|
|
|
#ifndef __ASM_SH_IO_H
|
|
|
|
#define __ASM_SH_IO_H
|
|
|
|
/*
|
|
|
|
* Convention:
|
|
|
|
* read{b,w,l,q}/write{b,w,l,q} are for PCI,
|
|
|
|
* while in{b,w,l}/out{b,w,l} are for ISA
|
|
|
|
*
|
|
|
|
* In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
|
|
|
|
* and 'string' versions: ins{b,w,l}/outs{b,w,l}
|
|
|
|
*
|
|
|
|
* While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
|
|
|
|
* automatically, there are also __raw versions, which do not.
|
|
|
|
*
|
|
|
|
* Historically, we have also had ctrl_in{b,w,l,q}/ctrl_out{b,w,l,q} for
|
|
|
|
* SuperH specific I/O (raw I/O to on-chip CPU peripherals). In practice
|
|
|
|
* these have the same semantics as the __raw variants, and as such, all
|
|
|
|
* new code should be using the __raw versions.
|
|
|
|
*
|
|
|
|
* All ISA I/O routines are wrapped through the machine vector. If a
|
|
|
|
* board does not provide overrides, a generic set that are copied in
|
|
|
|
* from the default machine vector are used instead. These are largely
|
|
|
|
* for old compat code for I/O offseting to SuperIOs, all of which are
|
|
|
|
* better handled through the machvec ioport mapping routines these days.
|
|
|
|
*/
|
|
|
|
#include <asm/cache.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <asm/addrspace.h>
|
|
|
|
#include <asm/machvec.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
#include <asm-generic/iomap.h>
|
|
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/*
|
|
|
|
* Depending on which platform we are running on, we need different
|
|
|
|
* I/O functions.
|
|
|
|
*/
|
|
|
|
#define __IO_PREFIX generic
|
|
|
|
#include <asm/io_generic.h>
|
|
|
|
#include <asm/io_trapped.h>
|
|
|
|
|
|
|
|
#define inb(p) sh_mv.mv_inb((p))
|
|
|
|
#define inw(p) sh_mv.mv_inw((p))
|
|
|
|
#define inl(p) sh_mv.mv_inl((p))
|
|
|
|
#define outb(x,p) sh_mv.mv_outb((x),(p))
|
|
|
|
#define outw(x,p) sh_mv.mv_outw((x),(p))
|
|
|
|
#define outl(x,p) sh_mv.mv_outl((x),(p))
|
|
|
|
|
|
|
|
#define inb_p(p) sh_mv.mv_inb_p((p))
|
|
|
|
#define inw_p(p) sh_mv.mv_inw_p((p))
|
|
|
|
#define inl_p(p) sh_mv.mv_inl_p((p))
|
|
|
|
#define outb_p(x,p) sh_mv.mv_outb_p((x),(p))
|
|
|
|
#define outw_p(x,p) sh_mv.mv_outw_p((x),(p))
|
|
|
|
#define outl_p(x,p) sh_mv.mv_outl_p((x),(p))
|
|
|
|
|
|
|
|
#define insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
|
|
|
|
#define insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
|
|
|
|
#define insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
|
|
|
|
#define outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
|
|
|
|
#define outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
|
|
|
|
#define outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
|
|
|
|
|
|
|
|
#define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
|
|
|
|
#define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
|
|
|
|
#define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
|
|
|
|
#define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
|
|
|
|
|
|
|
|
#define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
|
|
|
|
#define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
|
|
|
|
#define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
|
|
|
|
#define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
|
|
|
|
|
|
|
|
#define readb(a) ({ u8 r_ = __raw_readb(a); mb(); r_; })
|
|
|
|
#define readw(a) ({ u16 r_ = __raw_readw(a); mb(); r_; })
|
|
|
|
#define readl(a) ({ u32 r_ = __raw_readl(a); mb(); r_; })
|
|
|
|
#define readq(a) ({ u64 r_ = __raw_readq(a); mb(); r_; })
|
|
|
|
|
|
|
|
#define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
|
|
|
|
#define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
|
|
|
|
#define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
|
|
|
|
#define writeq(v,a) ({ __raw_writeq((v),(a)); mb(); })
|
|
|
|
|
|
|
|
/* SuperH on-chip I/O functions */
|
|
|
|
#define ctrl_inb __raw_readb
|
|
|
|
#define ctrl_inw __raw_readw
|
|
|
|
#define ctrl_inl __raw_readl
|
|
|
|
#define ctrl_inq __raw_readq
|
|
|
|
|
|
|
|
#define ctrl_outb __raw_writeb
|
|
|
|
#define ctrl_outw __raw_writew
|
|
|
|
#define ctrl_outl __raw_writel
|
|
|
|
#define ctrl_outq __raw_writeq
|
|
|
|
|
|
|
|
static inline void ctrl_delay(void)
|
|
|
|
{
|
|
|
|
#ifdef P2SEG
|
|
|
|
__raw_readw(P2SEG);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#define __BUILD_MEMORY_STRING(bwlq, type) \
|
|
|
|
\
|
|
|
|
static inline void __raw_writes##bwlq(volatile void __iomem *mem, \
|
|
|
|
const void *addr, unsigned int count) \
|
|
|
|
{ \
|
|
|
|
const volatile type *__addr = addr; \
|
|
|
|
\
|
|
|
|
while (count--) { \
|
|
|
|
__raw_write##bwlq(*__addr, mem); \
|
|
|
|
__addr++; \
|
|
|
|
} \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
static inline void __raw_reads##bwlq(volatile void __iomem *mem, \
|
|
|
|
void *addr, unsigned int count) \
|
|
|
|
{ \
|
|
|
|
volatile type *__addr = addr; \
|
|
|
|
\
|
|
|
|
while (count--) { \
|
|
|
|
*__addr = __raw_read##bwlq(mem); \
|
|
|
|
__addr++; \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
__BUILD_MEMORY_STRING(b, u8)
|
|
|
|
__BUILD_MEMORY_STRING(w, u16)
|
|
|
|
__BUILD_MEMORY_STRING(q, u64)
|
|
|
|
|
|
|
|
void __raw_writesl(void __iomem *addr, const void *data, int longlen);
|
|
|
|
void __raw_readsl(const void __iomem *addr, void *data, int longlen);
|
|
|
|
|
|
|
|
#define writesb __raw_writesb
|
|
|
|
#define writesw __raw_writesw
|
|
|
|
#define writesl __raw_writesl
|
|
|
|
|
|
|
|
#define readsb __raw_readsb
|
|
|
|
#define readsw __raw_readsw
|
|
|
|
#define readsl __raw_readsl
|
|
|
|
|
|
|
|
#define readb_relaxed(a) readb(a)
|
|
|
|
#define readw_relaxed(a) readw(a)
|
|
|
|
#define readl_relaxed(a) readl(a)
|
|
|
|
#define readq_relaxed(a) readq(a)
|
|
|
|
|
|
|
|
/* Simple MMIO */
|
|
|
|
#define ioread8(a) __raw_readb(a)
|
|
|
|
#define ioread16(a) __raw_readw(a)
|
|
|
|
#define ioread16be(a) be16_to_cpu(__raw_readw((a)))
|
|
|
|
#define ioread32(a) __raw_readl(a)
|
|
|
|
#define ioread32be(a) be32_to_cpu(__raw_readl((a)))
|
|
|
|
|
|
|
|
#define iowrite8(v,a) __raw_writeb((v),(a))
|
|
|
|
#define iowrite16(v,a) __raw_writew((v),(a))
|
|
|
|
#define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
|
|
|
|
#define iowrite32(v,a) __raw_writel((v),(a))
|
|
|
|
#define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
|
|
|
|
|
|
|
|
#define ioread8_rep(a, d, c) __raw_readsb((a), (d), (c))
|
|
|
|
#define ioread16_rep(a, d, c) __raw_readsw((a), (d), (c))
|
|
|
|
#define ioread32_rep(a, d, c) __raw_readsl((a), (d), (c))
|
|
|
|
|
|
|
|
#define iowrite8_rep(a, s, c) __raw_writesb((a), (s), (c))
|
|
|
|
#define iowrite16_rep(a, s, c) __raw_writesw((a), (s), (c))
|
|
|
|
#define iowrite32_rep(a, s, c) __raw_writesl((a), (s), (c))
|
|
|
|
|
|
|
|
/* synco on SH-4A, otherwise a nop */
|
|
|
|
#define mmiowb() wmb()
|
|
|
|
|
|
|
|
#define IO_SPACE_LIMIT 0xffffffff
|
|
|
|
|
|
|
|
extern unsigned long generic_io_base;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function provides a method for the generic case where a
|
|
|
|
* board-specific ioport_map simply needs to return the port + some
|
|
|
|
* arbitrary port base.
|
|
|
|
*
|
|
|
|
* We use this at board setup time to implicitly set the port base, and
|
|
|
|
* as a result, we can use the generic ioport_map.
|
|
|
|
*/
|
|
|
|
static inline void __set_io_port_base(unsigned long pbase)
|
|
|
|
{
|
|
|
|
generic_io_base = pbase;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n))
|
|
|
|
|
|
|
|
/* We really want to try and get these to memcpy etc */
|
|
|
|
void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
|
|
|
|
void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
|
|
|
|
void memset_io(volatile void __iomem *, int, unsigned long);
|
|
|
|
|
|
|
|
/* Quad-word real-mode I/O, don't ask.. */
|
|
|
|
unsigned long long peek_real_address_q(unsigned long long addr);
|
|
|
|
unsigned long long poke_real_address_q(unsigned long long addr,
|
|
|
|
unsigned long long val);
|
|
|
|
|
|
|
|
#if !defined(CONFIG_MMU)
|
|
|
|
#define virt_to_phys(address) ((unsigned long)(address))
|
|
|
|
#define phys_to_virt(address) ((void *)(address))
|
|
|
|
#else
|
|
|
|
#define virt_to_phys(address) (__pa(address))
|
|
|
|
#define phys_to_virt(address) (__va(address))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On 32-bit SH, we traditionally have the whole physical address space
|
|
|
|
* mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
|
|
|
|
* not need to do anything but place the address in the proper segment.
|
|
|
|
* This is true for P1 and P2 addresses, as well as some P3 ones.
|
|
|
|
* However, most of the P3 addresses and newer cores using extended
|
|
|
|
* addressing need to map through page tables, so the ioremap()
|
|
|
|
* implementation becomes a bit more complicated.
|
|
|
|
*
|
|
|
|
* See arch/sh/mm/ioremap.c for additional notes on this.
|
|
|
|
*
|
|
|
|
* We cheat a bit and always return uncachable areas until we've fixed
|
|
|
|
* the drivers to handle caching properly.
|
|
|
|
*
|
|
|
|
* On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
|
|
|
|
* doesn't exist, so everything must go through page tables.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
void __iomem *__ioremap(unsigned long offset, unsigned long size,
|
|
|
|
unsigned long flags);
|
|
|
|
void __iounmap(void __iomem *addr);
|
|
|
|
|
|
|
|
/* arch/sh/mm/ioremap_64.c */
|
|
|
|
unsigned long onchip_remap(unsigned long addr, unsigned long size,
|
|
|
|
const char *name);
|
|
|
|
extern void onchip_unmap(unsigned long vaddr);
|
|
|
|
#else
|
|
|
|
#define __ioremap(offset, size, flags) ((void __iomem *)(offset))
|
|
|
|
#define __iounmap(addr) do { } while (0)
|
|
|
|
#define onchip_remap(addr, size, name) (addr)
|
|
|
|
#define onchip_unmap(addr) do { } while (0)
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
|
|
|
|
static inline void __iomem *
|
|
|
|
__ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SUPERH32
|
|
|
|
unsigned long last_addr = offset + size - 1;
|
|
|
|
#endif
|
|
|
|
void __iomem *ret;
|
|
|
|
|
|
|
|
ret = __ioremap_trapped(offset, size);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUPERH32
|
|
|
|
/*
|
|
|
|
* For P1 and P2 space this is trivial, as everything is already
|
|
|
|
* mapped. Uncached access for P1 addresses are done through P2.
|
|
|
|
* In the P3 case or for addresses outside of the 29-bit space,
|
|
|
|
* mapping must be done by the PMB or by using page tables.
|
|
|
|
*/
|
|
|
|
if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
|
|
|
|
if (unlikely(flags & _PAGE_CACHABLE))
|
|
|
|
return (void __iomem *)P1SEGADDR(offset);
|
|
|
|
|
|
|
|
return (void __iomem *)P2SEGADDR(offset);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return __ioremap(offset, size, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ioremap(offset, size) \
|
|
|
|
__ioremap_mode((offset), (size), 0)
|
|
|
|
#define ioremap_nocache(offset, size) \
|
|
|
|
__ioremap_mode((offset), (size), 0)
|
|
|
|
#define ioremap_cache(offset, size) \
|
|
|
|
__ioremap_mode((offset), (size), _PAGE_CACHABLE)
|
|
|
|
#define p3_ioremap(offset, size, flags) \
|
|
|
|
__ioremap((offset), (size), (flags))
|
|
|
|
#define ioremap_prot(offset, size, flags) \
|
|
|
|
__ioremap_mode((offset), (size), (flags))
|
|
|
|
#define iounmap(addr) \
|
|
|
|
__iounmap((addr))
|
|
|
|
|
|
|
|
#define maybebadio(port) \
|
|
|
|
printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
|
|
|
|
__func__, __LINE__, (port), (u32)__builtin_return_address(0))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
|
|
* access
|
|
|
|
*/
|
|
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
|
|
*/
|
|
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
|
|
|
|
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
|
|
|
|
int valid_phys_addr_range(unsigned long addr, size_t size);
|
|
|
|
int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
|
|
|
|
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
|
|
|
#endif /* __ASM_SH_IO_H */
|