bytes_acked, cwnd,
|
|
|
|
ssthresh, flight_size, pba);
|
|
|
|
} else {
|
|
|
|
/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
|
|
|
|
* upon each SACK arrival that advances the Cumulative TSN Ack
|
|
|
|
* Point, increase partial_bytes_acked by the total number of
|
|
|
|
* bytes of all new chunks acknowledged in that SACK including
|
|
|
|
* chunks acknowledged by the new Cumulative TSN Ack and by
|
|
|
|
* Gap Ack Blocks.
|
|
|
|
*
|
|
|
|
* When partial_bytes_acked is equal to or greater than cwnd
|
|
|
|
* and before the arrival of the SACK the sender had cwnd or
|
|
|
|
* more bytes of data outstanding (i.e., before arrival of the
|
|
|
|
* SACK, flightsize was greater than or equal to cwnd),
|
|
|
|
* increase cwnd by MTU, and reset partial_bytes_acked to
|
|
|
|
* (partial_bytes_acked - cwnd).
|
|
|
|
*/
|
|
|
|
pba += bytes_acked;
|
|
|
|
if (pba >= cwnd) {
|
|
|
|
cwnd += pmtu;
|
|
|
|
pba = ((cwnd < pba) ? (pba - cwnd) : 0);
|
|
|
|
}
|
|
|
|
SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: "
|
|
|
|
"transport: %p, bytes_acked: %d, cwnd: %d, "
|
|
|
|
"ssthresh: %d, flight_size: %d, pba: %d\n",
|
|
|
|
__FUNCTION__,
|
|
|
|
transport, bytes_acked, cwnd,
|
|
|
|
ssthresh, flight_size, pba);
|
|
|
|
}
|
|
|
|
|
|
|
|
transport->cwnd = cwnd;
|
|
|
|
transport->partial_bytes_acked = pba;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This routine is used to lower the transport's cwnd when congestion is
|
|
|
|
* detected.
|
|
|
|
*/
|
|
|
|
void sctp_transport_lower_cwnd(struct sctp_transport *transport,
|
|
|
|
sctp_lower_cwnd_t reason)
|
|
|
|
{
|
|
|
|
switch (reason) {
|
|
|
|
case SCTP_LOWER_CWND_T3_RTX:
|
|
|
|
/* RFC 2960 Section 7.2.3, sctpimpguide
|
|
|
|
* When the T3-rtx timer expires on an address, SCTP should
|
|
|
|
* perform slow start by:
|
|
|
|
* ssthresh = max(cwnd/2, 4*MTU)
|
|
|
|
* cwnd = 1*MTU
|
|
|
|
* partial_bytes_acked = 0
|
|
|
|
*/
|
|
|
|
transport->ssthresh = max(transport->cwnd/2,
|
|
|
|
4*transport->asoc->pmtu);
|
|
|
|
transport->cwnd = transport->asoc->pmtu;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SCTP_LOWER_CWND_FAST_RTX:
|
|
|
|
/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
|
|
|
|
* destination address(es) to which the missing DATA chunks
|
|
|
|
* were last sent, according to the formula described in
|
|
|
|
* Section 7.2.3.
|
|
|
|
*
|
|
|
|
* RFC 2960 7.2.3, sctpimpguide Upon detection of packet
|
|
|
|
* losses from SACK (see Section 7.2.4), An endpoint
|
|
|
|
* should do the following:
|
|
|
|
* ssthresh = max(cwnd/2, 4*MTU)
|
|
|
|
* cwnd = ssthresh
|
|
|
|
* partial_bytes_acked = 0
|
|
|
|
*/
|
|
|
|
transport->ssthresh = max(transport->cwnd/2,
|
|
|
|
4*transport->asoc->pmtu);
|
|
|
|
transport->cwnd = transport->ssthresh;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SCTP_LOWER_CWND_ECNE:
|
|
|
|
/* RFC 2481 Section 6.1.2.
|
|
|
|
* If the sender receives an ECN-Echo ACK packet
|
|
|
|
* then the sender knows that congestion was encountered in the
|
|
|
|
* network on the path from the sender to the receiver. The
|
|
|
|
* indication of congestion should be treated just as a
|
|
|
|
* congestion loss in non-ECN Capable TCP. That is, the TCP
|
|
|
|
* source halves the congestion window "cwnd" and reduces the
|
|
|
|
* slow start threshold "ssthresh".
|
|
|
|
* A critical condition is that TCP does not react to
|
|
|
|
* congestion indications more than once every window of
|
|
|
|
* data (or more loosely more than once every round-trip time).
|
|
|
|
*/
|
|
|
|
if ((jiffies - transport->last_time_ecne_reduced) >
|
|
|
|
transport->rtt) {
|
|
|
|
transport->ssthresh = max(transport->cwnd/2,
|
|
|
|
4*transport->asoc->pmtu);
|
|
|
|
transport->cwnd = transport->ssthresh;
|
|
|
|
transport->last_time_ecne_reduced = jiffies;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SCTP_LOWER_CWND_INACTIVE:
|
|
|
|
/* RFC 2960 Section 7.2.1, sctpimpguide
|
|
|
|
* When the endpoint does not transmit data on a given
|
|
|
|
* transport address, the cwnd of the transport address
|
|
|
|
* should be adjusted to max(cwnd/2, 4*MTU) per RTO.
|
|
|
|
* NOTE: Although the draft recommends that this check needs
|
|
|
|
* to be done every RTO interval, we do it every hearbeat
|
|
|
|
* interval.
|
|
|
|
*/
|
|
|
|
if ((jiffies - transport->last_time_used) > transport->rto)
|
|
|
|
transport->cwnd = max(transport->cwnd/2,
|
|
|
|
4*transport->asoc->pmtu);
|
|
|
|
break;
|
|
|
|
};
|
|
|
|
|
|
|
|
transport->partial_bytes_acked = 0;
|
|
|
|
SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: "
|
|
|
|
"%d ssthresh: %d\n", __FUNCTION__,
|
|
|
|
transport, reason,
|
|
|
|
transport->cwnd, transport->ssthresh);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* What is the next timeout value for this transport? */
|
|
|
|
unsigned long sctp_transport_timeout(struct sctp_transport *t)
|
|
|
|
{
|
|
|
|
unsigned long timeout;
|
|
|
|
timeout = t->hb_interval + t->rto + sctp_jitter(t->rto);
|
|
|
|
timeout += jiffies;
|
|
|
|
return timeout;
|
|
|
|
}
|