You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/kernel/power/hibernate.c

1007 lines
23 KiB

/*
* kernel/power/hibernate.c - Hibernation (a.k.a suspend-to-disk) support.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
* Copyright (c) 2004 Pavel Machek <pavel@suse.cz>
* Copyright (c) 2009 Rafael J. Wysocki, Novell Inc.
*
* This file is released under the GPLv2.
*/
#include <linux/suspend.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/kmod.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pm.h>
#include <linux/console.h>
#include <linux/cpu.h>
#include <linux/freezer.h>
#include <scsi/scsi_scan.h>
#include <asm/suspend.h>
#include "power.h"
static int noresume = 0;
static char resume_file[256] = CONFIG_PM_STD_PARTITION;
dev_t swsusp_resume_device;
sector_t swsusp_resume_block;
int in_suspend __nosavedata = 0;
enum {
HIBERNATION_INVALID,
HIBERNATION_PLATFORM,
HIBERNATION_TEST,
HIBERNATION_TESTPROC,
HIBERNATION_SHUTDOWN,
HIBERNATION_REBOOT,
/* keep last */
__HIBERNATION_AFTER_LAST
};
#define HIBERNATION_MAX (__HIBERNATION_AFTER_LAST-1)
#define HIBERNATION_FIRST (HIBERNATION_INVALID + 1)
static int hibernation_mode = HIBERNATION_SHUTDOWN;
static struct platform_hibernation_ops *hibernation_ops;
/**
* hibernation_set_ops - set the global hibernate operations
* @ops: the hibernation operations to use in subsequent hibernation transitions
*/
void hibernation_set_ops(struct platform_hibernation_ops *ops)
{
if (ops && !(ops->begin && ops->end && ops->pre_snapshot
&& ops->prepare && ops->finish && ops->enter && ops->pre_restore
&& ops->restore_cleanup)) {
WARN_ON(1);
return;
}
mutex_lock(&pm_mutex);
hibernation_ops = ops;
if (ops)
hibernation_mode = HIBERNATION_PLATFORM;
else if (hibernation_mode == HIBERNATION_PLATFORM)
hibernation_mode = HIBERNATION_SHUTDOWN;
mutex_unlock(&pm_mutex);
}
static bool entering_platform_hibernation;
bool system_entering_hibernation(void)
{
return entering_platform_hibernation;
}
EXPORT_SYMBOL(system_entering_hibernation);
#ifdef CONFIG_PM_DEBUG
static void hibernation_debug_sleep(void)
{
printk(KERN_INFO "hibernation debug: Waiting for 5 seconds.\n");
mdelay(5000);
}
static int hibernation_testmode(int mode)
{
if (hibernation_mode == mode) {
hibernation_debug_sleep();
return 1;
}
return 0;
}
static int hibernation_test(int level)
{
if (pm_test_level == level) {
hibernation_debug_sleep();
return 1;
}
return 0;
}
#else /* !CONFIG_PM_DEBUG */
static int hibernation_testmode(int mode) { return 0; }
static int hibernation_test(int level) { return 0; }
#endif /* !CONFIG_PM_DEBUG */
/**
* platform_begin - tell the platform driver that we're starting
* hibernation
*/
static int platform_begin(int platform_mode)
{
return (platform_mode && hibernation_ops) ?
hibernation_ops->begin() : 0;
}
/**
* platform_end - tell the platform driver that we've entered the
* working state
*/
static void platform_end(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->end();
}
/**
* platform_pre_snapshot - prepare the machine for hibernation using the
* platform driver if so configured and return an error code if it fails
*/
static int platform_pre_snapshot(int platform_mode)
{
return (platform_mode && hibernation_ops) ?
hibernation_ops->pre_snapshot() : 0;
}
/**
* platform_leave - prepare the machine for switching to the normal mode
* of operation using the platform driver (called with interrupts disabled)
*/
static void platform_leave(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->leave();
}
/**
* platform_finish - switch the machine to the normal mode of operation
* using the platform driver (must be called after platform_prepare())
*/
static void platform_finish(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->finish();
}
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
/**
* platform_pre_restore - prepare the platform for the restoration from a
* hibernation image. If the restore fails after this function has been
* called, platform_restore_cleanup() must be called.
*/
static int platform_pre_restore(int platform_mode)
{
return (platform_mode && hibernation_ops) ?
hibernation_ops->pre_restore() : 0;
}
/**
* platform_restore_cleanup - switch the platform to the normal mode of
* operation after a failing restore. If platform_pre_restore() has been
* called before the failing restore, this function must be called too,
* regardless of the result of platform_pre_restore().
*/
static void platform_restore_cleanup(int platform_mode)
{
if (platform_mode && hibernation_ops)
hibernation_ops->restore_cleanup();
}
/**
* platform_recover - recover the platform from a failure to suspend
* devices.
*/
static void platform_recover(int platform_mode)
{
if (platform_mode && hibernation_ops && hibernation_ops->recover)
hibernation_ops->recover();
}
/**
* swsusp_show_speed - print the time elapsed between two events.
* @start: Starting event.
* @stop: Final event.
* @nr_pages - number of pages processed between @start and @stop
* @msg - introductory message to print
*/
void swsusp_show_speed(struct timeval *start, struct timeval *stop,
unsigned nr_pages, char *msg)
{
s64 elapsed_centisecs64;
int centisecs;
int k;
int kps;
elapsed_centisecs64 = timeval_to_ns(stop) - timeval_to_ns(start);
do_div(elapsed_centisecs64, NSEC_PER_SEC / 100);
centisecs = elapsed_centisecs64;
if (centisecs == 0)
centisecs = 1; /* avoid div-by-zero */
k = nr_pages * (PAGE_SIZE / 1024);
kps = (k * 100) / centisecs;
printk(KERN_INFO "PM: %s %d kbytes in %d.%02d seconds (%d.%02d MB/s)\n",
msg, k,
centisecs / 100, centisecs % 100,
kps / 1000, (kps % 1000) / 10);
}
/**
* create_image - freeze devices that need to be frozen with interrupts
* off, create the hibernation image and thaw those devices. Control
* reappears in this routine after a restore.
*/
static int create_image(int platform_mode)
{
int error;
error = arch_prepare_suspend();
if (error)
return error;
/* At this point, dpm_suspend_start() has been called, but *not*
* dpm_suspend_noirq(). We *must* call dpm_suspend_noirq() now.
* Otherwise, drivers for some devices (e.g. interrupt controllers)
* become desynchronized with the actual state of the hardware
* at resume time, and evil weirdness ensues.
*/
error = dpm_suspend_noirq(PMSG_FREEZE);
if (error) {
printk(KERN_ERR "PM: Some devices failed to power down, "
"aborting hibernation\n");
return error;
}
error = platform_pre_snapshot(platform_mode);
if (error || hibernation_test(TEST_PLATFORM))
goto Platform_finish;
error = disable_nonboot_cpus();
if (error || hibernation_test(TEST_CPUS)
|| hibernation_testmode(HIBERNATION_TEST))
goto Enable_cpus;
local_irq_disable();
error = sysdev_suspend(PMSG_FREEZE);
if (error) {
printk(KERN_ERR "PM: Some system devices failed to power down, "
"aborting hibernation\n");
goto Enable_irqs;
}
if (hibernation_test(TEST_CORE))
goto Power_up;
in_suspend = 1;
save_processor_state();
error = swsusp_arch_suspend();
if (error)
printk(KERN_ERR "PM: Error %d creating hibernation image\n",
error);
/* Restore control flow magically appears here */
restore_processor_state();
if (!in_suspend)
platform_leave(platform_mode);
Power_up:
sysdev_resume();
/* NOTE: dpm_resume_noirq() is just a resume() for devices
* that suspended with irqs off ... no overall powerup.
*/
Enable_irqs:
local_irq_enable();
Enable_cpus:
enable_nonboot_cpus();
Platform_finish:
platform_finish(platform_mode);
dpm_resume_noirq(in_suspend ?
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
17 years ago
(error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE);
return error;
}
/**
* hibernation_snapshot - quiesce devices and create the hibernation
* snapshot image.
* @platform_mode - if set, use the platform driver, if available, to
* prepare the platform firmware for the power transition.
*
* Must be called with pm_mutex held
*/
int hibernation_snapshot(int platform_mode)
{
int error;
gfp_t saved_mask;
error = platform_begin(platform_mode);
if (error)
return error;
/* Preallocate image memory before shutting down devices. */
error = hibernate_preallocate_memory();
if (error)
goto Close;
suspend_console();
saved_mask = clear_gfp_allowed_mask(GFP_IOFS);
error = dpm_suspend_start(PMSG_FREEZE);
if (error)
goto Recover_platform;
if (hibernation_test(TEST_DEVICES))
goto Recover_platform;
error = create_image(platform_mode);
/* Control returns here after successful restore */
Resume_devices:
/* We may need to release the preallocated image pages here. */
if (error || !in_suspend)
swsusp_free();
dpm_resume_end(in_suspend ?
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
17 years ago
(error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE);
set_gfp_allowed_mask(saved_mask);
resume_console();
Close:
platform_end(platform_mode);
return error;
Recover_platform:
platform_recover(platform_mode);
goto Resume_devices;
}
/**
* resume_target_kernel - prepare devices that need to be suspended with
* interrupts off, restore the contents of highmem that have not been
* restored yet from the image and run the low level code that will restore
* the remaining contents of memory and switch to the just restored target
* kernel.
*/
static int resume_target_kernel(bool platform_mode)
{
int error;
error = dpm_suspend_noirq(PMSG_QUIESCE);
if (error) {
printk(KERN_ERR "PM: Some devices failed to power down, "
"aborting resume\n");
return error;
}
error = platform_pre_restore(platform_mode);
if (error)
goto Cleanup;
error = disable_nonboot_cpus();
if (error)
goto Enable_cpus;
local_irq_disable();
error = sysdev_suspend(PMSG_QUIESCE);
if (error)
goto Enable_irqs;
/* We'll ignore saved state, but this gets preempt count (etc) right */
save_processor_state();
error = restore_highmem();
if (!error) {
error = swsusp_arch_resume();
/*
* The code below is only ever reached in case of a failure.
* Otherwise execution continues at place where
* swsusp_arch_suspend() was called
*/
BUG_ON(!error);
/* This call to restore_highmem() undos the previous one */
restore_highmem();
}
/*
* The only reason why swsusp_arch_resume() can fail is memory being
* very tight, so we have to free it as soon as we can to avoid
* subsequent failures
*/
swsusp_free();
restore_processor_state();
touch_softlockup_watchdog();
sysdev_resume();
Enable_irqs:
local_irq_enable();
Enable_cpus:
enable_nonboot_cpus();
Cleanup:
platform_restore_cleanup(platform_mode);
dpm_resume_noirq(PMSG_RECOVER);
return error;
}
/**
* hibernation_restore - quiesce devices and restore the hibernation
* snapshot image. If successful, control returns in hibernation_snaphot()
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
* @platform_mode - if set, use the platform driver, if available, to
* prepare the platform firmware for the transition.
*
* Must be called with pm_mutex held
*/
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
int hibernation_restore(int platform_mode)
{
int error;
gfp_t saved_mask;
pm_prepare_console();
suspend_console();
saved_mask = clear_gfp_allowed_mask(GFP_IOFS);
error = dpm_suspend_start(PMSG_QUIESCE);
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
if (!error) {
error = resume_target_kernel(platform_mode);
dpm_resume_end(PMSG_RECOVER);
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
}
set_gfp_allowed_mask(saved_mask);
resume_console();
pm_restore_console();
return error;
}
/**
* hibernation_platform_enter - enter the hibernation state using the
* platform driver (if available)
*/
int hibernation_platform_enter(void)
{
int error;
gfp_t saved_mask;
if (!hibernation_ops)
return -ENOSYS;
/*
* We have cancelled the power transition by running
* hibernation_ops->finish() before saving the image, so we should let
* the firmware know that we're going to enter the sleep state after all
*/
error = hibernation_ops->begin();
if (error)
goto Close;
entering_platform_hibernation = true;
suspend_console();
saved_mask = clear_gfp_allowed_mask(GFP_IOFS);
error = dpm_suspend_start(PMSG_HIBERNATE);
if (error) {
if (hibernation_ops->recover)
hibernation_ops->recover();
goto Resume_devices;
}
error = dpm_suspend_noirq(PMSG_HIBERNATE);
if (error)
goto Resume_devices;
error = hibernation_ops->prepare();
if (error)
goto Platform_finish;
error = disable_nonboot_cpus();
if (error)
goto Platform_finish;
local_irq_disable();
sysdev_suspend(PMSG_HIBERNATE);
hibernation_ops->enter();
/* We should never get here */
while (1);
/*
* We don't need to reenable the nonboot CPUs or resume consoles, since
* the system is going to be halted anyway.
*/
Platform_finish:
hibernation_ops->finish();
dpm_suspend_noirq(PMSG_RESTORE);
Resume_devices:
entering_platform_hibernation = false;
dpm_resume_end(PMSG_RESTORE);
set_gfp_allowed_mask(saved_mask);
resume_console();
Close:
hibernation_ops->end();
return error;
}
/**
* power_down - Shut the machine down for hibernation.
*
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
* Use the platform driver, if configured so; otherwise try
* to power off or reboot.
*/
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
static void power_down(void)
{
switch (hibernation_mode) {
case HIBERNATION_TEST:
case HIBERNATION_TESTPROC:
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
break;
case HIBERNATION_REBOOT:
kernel_restart(NULL);
break;
case HIBERNATION_PLATFORM:
hibernation_platform_enter();
case HIBERNATION_SHUTDOWN:
kernel_power_off();
break;
}
kernel_halt();
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
/*
* Valid image is on the disk, if we continue we risk serious data
* corruption after resume.
*/
printk(KERN_CRIT "PM: Please power down manually\n");
while(1);
}
static int prepare_processes(void)
{
int error = 0;
if (freeze_processes()) {
error = -EBUSY;
thaw_processes();
}
return error;
}
/**
* hibernate - The granpappy of the built-in hibernation management
*/
int hibernate(void)
{
int error;
mutex_lock(&pm_mutex);
/* The snapshot device should not be opened while we're running */
if (!atomic_add_unless(&snapshot_device_available, -1, 0)) {
error = -EBUSY;
goto Unlock;
}
pm_prepare_console();
error = pm_notifier_call_chain(PM_HIBERNATION_PREPARE);
if (error)
goto Exit;
error = usermodehelper_disable();
if (error)
goto Exit;
/* Allocate memory management structures */
error = create_basic_memory_bitmaps();
if (error)
goto Exit;
printk(KERN_INFO "PM: Syncing filesystems ... ");
sys_sync();
printk("done.\n");
error = prepare_processes();
if (error)
goto Finish;
if (hibernation_test(TEST_FREEZER))
goto Thaw;
if (hibernation_testmode(HIBERNATION_TESTPROC))
goto Thaw;
error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM);
if (error)
goto Thaw;
if (in_suspend) {
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
unsigned int flags = 0;
if (hibernation_mode == HIBERNATION_PLATFORM)
flags |= SF_PLATFORM_MODE;
pr_debug("PM: writing image.\n");
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
error = swsusp_write(flags);
swsusp_free();
if (!error)
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
power_down();
} else {
pr_debug("PM: Image restored successfully.\n");
}
Thaw:
thaw_processes();
Finish:
free_basic_memory_bitmaps();
usermodehelper_enable();
Exit:
pm_notifier_call_chain(PM_POST_HIBERNATION);
pm_restore_console();
atomic_inc(&snapshot_device_available);
Unlock:
mutex_unlock(&pm_mutex);
return error;
}
/**
* software_resume - Resume from a saved image.
*
* Called as a late_initcall (so all devices are discovered and
* initialized), we call swsusp to see if we have a saved image or not.
* If so, we quiesce devices, the restore the saved image. We will
* return above (in hibernate() ) if everything goes well.
* Otherwise, we fail gracefully and return to the normally
* scheduled program.
*
*/
static int software_resume(void)
{
int error;
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
unsigned int flags;
/*
* If the user said "noresume".. bail out early.
*/
if (noresume)
return 0;
/*
* name_to_dev_t() below takes a sysfs buffer mutex when sysfs
* is configured into the kernel. Since the regular hibernate
* trigger path is via sysfs which takes a buffer mutex before
* calling hibernate functions (which take pm_mutex) this can
* cause lockdep to complain about a possible ABBA deadlock
* which cannot happen since we're in the boot code here and
* sysfs can't be invoked yet. Therefore, we use a subclass
* here to avoid lockdep complaining.
*/
mutex_lock_nested(&pm_mutex, SINGLE_DEPTH_NESTING);
if (swsusp_resume_device)
goto Check_image;
if (!strlen(resume_file)) {
error = -ENOENT;
goto Unlock;
}
pr_debug("PM: Checking image partition %s\n", resume_file);
/* Check if the device is there */
swsusp_resume_device = name_to_dev_t(resume_file);
if (!swsusp_resume_device) {
/*
* Some device discovery might still be in progress; we need
* to wait for this to finish.
*/
wait_for_device_probe();
/*
* We can't depend on SCSI devices being available after loading
* one of their modules until scsi_complete_async_scans() is
* called and the resume device usually is a SCSI one.
*/
scsi_complete_async_scans();
swsusp_resume_device = name_to_dev_t(resume_file);
if (!swsusp_resume_device) {
error = -ENODEV;
goto Unlock;
}
}
Check_image:
pr_debug("PM: Resume from partition %d:%d\n",
MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device));
pr_debug("PM: Checking hibernation image.\n");
error = swsusp_check();
if (error)
goto Unlock;
/* The snapshot device should not be opened while we're running */
if (!atomic_add_unless(&snapshot_device_available, -1, 0)) {
error = -EBUSY;
swsusp_close(FMODE_READ);
goto Unlock;
}
pm_prepare_console();
error = pm_notifier_call_chain(PM_RESTORE_PREPARE);
if (error)
goto close_finish;
error = usermodehelper_disable();
if (error)
goto close_finish;
error = create_basic_memory_bitmaps();
if (error)
goto close_finish;
pr_debug("PM: Preparing processes for restore.\n");
error = prepare_processes();
if (error) {
swsusp_close(FMODE_READ);
goto Done;
}
pr_debug("PM: Reading hibernation image.\n");
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
error = swsusp_read(&flags);
swsusp_close(FMODE_READ);
if (!error)
swsusp: introduce restore platform operations At least on some machines it is necessary to prepare the ACPI firmware for the restoration of the system memory state from the hibernation image if the "platform" mode of hibernation has been used. Namely, in that cases we need to disable the GPEs before replacing the "boot" kernel with the "frozen" kernel (cf. http://bugzilla.kernel.org/show_bug.cgi?id=7887). After the restore they will be re-enabled by hibernation_ops->finish(), but if the restore fails, they have to be re-enabled by the restore code explicitly. For this purpose we can introduce two additional hibernation operations, called pre_restore() and restore_cleanup() and call them from the restore code path. Still, they should be called if the "platform" mode of hibernation has been used, so we need to pass the information about the hibernation mode from the "frozen" kernel to the "boot" kernel in the image header. Apparently, we can't drop the disabling of GPEs before the restore because of Bug #7887 .  We also can't do it unconditionally, because the GPEs wouldn't have been enabled after a successful restore if the suspend had been done in the 'shutdown' or 'reboot' mode. In principle we could (and probably should) unconditionally disable the GPEs before each snapshot creation *and* before the restore, but then we'd have to unconditionally enable them after the snapshot creation as well as after the restore (or restore failure)   Still, for this purpose we'd need to modify acpi_enter_sleep_state_prep() and acpi_leave_sleep_state() and we'd have to introduce some mechanism synchronizing the disablind/enabling of the GPEs with the device drivers' .suspend()/.resume() routines and with disable_/enable_nonboot_cpus().  However, this would have affected the suspend (ie. s2ram) code as well as the hibernation, which I'd like to avoid in this patch series. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
hibernation_restore(flags & SF_PLATFORM_MODE);
printk(KERN_ERR "PM: Restore failed, recovering.\n");
swsusp_free();
thaw_processes();
Done:
free_basic_memory_bitmaps();
usermodehelper_enable();
Finish:
pm_notifier_call_chain(PM_POST_RESTORE);
pm_restore_console();
atomic_inc(&snapshot_device_available);
/* For success case, the suspend path will release the lock */
Unlock:
mutex_unlock(&pm_mutex);
pr_debug("PM: Resume from disk failed.\n");
return error;
close_finish:
swsusp_close(FMODE_READ);
goto Finish;
}
late_initcall(software_resume);
static const char * const hibernation_modes[] = {
[HIBERNATION_PLATFORM] = "platform",
[HIBERNATION_SHUTDOWN] = "shutdown",
[HIBERNATION_REBOOT] = "reboot",
[HIBERNATION_TEST] = "test",
[HIBERNATION_TESTPROC] = "testproc",
};
/**
* disk - Control hibernation mode
*
* Suspend-to-disk can be handled in several ways. We have a few options
* for putting the system to sleep - using the platform driver (e.g. ACPI
* or other hibernation_ops), powering off the system or rebooting the
* system (for testing) as well as the two test modes.
*
* The system can support 'platform', and that is known a priori (and
* encoded by the presence of hibernation_ops). However, the user may
* choose 'shutdown' or 'reboot' as alternatives, as well as one fo the
* test modes, 'test' or 'testproc'.
*
* show() will display what the mode is currently set to.
* store() will accept one of
*
* 'platform'
* 'shutdown'
* 'reboot'
* 'test'
* 'testproc'
*
* It will only change to 'platform' if the system
* supports it (as determined by having hibernation_ops).
*/
static ssize_t disk_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
int i;
char *start = buf;
for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) {
if (!hibernation_modes[i])
continue;
switch (i) {
case HIBERNATION_SHUTDOWN:
case HIBERNATION_REBOOT:
case HIBERNATION_TEST:
case HIBERNATION_TESTPROC:
break;
case HIBERNATION_PLATFORM:
if (hibernation_ops)
break;
/* not a valid mode, continue with loop */
continue;
}
if (i == hibernation_mode)
buf += sprintf(buf, "[%s] ", hibernation_modes[i]);
else
buf += sprintf(buf, "%s ", hibernation_modes[i]);
}
buf += sprintf(buf, "\n");
return buf-start;
}
static ssize_t disk_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
int error = 0;
int i;
int len;
char *p;
int mode = HIBERNATION_INVALID;
p = memchr(buf, '\n', n);
len = p ? p - buf : n;
mutex_lock(&pm_mutex);
for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) {
if (len == strlen(hibernation_modes[i])
&& !strncmp(buf, hibernation_modes[i], len)) {
mode = i;
break;
}
}
if (mode != HIBERNATION_INVALID) {
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
switch (mode) {
case HIBERNATION_SHUTDOWN:
case HIBERNATION_REBOOT:
case HIBERNATION_TEST:
case HIBERNATION_TESTPROC:
hibernation_mode = mode;
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
break;
case HIBERNATION_PLATFORM:
if (hibernation_ops)
hibernation_mode = mode;
else
error = -EINVAL;
}
} else
error = -EINVAL;
if (!error)
pr_debug("PM: Hibernation mode set to '%s'\n",
hibernation_modes[mode]);
mutex_unlock(&pm_mutex);
return error ? error : n;
}
power_attr(disk);
static ssize_t resume_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf,"%d:%d\n", MAJOR(swsusp_resume_device),
MINOR(swsusp_resume_device));
}
static ssize_t resume_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
unsigned int maj, min;
dev_t res;
int ret = -EINVAL;
if (sscanf(buf, "%u:%u", &maj, &min) != 2)
goto out;
res = MKDEV(maj,min);
if (maj != MAJOR(res) || min != MINOR(res))
goto out;
mutex_lock(&pm_mutex);
swsusp_resume_device = res;
mutex_unlock(&pm_mutex);
printk(KERN_INFO "PM: Starting manual resume from disk\n");
noresume = 0;
software_resume();
ret = n;
out:
return ret;
}
power_attr(resume);
static ssize_t image_size_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%lu\n", image_size);
}
static ssize_t image_size_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
unsigned long size;
if (sscanf(buf, "%lu", &size) == 1) {
image_size = size;
return n;
}
return -EINVAL;
}
power_attr(image_size);
static struct attribute * g[] = {
&disk_attr.attr,
&resume_attr.attr,
&image_size_attr.attr,
NULL,
};
static struct attribute_group attr_group = {
.attrs = g,
};
static int __init pm_disk_init(void)
{
return sysfs_create_group(power_kobj, &attr_group);
}
core_initcall(pm_disk_init);
static int __init resume_setup(char *str)
{
if (noresume)
return 1;
strncpy( resume_file, str, 255 );
return 1;
}
static int __init resume_offset_setup(char *str)
{
unsigned long long offset;
if (noresume)
return 1;
if (sscanf(str, "%llu", &offset) == 1)
swsusp_resume_block = offset;
return 1;
}
static int __init noresume_setup(char *str)
{
noresume = 1;
return 1;
}
__setup("noresume", noresume_setup);
__setup("resume_offset=", resume_offset_setup);
__setup("resume=", resume_setup);